带有视觉识别模块的分拣机器人
基于机器视觉的工业机器人分拣系统设计共3篇

基于机器视觉的工业机器人分拣系统设计共3篇基于机器视觉的工业机器人分拣系统设计1基于机器视觉的工业机器人分拣系统设计随着市场需求的变化和制造技术的不断提升,工业机器人的应用越来越广泛。
在生产环节中,工业机器人能够取代劳动力,提高生产效率和产品质量,减少人为操作对环境的影响。
而在这些机器人中,分拣机器人具有广泛的应用前景,可以分拣不同形状、大小、颜色的物体。
然而,如果分拣机器人没有适当的控制系统,其作业效率和准确度均会变差。
因此,基于机器视觉的工业机器人分拣系统应运而生。
这种系统通过安装摄像头和光源,将视觉信息转换成机器人可以处理的数字信号,并控制机器人的动作和轨迹,实现自动分拣。
首先,基于机器视觉的工业机器人分拣系统需要相应的硬件设备。
摄像头是视觉传感器的核心,需要选择合适的型号和位置。
比如,一些生产线会设置多个摄像头,以便识别被摆放在不同位置的物体。
另外,光源的灯光强度和颜色也对机器人分辨物体的能力有很大影响。
例如,当物体表面光泽度很高时,光源应设置在适当的角度,以防止反射光干扰摄像头的识别。
其次,基于机器视觉的工业机器人分拣系统需要软件支持。
软件系统主要是用于视觉算法和机器人控制。
机器视觉算法是实现视觉识别的核心,主要有目标检测、特征提取、图像分割、模式匹配等内容。
而机器人控制算法则是帮助机器人完成分拣任务的关键,最常用的控制算法是PID算法,能够实现机器人的位置控制、速度控制和力控制。
最后,基于机器视觉的工业机器人分拣系统的应用场景较为广泛。
它可以应用于食品、药品、物流等多个行业,对企业的生产效率和产品质量有很大的提升。
例如,在生产线上,分拣机器人可以将不同类型的产品进行分拣和归类,符合生产效率和降低人工操作的要求。
总之,基于机器视觉的工业机器人分拣系统是一个能够高效、准确、节约人力的智能控制系统。
在未来的发展中,它将成为工业生产线的反复利用基于机器视觉的工业机器人分拣系统是一种具有广泛应用前景的智能控制系统。
基于机器视觉的工业机器人分拣系统

基于机器视觉的工业机器人分拣系统发表时间:2019-08-08T11:14:14.203Z 来源:《防护工程》2019年9期作者:王辉[导读] 工件分选是工业生产的重要组成部分。
在传统的生产线上,采用人工分拣。
佛山隆深机器人有限公司广东省佛山市 528300摘要:工件分选是工业生产的重要组成部分。
在传统的生产线上,采用人工分拣。
然而,这种工作具有高重复性和高劳动强度。
随着工业的发展和进步,并开始逐步采用工业机器人进行排序而不是工人,而是因为机器人的运动,通过教学或离线编程,实现所有操作是预定义的,一旦工件的位置,机器人不能做出相应的调整,将导致错误。
基于此,本文主要对基于机器视觉的工业机器人分拣系统进行分析探讨。
关键词:基于机器视觉;工业机器人;分拣系统1、前言将机器视觉技术与并联机器人相结合,可以使分拣作业拥有更高的可靠性和柔性,作业对象以及分拣工序可以随时随地的变换,提高了工业化生产的效率和机器人分拣系统的智能化程度。
基于以上优势和相关技术基础,开发和研究基于视觉技术的工业分拣机器人系统有着十分重要的意义。
2、机器人分拣系统的工作流程本文以阿童木并联机械手机器人和康奈视InSight7000型智能相机为基础,设计并搭建了一套基于视觉定位技术的机器人分拣系统,如图1所示。
实验调试过程中,将多个不同种类的正方体物块通过气缸的开合随机的散落在传送带上,程序会判断视野内是否有待分拣的物块,当物块运行到相机的视野区域内时,机器人控制系统采用等时间间隔的触发的方式触发相机进行拍照,采集分拣对象的位姿信息,计算机通过一定的处理算法对实验物块进行识别、计算,获取分拣对象的分类信息和坐标信息、旋转角度后,以一定的数据格式传递给机器人控制器,机器人控制系统根据视觉系统传回的信息,控制机器人末端执行机构在合适的动作区域内进行跟踪和拾取操作,将不同种类的实验物块放置到分别指定的位置。
当料盘上的物块数量达到设定的数值时,气缸再次开启,将物块随机的散落在传送带上,重复上述的过程。
