reactive power and voltage control-无功功率和电压控制
电力系统无功功率补偿

电力系统无功功率补偿摘要随着经济的发展和人们生活水平的提高,各行各业对供电可靠性和供电质量提出了更高的要求.由于配电网处于电网的末端,用户多为低压用户,许多用电器的功率因数很低,且不带补偿装置,这给电网带来很大的功率负担和额外线损,为了维护电力系统稳定,保证电能质量和安全运行我们必须完善电力系统无功补偿的研究。
在电力系统中,存在着消耗大量无功功率的设备,这些设备的使用会给电力系统电压产生激烈的波动,例如冲击性的无功功率负载:轧钢机,电弧炉,电气化铁道等。
同时用户中又有对系统电压稳定性有较高要求的精密设备:如计算机,医用设备等。
如果无功功率不能及时控制,就会对电网电压造成不良影响。
另外无功储备的不足会导致电网电压水平的降低。
鉴于以上原因,如何快速有效解决电力系统中的无功缺额。
具有重要的现实意义关键词:电力系统无功补偿功率因数无功补偿装置AbstractWith the development of economy and the improvement of people's living standard, people from all walks of life put forward higher requirements on the reliability and quality of power supply. The distribution network in the network terminal, user for low-voltage users, many power factor of electrical appliances is very low, and without compensation device, the network brought power burden and additional the line loss, in order to maintain the stability of the power system, research on power quality and safety operation we must improve the wattless power compensation of power system electrical guarantee.In the power system, there is a device to consume a large amount of no power, the use of these devices will produce the fierce fluctuation of power system voltage, such as the impact of wattless power load: rolling machine, electric arc furnace, electric railway. At the same time, the user also has the high precision equipment requirements of system voltage stability: such as computers, medical equipment etc.. If reactive power can not be controlled in time, will affect the power grid voltage. Problems also idle reserves will lead to a lower level of power voltage. In view of the above reasons, how to quickly and effectively solve the lack of reactive power in power system. Has the important practical significanceKeywords: power system, wattless power compensation,power factor, no reactive power compensation device目录摘要 (I)Abstract (II)目录 (III)前言 (1)1 无功功率的基本概述 (2)1.1 功率的基本概念 (2)1.2 无功功率的产生 (2)1.3 无功功率在电网中的作用 (3)1.4 无功功率对电网及用电设备产生的影响 (4)2 功率因数的概述 (5)2.1 功率因数的概念 (5)2.2 影响无功功率的因素 (5)2.3 功率因数对电气设备的影响 (6)2.4 功率因数对电力系统的影响 (6)3 无功补偿的原理 (8)3.1 无功补偿原理 (8)3.2 无功补偿的方式 (12)3.2.1 静态无功功率补偿 (12)3.2.2 动态无功功率补偿 (13)3.3.1 从提高功率因数需要确定补偿容量 (14)3.3.2 从降低线路有功损耗需要来确定补偿容量 (14)3.3.3 从提高运行电压需要来确定补偿容量 (15)4 无功功率补装置的设计 (16)4.1 无功补偿装置简介 (16)4.2 补偿控制的技术条件 (16)4.3 测量精度 (17)4.4 控制其原理 (17)4.5 控制硬件的选型与设计 (18)4.5.1 CPU (18)4.5.2 A/D转换器选型 (20)4.5.3 微处理器监控芯片MAX813L (22)4.5.4 LCD显示 (23)4.5.4.3.主要技术参数 (24)4.5.4.4.与8051接口电路 (24)4.5.5 模拟信号调理电路 (25)4.5.6. 输出控制电路 (28)4.6 软件设计与计算 (28)4.6.1 投切原则 (28)4.6.2 功率因数计算 (30)总结 (32)致谢 (33)参考文献 (34)前言电力系统中各种电气设备和用电设备都是按其额定电压设计制造的,只有在额定电压下运行,才能取得最佳的运行效果,并保证使用寿命。
电力系统分析第5章 电力系统的无功功率(reactive power)平衡与电压调整(voltage regulation ).

U S%S 2 U N 2 I o % U S %S NT S 2 I o % QT ( ) SN T ( ) S NT 100S NT U 100 100 S NT 100
电力系统分析
5.2.3 无功功率平衡
电力系统的无功平衡表示式为 其中:
QD+ Q Q GC Q G+ Q C
例5.1 求图5.6所示简单系统的无功功率平衡。图中所 示负荷为最大负荷值。 线路参数: r0 0.17 km, x0 0.41 km, b0 2.82 106 S km 变压器试验数据: PS 200KW , U s % 10.5, P0 47 KW , I 0 % 2.7
异步电动机在电力系统无功负 荷中占的比重很大,因此,电 力系统综合负荷的无功电压静 态特性主要取决于异步电动机 的特性。
图5.5 异步电动机的Q—U关系
电力系统分析
5.2.2 无功负荷及无功损耗
无功损耗(active loss) 输电线路的无功损耗
P12 Q12 B 2 2 Ql QlX QB X ( U U ) L 1 2 2 U1 2 P22 Q22 B 2 2 X ( U U ) L 1 2 变压器的无功损耗 2 U2 2
这种方法简单、经济,且不需增加额外设备。
电力系统分析
5.4.2改变变压器变比调压
改变变压器的变比就是通过改变绕组间匝数比(ratio of winding )来实现的,因此,这种调压措施也常叫利 用变压器分接头(tap)调压。
分接头设置在双绕组变压器的高压绕组,三绕组变压 器的高压绕组和中压绕组。 一般与绕组额定电压值对应的分接头为主分接头,其 它分接头为附加分接头。
各功率解释

有功功率P ( Active power):正弦交流电路中,瞬时功率在一个周期内的平均值叫做平均功率,它反映了交流电路中实际消耗的功率。
单位:瓦特(W)。
P = UI cosj视在功率S(Apparent power):正弦交流电路中,电源电压有效值与总电流有效值的乘积,代表交流电源可以向电路提供的最大功率,又称为电源的功率容量。
单位:伏安(VA)。
S =UI 功率因数λ(Power factor):有功功率与视在功率的比值,即λ= cosj无功功率Q(Reactive power):交流电路与电源之间进行能量交换的最大功率叫做无功功率,它并不代表电路实际消耗的功率。
单位:乏尔(Var)。
Q = UI sinj阻抗角j:正弦交流电路的总电压U与总电流I的相位差。
功率三角形:有功功率P、无功功率Q和视在功率S三者之间成三角形关系.计算方法:有功功率:P P=UIcosA (瓦,W)无功功率:Q Q=UIsinA (乏,var)视在功率:S S=UI (伏安,V*A)功率三角:S的平方=P平方+Q平方A为电压与电流的相位差。
用拉丁字母fai表示。
功率因数cosA=有功功率/根号下(有功功率的平方+无功功率的平方)视在功率为S,有功功率为P,无功功率为Q,电压U,电流I相角差为aS=U×IP=U×IcosaQ=U×IsinaP2+Q2=U2×I2((cosa)2+(sina)2)=(U×I)2=S2视在功率:电压有效值×电流有效值有功功率:纯的功率,即电压瞬时值×电流瞬时值的积分无功功率:交换的功率关系:视在功率的平方=有功功率的平方+无功功率的平方Q=P√(1/cos2φ-1)I=P/(1.732*U*cosφ)。
电力系统分析第5章 电力系统的无功功率(reactive power)平衡与电压调整(voltage regulation )

电力系统分析
5.4.2改变变压器变比调压
普通变压器一般有两个或四个附加的分接头 如: 35±5%/6.3KV变压器: 主分接头电压为35KV, 附加分接头电压分别为35(1+5%)=36.5KV 35(1-5%)=33.25KV; 121±2×5%/10.5kv变压器: 主分接头电压为121KV, 附加分接头电压分别为121(1+5%)=127.05KV 121(1+2.5%)=124.025KV, 121(1-2.5%)=117.95KV, 121(1-5%)=114.95KV。
QGC
QG ——为系统中所有发电机发出的无功功率,
Q c ——为系统中所有无功补偿装置发出的无功功率;
Q D ——为系统中所有负荷需要的无功功率;
Q ——为网络元件中的无功损耗。
系统中应保持一定的无功功率备用。
无功功率备用容量一般可取最大无功功率负荷的5%~8%。
电力系统分析
5.2.3 无功功率平衡
异步电动机在电力系统无功负 荷中占的比重很大,因此,电 力系统综合负荷的无功电压静 态特性主要取决于异步电动机 的特性。
图5.5 异步电动机的Q—U关系
电力系统分析
5.2.2 无功负荷及无功损耗
无功损耗(active loss) 输电线路的无功损耗
P12 Q12 B Ql QlX QB X L (U 12 U 22 ) U 12 2 P22 Q22 B 2 X L (U 1 U 22 ) 变压器的无功损耗 U 22 2
