人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版

合集下载

高三数学知识点全部汇总人教版

高三数学知识点全部汇总人教版

高三数学知识点全部汇总人教版高三数学知识点全部汇总一、函数与方程1. 函数概念及性质函数是描述两个变量之间相互关系的工具。

具有定义域、值域和对应关系等性质。

2. 一元二次函数一元二次函数是形如y=ax^2+bx+c的函数,其中a≠0。

3. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。

4. 指数函数与对数函数指数函数是以底数为常数的幂函数,对数函数是指数函数的反函数。

5. 解方程与不等式解方程是求出使等式成立的未知数值,解不等式是求出使不等式成立的未知数值范围。

二、数列与数列求和1. 等差数列等差数列是具有相同公差的数列,常用通项公式an=a1+(n-1)d来表示。

2. 等比数列等比数列是相邻两项的比值相等的数列,常用通项公式an=a1*q^(n-1)来表示。

3. 递推数列递推数列是通过前一项和递推关系得到后一项的数列。

4. 数列求和数列求和是指对数列中的所有项进行加和运算,有等差数列求和公式和等比数列求和公式。

三、平面几何1. 平面图形的性质平面图形包括点、线、角、三角形、四边形、圆等,具有特定的性质和定理。

2. 三角形三角形是由三条边和三个内角组成的图形,有特殊的三边关系、三角形的性质和定理。

3. 圆与圆的相交关系圆与圆之间可以相离、相切或相交,并有相应的关系和定理。

四、空间几何1. 空间图形的性质空间图形包括点、线、面、体等,在三维空间中有特定的性质和定理。

2. 平行与垂直平行是指两条直线在同一平面内永不相交,垂直是指两条直线相交成直角。

3. 球与球的相交关系球与球之间可以相离、相切或相交,并有相应的关系和定理。

五、概率与统计1. 概率基本概念概率是用来描述事件发生可能性的大小,包括样本空间、事件、概率的概念。

2. 样本空间与事件样本空间是指随机试验的所有可能结果的集合,事件是样本空间的子集。

3. 随机变量与概率分布随机变量是随机试验结果的数值描述,概率分布用来描述随机变量取值的概率。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)在高中数学学习中,掌握数学公式和知识点是至关重要的。

本文将为大家总结高中数学中常用的公式和知识点,旨在帮助同学们更好地学习和掌握数学知识,提高数学成绩。

一、基础知识点总结1. 直线与平面几何- 直线的方程:一般式、点斜式、两点式等- 直线与角的关系:平行线、垂直线等- 圆的性质:圆的方程、弧长、面积等2. 集合与不等关系- 集合的运算:并集、交集、差集等- 不等关系的性质:大于、小于、等于等3. 函数- 函数的性质:奇函数、偶函数、单调性等- 常用函数:一次函数、二次函数、指数函数等- 函数的图像及性质:拐点、极值点等二、常用公式总结1. 代数式与因式分解- (a+b)² = a²+2ab+b²- (a-b)² = a²-2ab+b²- a²-b² = (a+b)(a-b)2. 几何与三角函数- 三角函数基本关系:sin²θ+cos²θ=1- 角平分线定理:直角三角形中,垂直边上的高等于斜边上的高3. 二次函数与方程- 一元二次方程:ax²+bx+c=0- 二次函数顶点坐标:(-b/2a, -Δ/4a)三、高中数学实例应用1. 解析几何- 坐标系、直线、圆等的相关性质- 平面图形的运用:平行四边形、三角形、梯形等2. 统计与概率- 统计学基本概念:均值、方差、标准差等- 概率论基础知识:样本空间、事件的概率等通过本文的数学公式及知识点总结,希望能够帮助广大高中同学更深入地了解数学知识,提高学习成绩。

