Pasco固体线膨胀系数的测量1

合集下载

固体线膨胀系数的测定实验报告

固体线膨胀系数的测定实验报告

固体线膨胀系数的测定实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 线膨胀系数的概念
1.1.2 线膨胀系数的计算公式
1.2 实验器材
1.3 实验步骤
1.4 实验结果分析
1.5 实验结论
实验目的
通过测定固体线膨胀系数的实验,掌握固体在温度变化下的膨胀规律,了解物体在不同温度下的变化情况。

实验原理
线膨胀系数的概念
线膨胀系数是一个物体在单位温度变化下长度变化的比例系数,通常
表示为α。

线膨胀系数的单位为℃^-1。

线膨胀系数的计算公式
线膨胀系数的计算公式为:
$$
α = \frac{ΔL}{L_0ΔT}
$$
其中,α为线膨胀系数,ΔL为长度变化量,L0为初始长度,ΔT为
温度变化量。

实验器材
1. 物体(例如金属杆)
2. 尺子
3. 温度计
4. 烧杯
5. 热水
实验步骤
1. 测量物体的初始长度并记录为L0。

2. 将物体放入热水中,让其温度升高。

3. 使用温度计测量热水的温度变化ΔT。

4. 测量物体在热水中的长度变化量ΔL。

5. 根据公式计算出线膨胀系数α。

实验结果分析
根据实验数据计算出的线膨胀系数可以帮助我们了解物体在不同温度下的膨胀情况,从而观察到物体在温度变化下的变化规律。

实验结论
通过本次实验,我们成功测定了固体线膨胀系数,并对物体在温度变化下的膨胀规律有了更深入的了解。

这对于工程领域的材料选择和设计具有重要意义。

大学物理仿真实验报告--固体线膨胀系数的测量

大学物理仿真实验报告--固体线膨胀系数的测量

固体线膨胀系数的测量一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。

二、实验原理固体的线膨胀系数和体膨胀系数是固体热学特性的重要参数,通常体膨胀系数是线膨胀系数的3倍左右,本实验主要介绍固体线膨胀系数的测量方法。

线膨胀是指材料在受热膨胀时,在一维方向上的伸长。

在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t 1加热至末温t 2,物体伸长了△L ,则线膨胀系数满足:即上式中△L 是个极小的量,我们采用光杠杆测量。

光杠杆法测量△L :如下图(见教材杨氏模量原理)1.当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b 1、b 2,这时有 即则固体线膨胀系数为:三、实验仪器尺读望远镜,米尺,固体线膨胀系数测定仪,铜棒,光杠杆,温度计。

四、实验内容及步骤1、在实验界面单击右键选择“开始实验”()12t t L L -=∆αlLDbb ∆=-212()Dlb bL 212-=∆()12t t L L-∆=α()()kDLl t t DL b b l 221212=--=α2、调节平面镜至竖直状态3、打开望远镜视野,并调节方位、聚焦、目镜使得标尺刻线清晰,且中央叉丝读数为0.0mm4、单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止5、单击卷尺,分别测量l、D6、以t 为横轴,b 为纵轴作b -t 关系曲线,求直线斜率k7、代入公式计算线膨胀系数值 有图得K =0.3724=1.206x10-5 /C五、实验数据记录与处理六、思考题()()k DLl t t DL b b l 221212=--=α1.对于一种材料来说,线胀系数是否一定是一个常数?为什么?不是。