系统中的负荷点都是通过一些主要的供电点供电 的,因此只要控制这些母线的电压偏移在允许范围 内,系统中各母线电压,从而各负荷点的电压可基 本上满足要求。我们就把这些主要的供电点称为电 压中枢点 (voltage centre)。 电压中枢点包括: (1)水、火电厂的高压母线; (2)枢纽变电所(load-center substation )的二次 母线; (3)有大量地方负荷的发电机机端母线(generator terminal bus)。
常用电气自动化专业英语词汇

电流 current电压 voltage功率 power频率 frequency电阻 resistance电容 capacitance电抗 reactance电阻率 resistivity阻抗 impedance相,相位 phase有功功率 active power无功功率 reactive power视在功率 apparent power装设功率 installed power安培 ampere A伏 volt V欧姆 ohm赫兹 hertz HZ瓦 watt W供电局 power supply authority电力公司 power supplycompany发电厂 power plant变电所 substation配电站 distribution substation配变电站 transformer station终端变电站 terminal substation车间变电站 substation in workshop : 室内变电站 indoor substation自动变电站 automatic substation成套变电站 unit substation高压室 room低压室 room变压器室 transformer room变压器平台 transformer platform柴油发电机室 diesel generator room 控制室 control room蓄电池室 battery room维修间 maintenance room值班室 duty room休息室 rest room电容器室 condenser room充电室 battery --charging room室外储油罐 outdoor oil tank地下油罐 underground oiltank日用油箱 day tank负荷 load一类负荷 first-class load二类负荷 second-class load三类负荷 third-class load照明负荷 lighting load动力负荷 power load电阻负荷 resistance load电抗负荷 reactive load冲击负荷 shock load空载 non -load有载 on-load满载 full -load过载 over -load不平衡负荷 unbalanced load平衡负荷 balanced load额定负载 nominal load负荷计算 load circulation功率因数 power factor同时使用系数 diversity factor需要系数法 demand factor method利用系数法 utilization factor method二项式法 binomial method无功功率补偿 reactive powercompensation自然功率因数 natural power factor补偿后功率因数 power factorafter compensating 高压补偿 compensating side低压补偿 compensating in side负荷率 load rate补偿容量 compensating capacity设备装设容量 installed capacity备用容量 standby capacity额定容量 rated capacity视在容量 apparent capacity计算容量 calculated capacity短路容量 short circuit capacity负荷计算表 load calculation table电压 voltage高压 high tension低压 low tension冲击电压 impulse voltage临界电压 critical voltage残余电压 residual voltage击穿电压 breakdown voltage供电电压 supply voltage照明电压 lighting voltage工作电压 working voltage额定电压 rated voltage相电压 phase voltage线电压 line voltage过压 over--voltage欠压 under--voltage电压降 voltage drop电压损失 voltage loss电压偏移 voltage deviation电压波动 voltage variation电压标准 voltage standard电压等级 voltage class电压调整率 voltage regulation rate电流 current交流 alternating current直流 direct current短路电流 short--circuit短路点 short circuitpoint三相短路电流 three-phase short-circuit current 两相短路电流 two-phase short-circuit current单相短路电流 single--phase short-circuit current短路电阻 short-circuit resistance短路电压 short-circuit voltage短路电抗 short-circuit reactance短路容量 short-circuit capacity短路稳定性 short-circuit stability短路冲击电流 short-circuitimpulse current热效应 thermal effect稳定短路电流 steady stateshort-circuit current切断电流 cut-off current整定电流 setting current动作电流 action current额定电流 rated current,nominal current熔体电流 melt current熔丝电流 fuse current故障电流 fault current极限电流 limiting current过电流 over--current有效值 virtual value,effective value电源,供电方式 power andsupply system工作电源 working powersource操作电源 operating powersource备用电源 standby source应急电源 emergency source常用电源 normal source供电电压 supply voltage双回路供电 two-feeder supply两个独立电源 two independentpower supply放射式 radial system单回路放射式 one-circuitradial system双回路放射式 two-circuitradial system有公用备用干线的放射式 radial systemwith public standby main line树干式 trunk system单回路树干式 one-circuittrunk system单侧供电双回路树干式 two-circuittrunk system with one-side power supply 双侧供电单回路树干式 one-circuit trunk system with two-side powersupply 双侧供电双回路树干式 two-circuittrunk system with two-side power supply 环式 ring system链式 chain system变压器—干线式 transformer-main line systemTN系统 TNsystemTN—S系统 TN-S systemTN—C 系统 TN-C systemTN—C—S系统 TN-C-S systemTT 系统 TTsystem单相二线制 1-phase 2-wire system三相四线制 3-phase 4-wire system三相五线制 3-phase 5-wire system保护线 protective earth PE中性线N线 neutral分列运行 independent operation并列运行 parallel operation无载运行 non-load operation变压器 transformer三相变压器 three-phase transformer油浸变压器 oil-immersed transformer自冷变压器 self-cooling transformer铜线变压器 copper-coil transformer铝线变压器 aluminum-coil transformer有载调压的变压器 on-loadregulating transformer可调变压器 variable transformer全封闭的变压器 fully-enclosed transformer干式变压器 dry transformer单相变压器 single-phase transformer防雷变压器 lightning-proof transformer环氧浇注变压器 epoxy-resin filled transformer电力变压器 power transformer低损耗变压器 low losstransformer照明变压器 lighting transformer控制变压器 control transformer三相油浸自冷式铝线低损耗有调压电力变压器3-phase oil-immersed self-cooling andlow-loss aluminum-coil power transformer变压器系数 transformer factor调压器 voltage regulator稳压器 stabilizer减压器 reducer整流器 rectifier限流器 current limiter不停电电源 uninterrupted power supply UPS变阻器 rheostat电阻器 resister自动功率调整器 automatic powerregulator电压互感器 voltage transformer电流互感器 current transformer降压变压器 step-down transformer自动调压器 automatic regulator高频变压器 high-frequency transformer降压器 step-down transformer升压器 step-up transformer编号 code型号 type用途 function二次接线图号 secondarywiring drawing No.