数学虽然有一定的难度,但只要勤奋学习、不断总结经验,相信大家一定能够在数学的道路上越走越远。

祝各位同学学习进步,取得优异成绩!。

高一高二数学人教版知识点

高一高二数学人教版知识点

高一高二数学人教版知识点一、高一数学人教版知识点1.数与式1.1 自然数、零和整数1.2 有理数1.3 实数2.函数与二次函数2.1 函数的概念与性质2.2 二次函数的图像与性质3.代数式与因式分解3.1 代数式的定义与运算法则3.2 因式分解的基本方法4.方程与不等式4.1 一元二次方程4.2 一元二次不等式5.平面向量与解析几何5.1 平面向量的定义与运算5.2 直线与平面的方程二、高二数学人教版知识点1.三角函数与解三角形1.1 三角函数的定义与性质1.2 解直角三角形的基本方法2.圆与圆锥曲线2.1 圆的性质与方程2.2 椭圆、双曲线与抛物线的性质与方程3.数列与数学归纳法3.1 数列的概念与性质3.2 数学归纳法的基本思想与应用4.导数与函数的应用4.1 导数的定义与性质4.2 函数的增减性与极值5.概率与统计5.1 概率的基本概念与性质5.2 统计的基本方法与应用以上为高一高二数学人教版的主要知识点,涵盖了数与式、函数与二次函数、代数式与因式分解、方程与不等式、平面向量与解析几何、三角函数与解三角形、圆与圆锥曲线、数列与数学归纳法、导数与函数的应用、概率与统计等内容。

这些知识点在高一高二的数学学习中起着重要的作用,对于学生的数学素养的提升具有重要意义。

在学习过程中,理解透彻这些知识点的定义、性质及应用方法,能够提高数学解题能力,培养逻辑思维和创造力,为高中数学的学习打下坚实的基础。

总结起来,高一高二数学人教版的知识点非常广泛,包括数与式、函数与二次函数、代数式与因式分解、方程与不等式、平面向量与解析几何、三角函数与解三角形、圆与圆锥曲线、数列与数学归纳法、导数与函数的应用、概率与统计等内容。

这些知识点紧密联系,相互渗透,通过深入学习和实际应用,能够提高学生的数学思维能力和解题能力,为进一步学习高等数学打下坚实的基础。

希望同学们能够善于总结归纳,灵活运用所学知识,努力提高数学素养,取得优异的成绩。

人教版高中数学必修一知识点总结(完整版)

人教版高中数学必修一知识点总结(完整版)

第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

3.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来 {a,b,c……}2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}①语言描述法:例:{不是直角三角形的三角形}②Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集。

记作:B A ⊆(或B ⊇A)注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。

第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。

人教版高中数学知识点汇总(全册版)

人教版高中数学知识点汇总(全册版)
(3)求函数的定义域时,一般遵循以下原则:
① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是
提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.

高考数学知识点归纳人教版

高考数学知识点归纳人教版

高考数学知识点归纳人教版高考数学是高中阶段数学学习的总结和升华,其知识点广泛而深入,涵盖了代数、几何、概率统计等多个领域。

以下是根据人教版高中数学教材的知识点归纳:一、代数部分1. 集合与函数:包括集合的概念、运算,函数的定义、性质、单调性、奇偶性、周期性等。

2. 不等式:包括不等式的性质、解法,特别是一元二次不等式和绝对值不等式的解法。

3. 数列:数列的概念、等差数列、等比数列、数列的通项公式和求和公式。

4. 复数:复数的概念、运算、共轭复数、复数的模和辐角等。

5. 导数与微分:导数的定义、几何意义、基本导数公式、复合函数的求导法则、高阶导数。

6. 积分:定积分的概念、性质、基本定理、计算方法,包括牛顿-莱布尼茨公式。

二、几何部分1. 平面解析几何:包括直线与圆的方程、椭圆、双曲线、抛物线的标准方程及其性质。

2. 空间解析几何:空间直线与平面的方程、空间几何体的体积和表面积计算。

3. 立体几何:立体图形的性质、体积和表面积的计算,包括棱柱、棱锥、圆柱、圆锥、球等。

三、概率与统计1. 概率论基础:随机事件的概率、条件概率、独立事件、贝努利试验、二项分布等。

2. 统计基础:数据的收集、整理、描述,包括均值、中位数、众数、方差、标准差等。

四、其他知识点1. 三角函数:包括正弦、余弦、正切等三角函数的定义、图像、性质、和差化积、积化和差公式。

2. 反三角函数:反正弦、反余弦、反正切等函数的定义和性质。

3. 线性代数:矩阵的概念、运算、行列式、线性方程组的解法。

4. 逻辑推理:命题逻辑、演绎推理、归纳推理等。

结束语高考数学的知识点繁多,但只要系统地学习和复习,掌握每个知识点的内在联系和应用,就能够在高考中取得优异的成绩。

希望以上的归纳能够帮助同学们更好地准备高考,实现自己的目标。

新人教版高中数学必修三知识点总结(详细)