快递分拣机器人控制系统的设计

在地面的快递件进行自动分拣。通过制作样机验证了设计的合理性与可行性。
关键词:
分拣机器人控制系统设计
中图分类号:TH122
文献标志码:A 文章编号:1000 -4998(2020)01 -0013 -04
Abstract: In order to improve the eliciency of express sorting, a controO system of express sorting robot
technology. The STM32 single-chip microcomputer is used as the motion controO core, and the externaO sensor
senses the state of the robot. Based on the two- way communication between the seial port and the machine
电池电压变化范围为21. 6〜25.2 V。当电压低于
21.6 V时,需要充电。逻辑电路包括三部分:
视觉
模块、
6 感器。采用5 V直流电供电,则降压
稳压电路的输入电压为21.6〜25 V,输出电压为5 V&
考虑到要
视觉模块、
及 感器供电,供电
电路采用LM2596稳压芯片⑺,最大输出电流可达3
A,能 满足逻辑电路的丄作要求。逻辑电路的电源
@
大赛平台,已制作出
,运行效果
良好&
2
快递分拣机器人控制系统硬件组成如图1所示, 以STM32单片机为核心,通过接口电路连接机器视觉
模块%舵 、电机驱动模块、传感器模块和气泵吸盘控
自动分拣机器人的原理

自动分拣机器人的原理
自动分拣机器人是一种基于机器视觉和机器学习的智能设备,用于实现自动化的物品分拣和分类。
其工作原理可以总结为以下几个关键步骤:
1. 传感器检测:自动分拣机器人通过搭载各种传感器来感知环境和采集数据。
这些传感器通常包括摄像头、激光雷达、红外传感器等。
通过对物体进行拍摄或扫描,机器人可以获取目标物体的外形、颜色、纹理等特征。
2. 图像处理与分析:机器人将通过摄像头获取的图像传输到计算设备进行处理。
使用计算机视觉算法,机器人将对图像进行分析和解读,从中提取出目标物体的特征和属性。
这些特征可以包括物体的形状、大小、颜色和纹理等。
3. 特征匹配与识别:机器人使用机器学习算法来将提取出的特征与已有的物体模型进行匹配和识别。
通过与预先存储的数据库或训练集中的数据进行对比,机器人可以确定目标物体的身份和类别。
4. 运动规划与执行:一旦目标物体被识别,机器人将根据分拣策略和程序进行运动规划。
它将计算出最佳的路径和动作轨迹,以将目标物体从初始位置移动到目标位置。
5. 分拣操作:机器人通过机械臂、传送带或其他装置来执行分拣操作。
它可以使用吸盘、夹具或其他工具,将目标物体精确地抓取或移动到指定的位置。
6. 状态监测与反馈:机器人还会通过传感器来监测分拣过程的状态。
如果分拣失败或遇到异常情况,机器人将发送反馈信号,以便及时调整或进行故障排除。
综上所述,自动分拣机器人通过传感器检测、图像处理与分析、特征匹配与识别、运动规划与执行等步骤,实现对物品的自动化分拣和分类。
这种技术的应用可以大大提高物流和仓储行业的效率和准确度。
基于机器视觉的机器人流水线分拣系统的设计研究

基于机器视觉的机器人流水线分拣系统的设计研究【摘要】本文针对基于机器视觉的机器人流水线分拣系统展开设计研究。
在引言部分中,介绍了背景情况,阐明了研究的意义和目的。
接着在正文部分中,对机器视觉技术进行概述,详细论述了流水线分拣系统的设计原理,视觉传感器的选取过程,分拣算法的研究以及系统的实现与测试。
最后在结论部分中,对设计研究进行总结,展望未来的发展方向,并强调了这项研究的成果和贡献。
通过本研究,我们能够更好地了解基于机器视觉的机器人分拣系统的设计原理和实际应用,为未来相关领域的研究和发展提供重要参考。
【关键词】机器视觉、机器人、流水线、分拣系统、设计研究、视觉传感器、分拣算法、系统实现、测试、结论、未来发展、研究成果、贡献。