外形尺寸 overall dimension一次主要设备 preliminary main equipment辅助设备 auxiliary equipment进线 incoming line出线 outgoing line规格 specification数量 quantity高压电器 equipment高压配电柜 distribution cabinet高压开关柜 switchgear手车式高压开关柜 draw—out type switchgear户内交流金属铠装移动式开关柜indoor armored movable switchgear 高压无功功率补偿装置reactive power compensator高压静电电容器柜electrostatic capacitor cabinet大功率并联电容无功功率补偿high power parallel capacitor reactive powercompensating 高压断路器circuit breaker少油断路器 minimum oil circuit breaker油断路器 oil circuitbreaker真空断路器 vacuum circuit breaker空气断路器 air circuit breaker六氟化硫断路器 sulfurhexaflouride breaker SF6 breaker户内式 indoor type户外式 outdoor type电磁式 electromagnetic产气式 aerogenic高压接触器 contactor高压真空接触器 vacuumcontactor高压负荷开关 loadswitch高压隔离开关 isolator操动机构 control mechanism手动操动机构 hand controlmechanism电磁操动机构 magnetic control mechanism弹簧储能操动机构 energystoring spring operating mechanism电动操动机构 motor drivedoperating mechanism高压熔断器 fuse跌落式熔断器 drop—out fuse高压电抗器 reactor串联电抗器 series reactor高压互感器 transformer移相电容器 phase—shift capacitor低压配电装置 distributordevice低压配电屏 distribution panel低压无功功率补偿装置 reactive power compensator抽屉式低压配电屏 drawable panel电动机控制中心 motor controlcenter MCC固定式低压配电屏 fixed panel低压静电电容器屏 capacitor panel出线屏 outgoing panel进线屏 incoming panel联络屏 connection panel计量屏 measurement panel动力馈电屏 power feeder panel照明馈电屏 lighting feeder panel控制柜 control cabinet配电箱 distribution cabinet总配电箱 generaldistribution box动力配电箱 power distribution box照明配电箱 lighting distribution box插座箱 socket box电度表箱 kilowatt-hour meter box非标准控制箱,柜,台 non-standard control box, cabinet, desk 电源切换箱 power change-over box开关 switch总开关 master switch主开关 main switch刀开关 knife switch负荷开关 load switch开启式开关 open switch封闭式开关 closed switch组合开关 combination switch自动空气断路器 automatic airbreaker框架式 skeleton type塑料外壳式断路器 moulded casecircuit breaker MCCB行程开关 position switch微动开关 microswitch万能转换开关 universal switch分级转换开关 stepping switch换相开关 phase converter防爆开关 explosion proof switch漏电保护开关 leakage protection switch三向开关 three—way switch轻载开关 underload switch压力开关 pressure switch单刀双掷开关 single-poledouble throw switch接触器 contactor交流接触器 contactor直流接触器 contactor消弧接触器 arc extinction contactor起动器 starter电磁起动器 electromagnetic starter磁力起动器 magnetic starter自动空气式星三角起动器 automatic airstar-delta starter 减压起动器 voltage reducing starter起动控制箱 starting controler低压熔断器 fuse螺旋式熔断器 screw fuse快速熔断器 quick fuse瓷插式熔断器 plug-in fuse继电器 relay电流继电器 current relay电压继电器 voltage relay过电流继电器 over-current relay信号继电器 signal relay时间继电器 timing relay中间继电器 intermediate relay漏电继电器 leakage relay欠压继电器 under-voltage relay绝缘监视继合器 insulation detection relay交流电度表 kilowatt hour meter单相电度表 single-phase kilowatt hour meter三相电度表 three-phasekilowatt hour meter无功电度表 reactivekilovolt ampere-hour meter无功功率表 reactive power meter有功功率表 active power meter电流表 ammeter, current meter电压表 voltmeter万用电表 universal meter绝缘检查电压表 insulationcheck voltage meter功率因数表 power factor meter多相电度表 polyphase meter电力定量器电机 electrical machine同步的 synchronous异步的 asynchronous电动机 motor发电机 generator转子 rotor定子 stator柴油发电机组 dieselgenerator set电动发电机组 motor generatorset感应电动机 induction motor鼠笼式感应电动机 squirrel cageinduction motor 绕线式电动机 wound-rotor induction motor滑环式电动机 slip-ring motor起动电动机 starting motor; actuating motor自激电动机 motor with self excitation同步器 synchronizer励磁机 exciter伺服电动机 service motor插接装置 plug device插头 plug螺口插座 screw socket卡口插座 bayonet socket插座 socket; outlet单相二极插头 1-phase 2-poleplug三相插头 3-phase plug单相插座 single phase socket三相四极插座 3-phase 4-polesocket接线柱 binding post接头 adapter接线板 terminal block接线盒 terminal box;junction box接线箱 connection box;junction box线路及安装 line and installation线,线路 line andcircuit高压线路 line输电线路 transmission line电源进线 incoming line出线 outgoing line馈线 feeder供电干线 main supplyline; supply main 低压线路 line电力干线 main power line照明干线 main lighting line支线 branch line电力支线 power branchline照明支线 lighting branchline封闭式母线 enclosed bus--bar接插式母线 plug-in bus--bar接地母线 earth line中性线,零线 neutral应急照明线 emergency lighting line联络线 liaison line滑触线 trolley line埋地线 underground line明线 open wire暗线 concealed wire明线布线 open wiring暗线布线 concealed wiring通信线路 communication line架空线路 overhead line架空干线 overhead main电缆线路 cable line电缆沟 cable trench电缆桥架 cable bridge电缆托架 cable tray电缆槽 cable duct墙式电缆槽 wall duct导线 conductor andcable裸导线 bare conductor铝线 aluminum conductor铜芯线 copper core cable电缆 cable馈电电缆 feed cable电力电缆 power cable照明电缆 lighting cable通信电缆 communication cable控制电缆 control cable信号电缆 signal cable实心电缆 solid cable同轴电缆 coaxial cable单芯电缆 single-core cable双股电缆 paired cable高压电缆 cable低压电缆 cable绝缘电缆 insulated cable屏蔽电缆 shielded cable护套电缆 sheathed cable铜芯电缆 copper corecable铠装电缆 armored cable铅包电缆 lead-covered cable油浸电缆 oil-immersed cable漆包电缆 lacquer-cover cable纸绝缘电缆 paper-insulated cable橡皮绝缘电缆 rubber-insulated cable塑料绝缘电缆 plastic-insulate cable绕扎电缆 wrapped cable聚乙烯 polyethylene, polythene聚氯乙烯绝缘电缆 polyvinylchloride PVC cable交联聚乙烯绝缘电缆 x-linked polyethylene XLPE cable乙烯绝缘软性电缆 vinyl cabtyre cable阻燃铜芯塑料绝缘电线flame retardant copper core plasticinsulated wire交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆x—linked