因为同一材料在不同的温度区域,其线性系数是不同的,有实验结果的事实可证明。

2.你还能想出一种测微小长度的方法,从而测出线胀系数吗?目前想不到更好地方法。

固体线膨胀系数的测定 -回复

固体线膨胀系数的测定 -回复

固体线膨胀系数的测定-回复
固体线膨胀系数是指单位长度(或面积)的物体温度升高时的长度(或面积)增加的比例。

固体线膨胀系数的测定可以通过以下步骤进行:
1. 准备测量装置:选用适合该物体的长度计和温度计等测量仪器,并确保测器的准确度。

2. 准备样品:选择所需的物体样品,保证样品的形状和尺寸符合实验要求。

3. 热平衡:将样品和测量仪器置于恒温浴中,达到热平衡状态。

4. 记录初始参数:记录下样品的长度、温度、环境温度等参数。

5. 加热:将恒温浴温度逐步提高,记录下不同温度下样品的长度、温度、环境温度等参数。

6. 数据处理:根据实验数据,计算出相邻温度下样品长度变化量与样品长度的比例,即固体线膨胀系数。

需要注意的是,在测量过程中要保证实验条件的恒定和精确,尽量避免误差。

另外,不同物质的固体线膨胀系数会随温度变化而发生变化,因此在实验中需根据具体情况进行调整。

实验三 固体线膨胀系数的测定

实验三 固体线膨胀系数的测定

实验三 固体线膨胀系数的测量【实验目的】1.了解热膨胀现象。

2.测量固体线膨胀系数。

【实验仪器】EH-3型热学实验仪,铜棒,铁棒,千分表。

【实验原理】大部分物质在一定温度范围内都呈现“热胀热缩”的宏观现象。

就晶体状固体模型而言,这是因为物质中相邻粒子间的平均距离随温度的升高而增大引起的。

两相邻粒子间的势能是它们之间距离的函数,其关系可用势能曲线描绘如图3-1。

在一定的温度下,粒子在其平衡位置r o 附近做热振动,具有一定的振动能量E 。

由于势能曲线的非对称性,热振动时的平均距离r 大于平衡距离r o 。

若温度升高(T 1、T 2),振动能量增加(E 1、E 2),则两原子之间的平均距离也增大(r 1、r 2),随之固体的体积膨胀。

因此,热膨胀现象是物体的势能曲线的非对称特性的必然结果。

固体的任何线度(长度、宽度、厚度、直径等)随温度的变化,都称为线膨胀。

对于各向同性的固体,沿不同方向的线膨胀系数相同;对于各向异性的固体,沿不同的晶轴方向,其线膨胀系数不同。

实验表明,原长度为L 的固体受热后,其相对伸长量正比温度的变化,即: αt L L ∆=∆ 式中,比例系数a 称为固体的线膨胀系数,对于一种确定的固体材料,它是一个确定的常数。

设温度在0℃时,固体的长度为L 0,当温度升高时,其长度为L t 。

t L L L t α=-00 (3-1) L t = L 0(1+αt )。

(3-2)若在温度t 1和t 2时,固体的长度分别为L 1,L 2,则根据式(3-2)或写出L 1=L 0(1+αt 1), (3-3)L 2=L 0(1+αt 2), (3-4)将式(3-3)代入式(3-4)化简后得图3-1 势能曲线⎪⎪⎭⎫ ⎝⎛-∆=∂11221t L L t L L (3-5) 由于L 1与L 2非常接近,故L 2/ L 1≈1,于是式(3-5)可简写成 ()121t t L L -∆=α (3-6) 只要测出L 1,ΔL 和t 1,t 2就可以求出α值。

固体线膨胀系数的测定

固体线膨胀系数的测定

固体线膨胀系数的测定绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。

在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。

线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。

【实验目的】1、学习测量固体线膨胀系数的一种方法。

2、了解一种位移传感器——数字千分表的原理及使用方法。

3、了解一种温度传感器——AD590的原理及特性。

4、通过仪器的使用,了解数据自动采集、处理、控制的过程及优点。

5、学习用最小二乘法处理实验数据。

【实验原理】1、线膨胀系数设在温度为t1时固体的长度为L1,在温度为t2时固体的长度为L2。

实验指出,当温度变化范围不大时,固体的伸长量△L= L2-L1与温度变化量△t= t2-t1及固体的长度L1成正比。

即:△L=αL1△t (1)式中的比例系数α称为固体的线膨胀系数,由上式知:α=△L/Ll·1/△t (2)可以将α理解为当温度升高1℃时,固体增加的长度与原长度之比。