新人教版高中数学必修三知识点总结(详细)

新人教版高中数学必修三知识点总结(详
细)
本文旨在总结新人教版高中数学必修三的主要知识点,帮助学生复和掌握这一课程内容。

一、函数基本性质
1. 定义:函数是一个有输入和输出的对应关系。

2. 定义域和值域:函数的定义域是所有可能的输入值集合,值域是所有可能的输出值集合。

3. 图像与映射:函数可以通过图像表示,其中横坐标表示输入值,纵坐标表示输出值。

4. 奇偶性:函数可以根据输入值和输出值的奇偶性进行分类。

二、三角函数
1. 正弦函数:表示角的正弦值与其对边与斜边的比值。

2. 余弦函数:表示角的余弦值与其邻边与斜边的比值。

3. 正切函数:表示角的正切值与其对边与邻边的比值。

4. 幅角和周期:三角函数的图像在一定区间内呈周期性重复。

5. 三角函数的性质:包括奇偶性、单调性、增减性等。

6. 三角函数的简化:通过三角恒等式将复杂的三角函数化简为简单形式。

三、三角恒等式
1. 倍角公式:表示角的两倍与原角之间的关系。

2. 和差公式:表示两个角的和与差与它们的三角函数值之间的关系。

3. 积化和差公式:表示两个角的积与和与差与它们的三角函数值之间的关系。

4. 和差化积公式:表示两个角的和与差与它们的三角函数值之间的关系。

以上是新人教版高中数学必修三的主要知识点总结,通过复习和掌握这些知识,学生将能够更好地理解和应用数学。

希望本文对大家有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为
三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
y y=f(X)
f(x1)
o
x1
f(x2)
x2
x
判定方法
(1)利用定义 (2)利用已知函数的 单调性 (3)利用函数图象 (在某个区间图
象上升为增) (4)利用复合函数
人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版
如果对于属于定义域 I 内某 个区间上的任意两个自变量
y
y=f(X)
(1)利用定义 (2)利用已知函数的
人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
③判别式法:若函数 y f (x) 可以化成一个系数含有 y 的关于 x 的二次方程 a( y)x2 b( y)x c( y) 0 ,则在 a( y) 0时,由于 x, y 为实数,故必须有 b2 ( y) 4a( y) c( y) 0 ,从而确定函数的值域或最值.
性质
(1)A A
(2) A
(3)若 A B 且 B C ,则 A C
(4)若 A B 且 B A ,则 A B
(1) A (A 为非空子集)
(2)若 A B 且 B C ,则 AC
集合 相等
A B
A 中的任一元素都属 于 B,B 中的任一元 素都属于 A
(1)A B (2)B A
(2)一元二次不等式的解法 判别式
b2 4ac
二次函数
y ax2 bx c(a 0)
的图象
0
0
0
O
一元二次方程
ax2 bx c 0(a 0)
的根
x1,2 b
b2 4ac 2a
(其中 x1 x2 )
ax2 bx c 0(a 0)
的解集
{x | x x1 或 x x2}
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域;
②化解函数解析式;
③讨论函数的性质(奇偶性、单调性);
④画出函数的图象.
利用基本函数图象的变换作图:
【1.2.2】函数的表示法
(5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间 的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
①设 A 、 B 是两个集合,如果按照某种对应法则 f ,对于集合 A 中任何一个元素,在集合 B 中都 有唯一的元素和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法则 f )叫做集合 A 到 B 的映射,记作 f : A B . ②给定一个集合 A 到集合 B 的映射,且 a A, b B .如果元素 a 和元素 b 对应,那么我们把元 素 b 叫做元素 a 的象,元素 a 叫做元素 b 的原象.
(3)求函数的定义域时,一般遵循以下原则:
① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
[ a , 0) 、 (0, a ] 上为减函数.
(3)最大(小)值定义
o
x
①一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 M 满足:(1)对于任意的
x I ,都有 f (x) M ;
(2)存在 x0 I ,使得 f (x0 ) M .那么,我们称 M 是函数 f (x)