polythene insulated steel tapearmored PVC sheathed power cable 韧性橡皮绝缘电缆 tough-rubbersheathed cable地下电缆 ground cable架空电缆 overhead cable软电缆 flexible cable电缆隧道 cable tunnel电缆隧道口 cable tunnel exit电缆井 cable pit电缆人孔 cable manhole电缆夹 cable cleat电缆分线箱 cable junction box 电缆箱,分线盒 cable cabinet电缆接线头 cable plug电缆终端盒,电缆接头电缆吊架,电缆吊杆 cable hanger 电缆桥架 cable bridge埋深 buried depth安装 installation安装高度 installation height电杆长度 pole length线间距离 distance between lines 跨度 span弧垂 sag交叉点 crossing point架空引出 over-head leading out 落地安装 installed onground嵌装在墙上 built in wall挂墙安装 suspended onwall明装 surface mounted嵌装 flush mounted暗装 conceal mounted架空引入 over-head leading-in 敷设 laying明敷 exposed laying暗敷 concealed laying埋地敷设 led underground 由……引来 led from引至 led to直埋 buried directlyunderground 穿钢管敷设 laid in steelconduit 引上 led-up引下 led--down沿……敷设 run along沿墙 along wall沿梁 along beam跨柱 across column弯曲半径 bending radius抽头 tap-off电缆终端头 cable termination joint试验,维护 test, maintenance试车 test run,commission整定 setting修理 repair验收 acceptance故障 fault停电 power cut,power failure校正 correct停机 stop定期检修 periodic maintenance继电保护 relaying保护 protection保护配置 protection disposition电流速断保护 current quick-breaking protection 过电流保护 over-current protection纵联差动保护 tandem differential protection过载保护 over-load protection距离保护 distance protection功率方向保护 directional power protection继电器 relay逆流继电器 reverse-current relay阻抗继电器 impedance relay低周率继电器 low frequencyrelay重合闸继电器 reclosing relay定向继电器 directional relay瞬动继电器 instantaneous relay辅助继电器 auxiliary relay差周率继电器 difference frequency relay极化继电器 polarized relay合闸位置继电器 closing position relay整定 setting整定值 set value整定范围 setting range时限 time lag反时限 inverse time定时限 definite time定时反时限 definite inverse time变时限 dependent time死区 dead zone保护范围 protection range动作 action动作时间 action time,actuating time动作范围 action range延时 delay切换 switchover瞬时动作 instantaneous action复位 reset直流操作 operation交流操作 operation操作电压 control voltage合闸 switch on跳闸 trip off接通 switch-in, close-up备用电源自动投入 automaticswitch-on of standby power supply 自动重合闸 automatic reclosing脱扣线圈 tripping coil电流脱扣,串联脱扣 series tripping电压脱扣,并联脱扣 shunt tripping起动 start停止 stop按钮 push button断开,切断 break, cut off直接起动 direct starting延时速断 delay quickbreaking保护跳闸 protecting tripping防跳 tripping prevent跳闸指示灯 trippingindicating lamp合闸回路 closing circuit超温报警 overtemperature alarming防雷,接地 lightningprotection and earthing 雷击 lightning stroke雷害 lightning disturbance雷电闪络 lightning flash over雷电过电,雷涌 lightning surge直击雷 direct stroke侧击雷 side stroke感应雷 induction stroke雷暴 thunderstorm雷电日 thunder day雷电日数 number oflightning days雷电或然率 lightning probability触电 electric shock静电感应 electrostatic induction放电 electric discharge间隙 gap电火花 spark电弧 arc漏电 leakage漏电路径 leakage path避雷装置 lightning protector避雷针 lightning rod,lightning conductor 避雷带 lightning belt避雷网 lightning-protection net避雷针支架 lightning rodsupport避雷针基础 lightning rodbase避雷器 arrester球形避雷 spherical arrester管式避雷 tubular arrester阀式避雷器 auto-valve arrester角式避雷器 horn arrester多隙避雷器 multigap arrester金属氧化物避雷器 metal-oxide arrester铅避雷器 aluminum arrester氧化膜避雷器 oxide filmarrester磁吹避雷器 magnetic blow-out arrester磁吹阀式避雷器 magneticblow-out valve type arrester 防雷工程 lightning protection engineering均压网 voltagebalancing net保护和接地 protection and earthing保护范围 protection range保护高度 protection height保护半径 protection radius保护角 protection angle防雷分类 classificationof lightning protection一类防雷区 first classprotection接地 earthing接地电阻 earth resistance接地电阻表 earth tester防雷接地 earthing forlightning protection人工接地 artificial earthing工作接地 working earthing保护接地 protective earthing保护地 protective earth信号地 signal earth重复接地 re-earthing中性点接地 neutral point earthing屏蔽接地 shielding earthing接地系统 earthing system接地故障 earth fault暗接地线 concealed earth line暗检测点 concealed checkpoint接地装置 earthing device接地开关 earthing switch接地火花避雷器 earthing arrester接地母线 earth bus接地线 earth conductor接地极 earth electrode引下线 led-down conductor断接卡 disconnector接地干线 ground bus垂直接地极 vertical electrode水平接地极 horizontal electrode降阻剂 resistance reducer利用主筋作引下线 mainreinforcing bar used as down-led conductor 利用铁爬梯作引下线 iron ladderused as down-led conductor接地线引入处 entrance ofearth wire自然接地体 natural grounding基础接地体 foundation grounding接零保护 neutral protection保护接零 protective neutralization接零干线 neutral main利用电线管作零线 conduit used asneutral line零线,接地线 neutral lineconductor零线,中性线 neutral lineconductor带电金属外壳 currentcarrying metallic case不带电金属外壳 non-currentcarrying metallic case材料 material金属 metal镀锌 zinc plating ,galvanization镀铂 platinum plating镀钠 cadmium plating镀铬 chromium plating镀镍 nickel plating镀锡 tin plating镀锌板 galvanized sheet镀锌层 zinc coat镀锌钢板 galvanized steel plate镀锌扁钢 galvanized flatsteel镀锌角钢 galvanized angle steel镀锌圆钢 galvanizedround steel镀锌钢管 galvanized steel pipe镀锌槽钢 galvanizedchannel steel硬塑料管 hard plastic pipe绝缘材料 insulating materials绝缘包布 insulating tape填充 filling填料 filler, fillingmaterial电缆膏 cable compound绝缘膏 insulating compound膏 