多数金属的线膨胀系数在(0.8—2.5)×10-5/℃之间。

线膨胀系数是与温度有关的物理量。

当△t很小时,由(2)式测得的α称为固体在温度为t1时的微分线膨胀系数。

当△t是一个不太大的变化区间时,我们近似认为α是不变的,由(2)式测得的α称为固体在t1—t2温度范围内的线膨胀系数。

由(2)式知,在L1已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t与相应的长度变化量△L的测量,由于α数值较小,在△t不大的情况下,△L也很小,因此准确地测量△L及t是保证测量成功的关键。

2、微小位移的测量及数字千分表测量微小位移,以前用得最多的是机械百分表,它通过精密的齿条齿轮传动,将位移转化成指针的偏转,表盘最小刻度为0.01mm,加上估读,可读到0.001mm,这种百分表目前在机械加工行业仍广泛使用。

固体线胀系数的测定实验报告

固体线胀系数的测定实验报告

固体线胀系数的测定实验报告固体线胀系数的测定实验报告引言:固体线胀系数是材料热胀冷缩特性的重要指标之一。

通过测定材料在不同温度下的线胀变化,可以确定材料的线胀系数,为材料的热胀冷缩行为提供重要参考。

本实验旨在通过测定铝棒在不同温度下的线胀变化,计算出铝的线胀系数。

实验步骤:1. 实验器材准备:- 铝棒:长度为30cm,直径为1cm;- 温度计:具有较高精度的数字温度计;- 夹具:用于固定铝棒,确保其在实验过程中不发生位移;- 温度控制装置:用于控制实验室内的温度。

2. 实验操作:- 将铝棒固定在夹具上,并确保其水平放置;- 将温度计的探头与铝棒接触,记录下初始温度;- 打开温度控制装置,将实验室温度调整至25摄氏度;- 每隔10摄氏度,记录下铝棒的长度,并记录相应的温度;- 测定范围为25摄氏度至100摄氏度。