1. 引言1.1 背景介绍机器人流水线分拣系统是目前工业自动化中常见的一种应用场景,通过结合机器视觉技术,可以提高分拣效率和准确性,减少人力成本和物料损耗。
随着产业升级和智能制造的发展,对机器人流水线分拣系统的需求也在不断增加。
传统的分拣系统往往依赖于人工操作,存在分拣效率低、错误率高、工作强度大等问题。
而基于机器视觉的机器人流水线分拣系统可以实现自动化处理、智能识别和高效分拣,能够更好地适应多品种、小批量生产的需求。
研究机器视觉技术在流水线分拣系统中的应用,对提高生产效率、降低成本具有重要意义。
本研究旨在设计一种基于机器视觉的机器人流水线分拣系统,通过对流水线分拣系统的设计和实现进行深入研究,探索如何利用机器视觉技术提升分拣系统的效率和准确性,为工业自动化提供更多实用价值。
1.2 研究意义基于机器视觉的机器人流水线分拣系统的研究和设计不仅能够满足当前工业生产对高效、精准生产需求,也可以为未来工业智能化的发展奠定基础。
通过该系统的研究与应用,可以积累大量的实践经验,为未来更多领域的机器视觉技术的应用提供参考与借鉴,推动技术的不断创新和发展。
对基于机器视觉的机器人流水线分拣系统进行设计研究具有重要的现实意义和理论价值。
分拣机器人的工作原理

分拣机器人的工作原理随着工业自动化的快速发展,机器人已经成为了现代工业生产中不可或缺的一部分。
其中,分拣机器人在物流、仓储、生产等领域中应用广泛。
本文将介绍分拣机器人的工作原理,包括其构成、工作流程及技术特点等方面。
一、分拣机器人的构成分拣机器人主要由机械结构、电气控制、视觉识别、通讯传输、计算控制等多个组成部分构成。
其中,机械结构是分拣机器人的基础,其主要由机械臂、机械手、传感器等部分组成。
电气控制是分拣机器人的核心,其主要由电机、控制器、传感器等部分组成。
视觉识别是分拣机器人的重要组成部分,其主要由摄像头、图像处理器、算法等部分组成。
通讯传输是分拣机器人的必要组成部分,其主要由网络通信、数据传输等部分组成。
计算控制是分拣机器人的关键组成部分,其主要由控制算法、运动规划等部分组成。
二、分拣机器人的工作流程分拣机器人的工作流程可以分为三个步骤:视觉识别、运动规划和执行控制。
具体流程如下:1.视觉识别:分拣机器人利用摄像头获取待分拣物品的图像信息,然后通过图像处理算法对图像信息进行分析和处理,得到待分拣物品的特征信息。
例如,对于水果类物品,可以通过颜色、形状、大小等特征进行识别。
2.运动规划:分拣机器人根据待分拣物品的特征信息,通过控制算法计算机械臂的运动轨迹和机械手的抓取方式,以实现对待分拣物品的准确抓取和分拣。
3.执行控制:分拣机器人通过计算控制模块对机械臂和机械手进行控制,实现对待分拣物品的准确抓取和分拣,并将分拣完成的物品送到指定位置。
三、分拣机器人的技术特点1.高效性:分拣机器人可以在短时间内完成大量物品的分拣任务,提高了生产效率和质量。
2.准确性:分拣机器人采用先进的视觉识别技术和运动规划算法,可以准确地识别和分拣各种物品。
3.灵活性:分拣机器人可以根据不同的物品特征进行自适应控制,适用于多种物品的分拣任务。
4.安全性:分拣机器人采用多重安全保护措施,能够保证在工作过程中的安全性。
5.可靠性:分拣机器人采用优质的机械结构和电气控制部件,保证了其稳定性和可靠性。
分拣机器人工作总结

分拣机器人工作总结引言分拣机器人是一种自动化设备,可以用来分拣货物,提高仓储和物流行业的效率。
本文将对我们团队设计和开发的一台分拣机器人进行工作总结,包括设计方案、开发过程、功能实现和性能评估等。
设计方案我们的分拣机器人采用了基于视觉识别和机械臂控制的设计方案。
整个系统由以下几个核心组件组成:1.视觉识别系统:利用摄像头和图像处理算法来判断货物的属性和位置。
2.机械臂控制系统:通过控制机械臂的运动,将识别出的货物分拣至目标位置。
3.控制中心:负责整个系统的协调和控制,包括与机械臂和视觉识别系统的通信。
开发过程在开发过程中,我们按照以下步骤进行:1.系统需求分析:明确系统的功能和性能需求,并根据用户需求进行调研和分析。