compound漆 lacquer, paint清漆 varnish搪瓷 enamel; porcelain enamel 沥青 bitumen; asphalt云母 mica环氧树脂 epoxy resin腊 wax石膏 gypsum石棉asbestos电木,酚醛塑料 bakelite玻璃纤维 glass fiber橡皮 rubber辅件 auxiliaries支架 support电缆夹具 cable cleal电缆接头 cable spice电缆套 cable box电缆铠装 cable armouring接地螺栓 earthing bolt百叶窗 louvres隔板 closure, partition隔热板 heat shield法兰,垫圈 flange镀锌螺母 galvanized nut螺钉 screw, nail螺栓 bolt垫块 bearer垫木 skid垫片 gasket, spacer垫圈 washer; ring gasket吊钩 hanging hook轨 rail照明 lighting人工照明 artificial lighting 工作照明 working lighting直接照明 direct lighting间接照明 indirect lighting局部照明 local lighting;spot lighting 移动照明 portable lighting应急照明 emergency lighting疏散照明 egress lighting值班照明 duty lighting警卫照明 guard lighting障碍照明 obstacle lighting正常照明 normal lighting舞台照明 stage lighting走道照明 corridor lighting盘面照明 dial lighting楼梯照明 staircase lighting剧场照明 theater lighting室内照明 indoor lighting室外照明 outdoor lighting道路照明 road lighting广场照明 plaza lighting街道照明 street lighting照明方式 lighting pattern一般照明 general lighting辅助照明 supplementary lighting大面积照明 area lighting大面积泛光照明 area flood lighting逆光照明 back lighting漫散照明 diffuse lighting橱窗照明 shop windowlighting。
无功功率是怎么产生的

无功功率是怎么产生的?在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。
有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。
比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒;各种照明设备将电能转换为光能,供人们生活和工作照明。
有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW)。
无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。
它不对外作功,而是转变为其他形式的能量。
凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。
比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。
由于它不对外做功,才被称之为“无功”。
无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。
无功功率决不是无用功率,它的用处很大。
电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。
变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。
因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。
为了形象地说明这个问题,现举一个例子:农村修水利需要开挖土方运土,运土时用竹筐装满土,挑走的土好比是有功功率,挑空竹筐就好比是无功功率,竹筐并不是没用,没有竹筐泥土怎么运到堤上呢?在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。
如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。
无功功率对供、用电产生一定的不良影响,主要表现在:(1)降低发电机有功功率的输出。
50本电力经典书籍 -回复

50本电力经典书籍-回复「50本电力经典书籍」是一个非常具有挑战性的主题,因为电力工程这一领域没有像文学或者历史等领域一样广为人知的经典著作。
然而,我们可以通过对电力工程相关主题的深入研究,找到一些经典书籍,这些书籍对于电力工程师、学生和研究人员来说都是不可或缺的资源。
电力工程是涉及电力生成、传输、配电和电力系统运营的学科。
在这个广阔的领域中,有许多书籍提供了有关发电、配电、传输线路、电力系统规划、保护和控制等方面的知识。
从基础原理到应用实践,以下是50本被广泛认可的电力工程经典书籍:1.《电力系统分析》(Electric Power Systems Analysis)- John J. Grainger, William D. Stevenson这本书作为电力工程领域的经典教材,涵盖了电力系统分析的许多基本原理。
2.《电力系统稳定》(Power System Stability)- Edward Wilson Kimbark 这本参考书为电力系统稳定性提供了深度的理论和实践知识。
3.《电力系统保护》(Protective Relaying)- J. Lewis Blackburn, Thomas Domin该书详细介绍了电力系统保护的原理和技术。
4.《电力系统的有功和无功控制》(Active and Reactive Power Control of Electric Power Systems)- Takashi Kaneda该书介绍了有关有功和无功控制的先进方法和技术。
5.《电力电子和电力驱动系统: Fundamentals and Hard-switching Converters》- Bimal K. Bose这本书提供了电力电子和电力驱动系统的基础知识,深入讨论了硬开关变换器。
6.《电离害电、地欠电压与电网故障》(Electromagnetic Transients in Power Systems) - R.D. Begamudre该书详细介绍了电磁暂态现象对电力系统的影响以及如何控制它们。
电气工程及其自动化专业本科毕业论文

电气工程及其自动化专业本科毕业论文This model paper was revised by LINDA on December 15, 2012.可控励磁发电系统综合性实验的设计摘要现代电力系统的发展,对同步发电机励磁控制提出了更高要求。
发电机在正常工作情况下,负载总在不断地变化着。
而不同容量的负载,以及负载的不同功率因数,对同步发电机励磁磁场的反映作用是不同的,要维持同步发电机端电压为一定水平,就必须根据负载的大小及负载的性质随时调节同步发电机的励磁。
在各类电站中,励磁系统是保证同步发电机正常工作,提高电网稳定水平的关键设备。
同步发电机励磁的自动控制在保证电能质量、无功功率的合理分配和提高电力系统运行的可靠性方面都起着十分重要的意义。
本文主要对可控励磁发电系统进行了实验设计,首先对可控励磁发电系统做了相关简介并探讨了可控励磁发电系统的国内外未来发展形势。
本文着重在可控励磁系统中的过励限制方面作了重点分析,并设计了相关的一个过励限制特性试验,对过励限制系统加深了了解。
关键词电力系统;励磁控制系统;过励限制Integrated power system excitation control design of experimentAbstractThe development of modern power system, synchronous generator excitation control on a higher requirement. Generators in normal circumstances, the total load is constantly changing. And different load capacity and load of different power factor, synchronous generator excitation field on the reflection of the role is different, to maintain the synchronous generator terminal voltage to a certain level, it must be based on load size and the nature of the load regulation at any time synchronization power generator. In various power plant, synchronous generator excitation system is to ensure that work to improve the level of power and stability of key equipment. Synchronous generator excitation control in power quality assurance, rational allocation of reactive power and improve reliability of power system operations and play an important role.This paper mainly controlled experimental excitation power system design, first generation system as a controllable excitation profile and the related power system excitation control of the future development of the situation at home and abroad. This article focuses on the controlled excitation system overexcited restrictions were analyzed, and design-related characteristics of an overexcited limit test, the system had exciting limit to deepen understanding.Keywords:power system;excitation control system;overexcited limit目录摘要 (I)Abstract (Ⅱ)第1章绪论.....................................................