数据处理:根据实验数据,我们可以计算出铝的线胀系数。

线胀系数(α)的计算公式为:α = (ΔL / L0) / ΔT其中,ΔL为铝棒的长度变化量,L0为初始长度,ΔT为温度变化量。

我们可以根据测定的数据,绘制出铝的线胀系数与温度的关系曲线图,并通过拟合曲线,得到更精确的线胀系数。

结果与讨论:根据实验数据,我们得到了铝的线胀系数与温度的关系曲线图。

从图中可以看出,在温度升高的过程中,铝的线胀系数逐渐增大。

这是因为随着温度的升高,固体分子的热运动增加,分子间的距离扩大,导致材料的线胀。

而铝的线胀系数相对较小,说明铝具有较好的热胀冷缩性能。

通过拟合曲线,我们得到了铝的线胀系数为0.0000225/℃。

这一数值与文献值相符合,说明实验结果较为准确。

结论:通过本实验,我们成功测定了铝的线胀系数,并得到了较准确的结果。

线胀系数是材料热胀冷缩特性的重要指标,对于工程设计和材料选用具有重要意义。

本实验为我们提供了一种简单有效的测定固体线胀系数的方法,并且验证了铝的线胀系数与温度的关系。

测量固体的线膨胀系数

测量固体的线膨胀系数

测量固体的线膨胀系数固体的线膨胀系数是描述物质对温度变化的敏感度的一个物理参数,通常用来描述物质在温度变化下长度的变化程度。

线膨胀系数可以通过实验来测量,本文将介绍如何测量固体的线膨胀系数。

一、实验原理当物体温度发生变化时,其长度也会发生变化。

固体的线膨胀系数α 描述了单位长度下长度随温度变化的变化率,即:α = ΔL / L ΔT式中,ΔL 是长度变化量,L 是原始长度,ΔT 是温度变化量。

线膨胀系数的单位是单位温度下的长度变化率,通常是1/℃ 或者是ppm/℃。

二、实验仪器1. 长度计:用来测量细丝的长度变化量。

2. 恒温水浴:用来保持热源的恒定温度。

三、实验步骤1. 准备一根公认固定长度的细丝,并记录其长度 L0。

2. 将细丝固定在丝夹上,并使其自由悬挂在空气中。

3. 设计并制作好一个固定的实验装置,将热源与细丝分别加热和恒温变化。

热源的温度需要随时间逐渐升高,以使其达到恒定温度。

4. 在恒温水浴中对照片中的那个老哥进行热平衡后,分别测量细丝在不同温度下的长度,并记录在表格中。

5. 测量不同温度下,细丝的长度变化量ΔL1,ΔL2,ΔL3,ΔL4。

6. 根据公式计算出每个温度下的线膨胀系数α1,α2,α3,α4。

(α1 = ΔL1 / L0 ΔT,α2 = ΔL2 / L0 ΔT,α3 = ΔL3 / L0 ΔT,α4 = ΔL4 / L0 ΔT)。

7. 绘制实验数据的曲线图,从图中找出线性部分的数据点。

8. 计算出线性部分的平均值,作为该固体的标准线膨胀系数α。

四、实验注意事项1. 实验过程中需要测量细丝保持自由悬挂状态,避免其他外力对细丝长度的影响。

2. 恒温水浴中的细丝安装位置应与实验装置中的热源保持距离,以避免热传递的影响。

3. 在测量过程中,应尽量减小误差的影响,保证实验数据的准确性。

总之,通过本文的介绍,您已经了解了如何测量固体的线膨胀系数,可以通过实验数据计算出该物质的标准线膨胀系数。

固体线膨胀系数的测定讲义

固体线膨胀系数的测定讲义

固体线膨胀系数的测定大多数固体材料内部分子热运动的剧烈程度与物体的温度有关,故而都遵从热胀冷缩的规律。

固体的体积随温度升高而增大的现象称为热膨胀。

固体热膨胀时,它在各个线度上(如长、宽、高、直径等)都要膨胀,我们把物体线度的增长称为线膨胀;将体积的增大称为体膨胀。

若固体在各方向上热膨胀规律相同时,可以用固体在一个方向上的线膨胀规律来表征它的体膨胀,所以线膨胀系数是很多工程技术中选材料的重要技术指标。

在道路、桥梁、建筑等工程设计、精密仪器仪表设计、材料的焊接、加工等领域都必须考虑该参数的影响。

线膨胀系数的测量方法有很多种,包括:光杠杆法、千分表法、读书显微镜法、光学干涉法、组合法等,本实验采用千分表法测金属线膨胀系数,用FD-LEB 线膨胀系数测定仪进行测量。

一、实验目的1.学习测量固体线膨胀系数的方法;2.掌握用千分表测量微小长度变化的方法;3.练习作图法处理实验数据的方法;4.分析影响测量精度的因素。

二、实验原理固体受热后的长度L 和温度t 之间的关系为:)1(20 +++=t t L L βα (1)式中L 0为温度t=0℃时的长度, βα、是和被测物质有关的数值很小的常数,而β以后的各系数和α相比甚小,所以常温下可以忽略,则上式可写成:)1(0t L L α+= (2)式中α就是固体的线膨胀系数,其物理意义为温度每升高一度时物体的伸长量与它在零度时的长度比,单位是摄氏度分之一。

如果在温度t 1和t 2时,金属杆的长度分别为L 1和L 2,则有:)1(101t L L α+= (3) )1(202t L L α+= (4) 联立(3)、(4)式可得:)(1122112t L L t L L L --=α。

由于L 2与L 1相差微小,1/12≈L L 所以上式可近似写为tL L ∆∆=1α。

式中12L L L -=∆是固体当温度变化12t t t -=∆时相对应的伸长量。

该式通常可简单表示为:t L L ∆∆=α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体线膨胀系数的测量
丁铮莹2011329700220 陈昊政 2011329700217
任何物体都具有“热胀冷缩”的特性,这个特性在工程设计、精密仪器设计、材料的焊接和加工中都必须加以考虑。

在一维情况下,固体材料受热后长度的增加称为线膨胀。

传统的测量方法主要有光杆法和螺旋测微法,测量过程比较繁琐,测量误差也比较大。

本实验利用温度传感器、旋转移动传感器、数据采集接口器和计算机构成的实验系统,对材料的线膨胀系数进行分析和测量。

实验目的
1.了解物体“热胀冷缩”的程度和特性,绘制材料“伸长量—时间”、“温度—时间”曲线变化量。

2.学习用计算机控制对固体线膨胀系数的实时测量技术。

实验仪器
计算机,数据采集接口器,PASCO物理实验组合仪。

实验原理
在相同的条件下,不同的材料,其线膨胀的程度各不相同。

我们用线膨胀系数来表达材料的这种性质和差别。

测定材料的线膨胀系数,实际上归结为测量在某一温度范围内材料的微小伸长量。

实验表明,在一定温度范围内,原长度为L的固体受热后,其相对伸长量L/
∆正比于温度的变化量∆t,即:
L
∆=α∆t (1)
L/
L
式中α称为固体的线膨胀系数。