意义
性质
(1) A A A
交集 A B
{x | x A, 且 x B}
(2) A (3) A B A
A BB
(1) A A A
并集 A B
{x | x A, 或 x B}
(2) A A (3) A B A
A BB
1 A ( U A) 2 A ( U A) U
补集 U A {x | x U ,且x A} U (A B) ( U A) ( U B)
②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设 a, b 是两个实数,且 a b ,满足 a x b 的实数 x 的集合叫做闭区间,记做[a, b] ;满足 a x b 的实数 x 的集合叫做开区间,记做 (a, b) ;满足 a x b ,或 a x b 的实数 x 的 集合叫做半开半闭区间,分别记做 [a, b) , (a, b] ;满足 x a, x a, x b, x b 的实数 x 的 集合分别记做[a, ), (a, ), (,b], (,b) . 注意:对于集合{x | a x b}与区间 (a, b) ,前者 a 可以大于或等于 b ,而后者必须 ab.
的值 x1、x2,当 x.1.<.x.2.时,
f(x 1)
单调性
都有 f.(.x.1.).>.f.(.x.2.).,那么就说
f(xቤተ መጻሕፍቲ ባይዱ 在 这 个 区 间 上 是 减.函.
数..
o
(3)利用函数图象
f(x2 )
(在某个区间图
象下降为减)
x1
x2
x
(4)利用复合函数
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合
叫做空集( ).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
名称
记号
意义
A B
子集
(或
B A)
A 中的任一元素都属 于B
真子集
AB
(或
B A)
A B ,且 B 中至
少有一元素不属于 A
【1.3.2】奇偶性
(4)函数的奇偶性
①定义及判定方法
函数的 性质
函数的 奇偶性
定义
如果对于函数 f(x)定义域内 任意一个 x,都有 .f.(-.x..)=.-. f.(.x.).,那么函数 f(x)叫做奇.函. 数..
图象
判定方法
(1)利用定义(要先 判断定义域是否关于 原点对称) (2)利用图象(图象 关于原点对称)
为增函数,减函数减去一个增函数为减函数.
③ 对 于 复 合 函 数 y f [g(x)] , 令 u g(x) , 若 y f (u) 为 增 , u g(x) 为 增 , 则 y f [g(x)] 为增;若 y f (u) 为减, u g(x) 为减,则 y f [g(x)] 为增;若 y f (u)
⑤ y tan x 中, x k (k Z ) . 2
⑥零(负)指数幂的底数不能为零.
⑦若 f ( x) 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数
的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x) 的定义域为 [a,b] ,其复合函数 f [g(x)] 的定义域应由不等式 a g(x) b 解出.
人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版
如果对于函数 f(x)定义域内 任 意 一 个 x , 都 有 .f(.-. x..)=.f.(.x.).,那么函数 f(x)叫做 偶.函.数..
(1)利用定义(要先 判断定义域是否关于 原点对称) (2)利用图象(图象 关于 y 轴对称)
人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.
U ( A B) ( U A) ( U B)
示意图
A
B
A
B
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法 不等式
| x | a(a 0) | x | a(a 0)
| ax b | c,| ax b | c(c 0)
解集
{x | a x a} x | x a 或 x a} 把 ax b 看 成 一 个 整 体 , 化 成 | x | a , | x | a(a 0) 型不等式来求解
(3)集合与元素间的关系
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
②若函数 f (x) 为奇函数,且在 x 0 处有定义,则 f (0) 0 . ③奇函数在 y 轴两侧相对称的区间增减性相同,偶函数在 y 轴两侧相对称的区间增减性相反.
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数 (或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.
相关文档
最新文档