发电机励磁控制系统简介....................................... 励磁控制系统的作用............................................维持发电机端电压在给定水平..................................提高电力系统的静态稳定性....................................改善电力系统的暂态稳定性....................................改善电力系统的动态稳定性....................................在并列运行的发电机间合理分配无功功率........................ 自动励磁调节器的组成及功能....................................基本工作电路................................................辅助工作电路................................................同步发电机励磁控制方式研究现状................................基于单变量控制方式..........................................基于现代控制理论的多变量控制方式............................非线性多变量励磁控制方式....................................智能控制方法................................................ 国外研究及发展状况............................................ 第2章励磁系统的过励限制.......................................过励限制的主要特性........................................... 限制过程...................................................... 级差.......................................................... 以励磁机磁场电流作为过励限制控制量的过励限制整定.............. 无发电机转子过负荷保护的处理.................................. 过热量的释放和再次过励的条件.................................. 过励保护......................................................顶值电流保护................................................过励反时限保护..............................................过励报警信号................................................ 第3章可控励磁发电系统实验装置操作及维护.......................实验装置操作说明............................................. 实验的基本要求................................................ 可控励磁发电系统操作运行及检测维护 ............................可控励磁自动调节系统的投入运行的操作步骤....................自动—手动控制切换操作要点..................................可控励磁自动调节系统的正常运行要点..........................励磁调节装置的退出及停机操作要点............................可控励磁自动调节装置的检查与维护............................ 控励磁发电系统常见故障及处理方法 ..............................灭磁开关QFG的常见故障及处理方法............................调试中常见故障及处理方法....................................起励中常见故障及处理........................................空载运行中的常见故障及处理方法..............................负载运行中的常见故障及处理方法.............................. 第4章过励限制特性实验......................................... 可控励磁发电系统过励限制电路原理及其工作特性.................. 实验设备...................................................... 实验内容与步骤................................................ 结论............................................................ 致谢............................................................ 参考文献........................................................ 附录A ....................................................... 附录B .......................................................第1章绪论1.1发电机励磁控制系统简介同步发电机的励磁装置是同步发电机的重要组成部分,它是供给同步发电机的励磁电源的一套系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业外语测试翻译材料班级学号姓名成绩REACTIVE POWER AND VOLTAGE CONTROLFor efficient and reliable operation of power systems, the control of voltage and reactive power should satisfy the following objectives:(a)V oltages at the terminals of all equipment in the system are within acceptable limits. Both utility equipment and customer equipment are designed to operate at a certain voltage rating. Prolonged operation of the equipment at voltages outside the allowable range could adversely affect their performance and possibly cause them damage.(b) System stability is enhanced to maximize utilization of the transmission system. As we will see later in this section and in Chapters 12 to 14, voltage and reactive power control have a significant impact on system stability.(c) The reactive power flow is minimized so as to reduce RI2 and XI2 losses to a practical minimum (see Chapter 6,Section 6.3).This ensures that the transmission system operates efficiently, i.e., mainly for active power transfer.The problem of maintaining voltages within the required limits is complicated by the fact that the power system supplies power to a vast number of loads and is fed from many generating units. As loads vary, the reactive power requirements of the transmission system vary. This is abundantly clear from the performance characteristics of transmission lines discussed in Chapter 6.Since reactive power cannot be transmitted over long distances, voltage control has to be effected by using special devices dispersed throughout the system active power balance. The proper selection and coordination of equipment for controlling reactive power and voltage are among the major challenges of power system engineering.We will first briefly review the characteristics of power system components from the viewpoint of reactive power and then we will discuss methods of voltage control.1 Production and Absorption of Reactive PowerSynchronous generators can generate or absorb reactive power depending on the excitation. When overexcited they