不同材料具有不同的线膨胀系数,塑料的线膨胀系数最大,金属次之,熔凝石英的线膨胀系数很小。

在一般情况下,在温度变化不大的范围内,对于一种确定的固体材料,可认为线膨胀系数是一个具有确定值的常数。

对于杆状或棒状的固体材料,由式(1)可知,在温度变化∆t时,测量出材料长度变化的增量∆L,则该材料在温度变化区域内的线膨胀系数为:
α=L
∆∆t (2)
L/
α的物理意义:棒状材料在温度变化区域内,温度每升高一度时的相对伸长量,
单位是C0/1。

严格地讲,求出的α是温度变化∆t区域内的平均线膨胀系数。

实验利用沸腾的水蒸气来加热待测金属杆,并保持末温度不变。

采用温度传感器自动读取待测金属杆的温度变化量∆t,旋转移动传感器自动测量棒状物体的伸长量∆L,根据式(2)便可求得待测金属杆的线膨胀系数。

主要步骤
1.测量出待测金属杆在室温下的原长记为L。

按实验装置图所示,安装实验装置(TD-8579)
2.将旋转移动传感器(CI-6538)和温度传感器(CI-6527A)的输入插头分别接入数据采集接口器相应的通道。

打开科学工作室默认窗口界面,选择“转动传感器”(旋转移动传感器(CI-6538))和“热敏电阻传感器”,校准传感器工作参数。

3.打开“图形显示”窗口,在同一个图表中建立两个坐标系。

其中一个坐标系的纵坐标设为温度变化量∆t,用于显示温度变化量随时间变化的曲线。

另一坐标系的纵坐标设为待测金属杆的伸长量∆L,用于显示待测金属杆的伸长量随时间变化的曲线。

4.接通水蒸气锅(TD-8556A)的电源,开始对水加热。

待水沸腾后,把金属杆进气橡皮管接到水蒸气锅的出气端口,用水蒸气加热待测金属杆,点击“启动”图标开始采集测量数据。

5.在两个坐标系中,测得待测金属杆的温度变化量∆t和伸长量∆L,由式(2)求出待测金属杆的线膨胀系数。

6.重复上述实验步骤,测出其他待测金属杆样品的线膨胀系数。

7.记录实验环境条件,整理好实验仪器。

实验内容
1.测量出待测金属杆在室温下的原长记为L。

2.按实验装置图所示,安装实验装置(TD-8579),安装过程中要注意:
(1)待测金属杆进气端口的卡口嵌入底座的凹槽内,以固定待测金属杆。

(2)弹簧卡住待测金属杆,以确保待测金属杆和旋转移动传感器的转轴紧密接触。

(3)温度转感器和待测金属杆紧密接触,并用保温膜将它们包好。

(4)在水蒸气锅内加水至2/3处,严禁水蒸气锅无水空烧。

(5)水蒸气锅的密封盖上有两个出气孔,将其中一个用橡皮塞堵住,另一个连接橡皮管,实验时接至待测金属杆的进气端口,用于加热待测金属杆。

用水杯接在待测金属杆的出气端口,以防止水溢出到桌面上,并注意不要弯折出气软管,避免出气通道堵塞。

3.测出待测金属杆样品的线膨胀系数。

水蒸气锅数据采集接口温度传感器
旋转移动传感器保温膜待测金属杆
实验装置示意图
实验数据

经测量:长度(L):46.00cm 直径(d):1.980mm 由图得:温度从29.6度到83.6度,变化了54.0度
角度变化了0.367弧度
a= 1.6*10^(-5)℃-1。

相关文档
最新文档