2.硬件选型:结合系统需求,选择适合的摄像头、机械臂和控制器等硬件设备。
3.软件开发:基于视觉识别和机械臂控制的技术,开发相应的软件模块。
4.集成测试:将各个组件进行集成测试,确保系统的完整性和稳定性。
5.性能调优:对系统进行性能优化,提高分拣速度和准确率。
功能实现我们的分拣机器人实现了以下核心功能:1.货物识别:利用图像处理算法,可以准确地识别货物的属性,如形状、颜色和尺寸等。
2.位置锁定:通过视觉识别系统,可以确定货物的位置坐标,以便后续的机械臂控制。
3.机械臂控制:通过与机械臂的通信,实现精确的分拣动作,将货物放置到目标位置。
4.控制中心:提供用户界面和控制接口,方便用户操作和监控整个系统的工作状态。
性能评估为了评估我们的分拣机器人的性能,我们进行了一系列的实验和测试。
1.分拣速度测试:通过测试不同大小和数量的货物,记录机器人的分拣速度,并与预期性能进行对比。
2.准确率测试:通过对一批预先设定的货物进行分拣,记录机器人的准确率,并分析误差原因。
3.运行稳定性测试:长时间运行机器人,并观察系统是否稳定,是否出现故障。
4.用户满意度调查:向系统使用者收集意见和建议,评估用户对机器人性能的满意度。
分拣机器人工作原理

分拣机器人工作原理
分拣机器人的工作原理可以分为以下几个步骤:
1. 感知和识别:分拣机器人通过搭载的传感器和视觉系统,对待分拣的物件进行感知和识别。
传感器可以包括激光传感器、摄像头等,用来检测物体的位置、形状、颜色等特征。
2. 目标定位:分拣机器人根据感知到的物体信息,准确定位目标物体的位置,并计算出抓取点和抓取姿态。
3. 抓取和分拣:分拣机器人根据抓取点和抓取姿态,利用机械臂或夹爪等装置,将目标物体从原始位置抓取起来,并将其放置到相应的目标位置。
抓取和分拣的方式可以根据具体应用场景而定,可以是夹爪抓取、吸盘抓取等。
4. 控制和规划:分拣机器人通过集成的控制系统,根据预先设定的任务和路径规划,控制机械臂和各个执行器进行动作,实现准确的抓取和分拣操作。
5. 数据处理和决策:分拣机器人将感知到的物体信息和抓取结果进行数据处理和分析,根据预先设定的规则和算法进行决策,判断目标物体的正确性以及下一步的动作。
总体来说,分拣机器人通过感知、识别、定位、抓取、控制和决策等步骤,实现自动化的物体分拣任务。
通过集成多种技术和设备,可以使分拣机器人适应不同的物体形状、重量和尺寸,并实现高效、准确的分拣作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带有视觉识别模块的分拣机器人
作者:李德民王诗宇王嘉乐
来源:《知识文库》2018年第05期
传统的机器人分拣操作一般采用示教或离线编程方式,当机器人所处的工作环境发生改变时机器人很难即时作出相应的调整,为了使机器人具有更加智能化的功能,以阿童木并联机器人和工业智能相机为基础,组成一套带有视觉模块的机器人分拣系统。
这样的分拣系统结合了并联型机器人和视觉模块两个方面的优势,通过视觉模块智能的识别不同的对象,系统可以完成高速的分拣工作,显著提升了机器人对工作环境的适应能力,提高了工作效率。
同时,实验结果证明了该系统软硬件设计正确,分拣成功率高。
随着我们国家生产需求的不断增加,机器人越来越多的参与到各行各业的生产过程中来。
其中,对工件的分拣作业是当前生产过程中的一个重要环节,传统的机器人分拣,其动作和目标的摆放位置都需要根据程序预先严格的设定。
一旦机器人所处的环境有所改变,很容易导致抓取错误。
本文模拟工业生产中的分拣作业环境,引入视觉模块,用摄像机来模拟人类的视觉功能来对待测的对象进行识别分类,可以使分拣作业拥有更高的可靠性和灵活性,作业对象以及分拣工序可以随时随地的变换,也提高了工作的效率和机器人的智能化程度。
1机器人系统组成介绍
我们设计的机器人分拣系统主要由并联机器人、视觉模块、传送带装置以及分拣对象组成,结构如图1所示:
1.1并联机器人
相比于其他工业机器人,并联机器人占用较小的空间,其更具有高速度、高精度、灵活性等特点,更能适合苛刻的工业生产需求。