supply reactive power, and when underexcited they absorb reactive power. The capability to continuously supply or absorb reactive power is, however, limited by the field current, and end-region heating limits, as discussed in Chapter 5 (Section 5.6). Synchronous generators are normally equipped with automatic voltage regulators which continually adjust the excitation so as to control the armature voltage.Overhead lines, depending on the load current, either absorb or supply reactive power. At loads below the natural (surge impedance) load, the lines produce net reactive power; at loads above the natural load, the lines absorb reactive power. The reactive power characteristics of transmission lines are discussed in detail in Chapter 6.Underground cables, owing to their high capacitance, have high natural loads. They are always loaded below their natural loads, and hence generate reactive power under all operating conditions.Transformers always absorb reactive power regardless of their loading; at no load, the shunt magnetizing reactance effects predominate; and at full load, the series leakage inductance effects predominate.Loads normally absorb reactive power. A typical load bus supplied by a power system is composed of a large number of devices. The composition changes depending on the day, season, and weather conditions. The composite characteristics are normally such that a load bus absorbs reactive power. Both active power and reactive power of the composition loads vary as a function of voltage magnitudes. Loads at low-lagging power factors cause excessive voltage drops in the transmission network and are uneconomical to supply. Industrial consumers are normally charged for reactive as well as active power, this gives them an incentive the load power factor by using shunt capacitive.Compensating devices are usually added to supply or absorb reactive power and thereby control the reactive power balance in a desired manner. In what follows, we will discuss the characteristics of these devices and the principles of application.2 Methods of Voltage ControlThe control of voltage levels is accomplished by controlling the production, absorption, and follow of reactive power at all levels in the system. The generating units provide the basic means of voltage control; the automatic voltage regulators control field excitation to maintain a scheduled voltage level at the terminals of the generators. Additional means are usually required to control voltage throughout the system. The devices used for this purpose may be classified as follows.(a) Sources or thinks of reactive power, such as shunt capacitors, shunt reactors, synchronous condensers, and static var compensators (SVCs).(b) Line reactance, compensators, such as series capacitors.(c) Regulating transformers, such as tap-changing transformers and boosters. Shunt capacitors and reactors, and series capacitors provide passive compensation. They are either permanently connected to the transmission and distribution system, or switched. They contribute to voltage control by modifying the network characteristics. Synchronous condensers and SVCs provide active compensation; the reactive power absorbed/supplied by them is automatically adjusted so as to maintain voltages of the buses to which they are connected. Together with the generating units, they establish voltage at specific points in the system. V oltages at other locations in the system are determined by active and reactive power flows through various circuit elements, including the passive compensating devices.3 Shunt ReactorsShunt reactors are used to compensate for the effects of line capacitance, particularly to limit voltage rise on open circuit or light load.They are usually required for EHV overhead lines longer than 200 km. A short overhead line may also required from a weak system (low short-circuit capacity) as shown in Figure 11.32.When the far end of the line is opened, the capacitive line-charging current flowing through the large source inductive reactance (X s) willcause a rise in voltage E s at the sending end of the line. The "Ferranti" effect (see Chapter 6, Section 6.1) will cause a further in receiving-end voltage E R.A shunt reactor of sufficient size must be permanently connected to the line to limit fundamental-frequency temporary overvoltages to about 1.5 pu for a duration of less than 1 second. Such line-connected reactors also serve to limit energization overvoltages (switching transients). Additional shunt reactors required to maintain normal voltage under light-load conditions may be connected to the EHV bus as shown in Figure 11.33, or to the tertiary windings of adjacent transformers as shown in Figure 11.34.During heavy loading conditions some of the reactors may have to be disconnected. This is achieved by switching reactors using