我们在实验中采用的是阿童木4轴并联型机器人,如图2所示,它能够完成空间中X、Y、Z方向的移动及角度的转动。
除了并联型机器人本体之外,机器人配套设施还包括机器人控制柜、控制编程器和驱动机器人各关节运动的伺服交流电机。
机器人末端执行机构为气动吸盘,用于吸附传送带上的分拣对象,完成抓取动作。
1.2 视觉模块
视觉模块我们采用康奈视公司的In-Sight7000型智能相机,如图3所示。
该视觉模块能够智能的识别出实验中不同种类的实验对象,以及采集各个实验对象的位置信息。
1.3网络交换机
实验中,我们使用一般的家用路由器来替代网络交换机。
视觉模块采集到的信息要通过局域网来络传递给机器人,因此我们要用到网络交换机来搭建局域网络,进而使各个模块间完成信息传输。
1.4 传送带及分拣对象
皮带输送机用来完成对分拣对象的输送,其工作长度约为1米,分拣对象为印有不同字母的立方体铅块,用以上装置来搭建一个可以模拟工业生产中分拣环节的实验环境。
2实验流程设计
如图4所示为整个实验环境,实验主要完成“识别—定位—抓取—放置”等一系列过程。
首先,不同种类的实验物块通过气缸的开合随机的散落在传送带上,视觉模块会判断视区域野内是否有待分拣的实验物块,当实验物块运行到相机的视野区域内时,视觉模块进行图像采集,采集分拣对象的位姿信息,计算机通过一定的程序算法对实验物块进行识别、计算,获取分拣对象的分类信息和坐标信息、旋转角度后,再传递给机器人,机器人根据视觉模块传回的信息,控制机器人末端执行机构(即吸盘)在合适的动作区域内进行跟踪和拾取操作,将不同种类的实验物块放置到分别指定的位置。
当料盘上的物块数量达到设定的数值时,气缸再次开启,将物块随机的散落在传送带上,重复上述的过程。
要实现上述过程,我们需要完成以下几个方面的工作:
2.1 相机标定
首先我们要保证视觉模块采集到的坐标信息是准确无误的,这就需要对相机进行标定工作。
由于镜头等硬件环境的原因,相机在采集图像的时候经常会产生一定的误差,标定即是对镜头的畸变进行校正的过程。
我们在实验中利用视觉模块自带的标定功能,使用棋盘格作为相机标定模板,完成对视觉模块的标定工作,如图5所示。
标定工作完成之后,视觉模块就可以对传送带上的实验对象进行信息的采集工作了,图6为视觉模块采集到的图像信息。
2.2 建立坐标关系
视觉模块拥有自己的坐标系统,机器人同样也具有自己的坐标系统,视觉模块采集到实验对象的数据信息后,要转换成机器人可以理解的坐标信息,因此我们需要建立视觉坐标系和机器人坐标系之间的对应关系,如图6所示:
其中,两个坐标系之间有如下式(1)的对应关系:
2.3机器人抓取
计算机将视觉模块采集到的数据信息转换成机器人可以理解的坐标信息后,传送给机器人,机器人的末端执行器根据获取的坐标信息移动到待抓取对象的上方,开启末端执行器上的气阀装置,将待抓取的实验对象牢牢地吸附在末端执行器上。
如图7所示:
2.4机器人放置
最后,我们要将不同种类的实验对象放置到预先设定好的不同区域。
首先设定好每一种类实验对象放置的初始位置,每放置一次沿Y方向一次减掉相应的距离,这样就可以保证两次放置不会发生位置重合的现象。
放置情况如图8所示:
3 软件设计
根据系统的作业需求,要在运动的传送带上准确的识别不同种类的分拣对象,实验中采用分别印有字母A至F的立方体块,如上图8所示,将它们分别抓取至相应的位置,因此在程序设计时要对6种立方体块进行判别,每种对象都包含一个循环体,下面以一种对象为例,将程序设计流程表示如下:
4实验结果及分析
经过对软硬件的调试,本实验顺利完成了对待分拣对象的分拣过程。
实验过程为预先在上位机上建立所有待抓取对象的模板,然后在传送带初始位置开始随意放置不同类型的待分拣对象,分拣作业要求将不同的分拣对象分别放置到相应的位置。
整个抓取过程,视觉系统通过规定好的数据通信格式向机器人发送传送带上目标对象的位姿信息。
机器人末端执行器上的气动吸盘根据坐标信息运动到气动目标物体上方,开启气阀对应的IO接口吸附目标物体,运动到预先定义好的坐标位置后关闭气阀,完成放置过程。
(作者单位:1.大连市第二十四中学2.中国科学院沈阳计算技术研究所)。