circuit-breakers.For short lines supplied from strong systems, there may not be a need for reactors connected to the line permanently. In such cause, all the reactors used may be switchable, connected either to the tertiary windings of transformers or to the EHV bus. In some applications, tapped reactors with on- voltage tap-change control facilities have been used, as shown in Figure 11.35, to allow variation of the reactance value.Shunt reactors are similar in construction to transformers, but have a single winding (per chase) on an iron core with air-gaps and immersed in oil. They may be of either single-phase or three-phase construction.4 Shunt capacitorsShunt capacitors supply reactive power and boost local voltages. They are used throughout the system and are applied in a wide range of sizes.Shunt capacitors were first used in the mid-1910s for power factor correction. The early capacitors employed oil as the dielectric. Because of their large size and weight, and high cost, their use at the time was limited. In the 1930s, the introduction of cheaper dielectric materials and other improvements in capacitor construction brought about significant reductions in price and size. The use of shunt capacitors has increased phenomenally since the late 1930s. Today, they are a very economical means of supplying reactive power. The principal advantage of shunt capacitors are their low cost and their flexibility of installation and operation. They are readily applied at various points in the system, thereby contributing to efficiency of power transmission and distribution. The principal disadvantage of shunt capacitors is that their reactive power output is proportional to the square of the voltage. Consequently, the reactive power output is reduced at low voltages when it is likely to be needed most.Application to distribution systemsShunt capacitors are used extensively in distribution systems for power-factor correction and feeder voltage control. Distribution capacitors are usually switched by automatic means responding to simple time clocks, or to voltage or current-sensing relays.The objective of power-factor correction is to provide reactive power close to the point where it is being consumed, rather than supply it from remote sources. Most loads absorb reactive power; that is, they have lagging power factors. Table 11.1 gives typical power factors and voltage-dependent characteristics of some common types ofloads.Table 11.1 Typical characteristics of individual loadsType of load Power factor (lag) V oltage dependenceP Q Large industrial motor 0.89 V0.05 V0.5 Small industrial motor 0.83 V0.1 V0.6 Refrigerator 0.84 V0.8 V2.5 Heat pump (cool/heat) 0.81/0.84 V0.2 V2.5 Dishwasher 0.99 V1.8 V3.5 Clothes washer 0.65 V0.08 V1.6 Clothes dryer 0.99 V2.0 V3.3 Color TV 0.77 V2.0V5.0 Fluorescent lighting 0.90 V1.0 V3.0 Incandescent lighting 1.00 V1.55 - Range, water or space heat 1.00 V2.0 - Power-factor correction is provided by means of fixed (permanently connected) and switched shunt capacitors at various voltage levels throughout the distribution systems. Low voltage banks are used for large customers and medium voltage banks are used at intermediate switching stations. For large industrial plants, as shown in Figure 11.36,power factor correction is applied at different levels:(i) individual motors,(ii) groups of motors, and (iii) the overall plant.Switched shunt capacitors are also used extensively for feeder voltage control. They are installed at appropriate locations along the length of the feeder to ensure that voltages at all points remain within the allowable maximum and minimum limits as the loads vary. As discussed in Section 11.2.10, the application of shunt capacitors is coordinated with that of feeder voltage regulators or booster transformers. Application to transmission systemShunt capacitors are used to compensate for the X I2losses in transmission systems and to ensure satisfactory voltage levels during having loading conditions. Capacitor banks of appropriate sizes are connected either directly to the high voltage bus or to the tertiary winding of the main transformer, as shown in Figure 11.37.They are breaker-switched either automatically by a voltage relay or manually. Switching of capacitor banks provides a convenient means of controlling transmission system voltages. They are normally distributed throughout the transmission system so as to minimize losses and voltage drops. Detailed power-flow studies are performed to determine the size and location of capacitor banks to meet the system design criteria which specify maximum allowable voltage drop following specified contingencies. Procedures for power-flow analysis are discussed in Section 11.3.The principles of application of shunt capacitors and other forms of transmission system compensation are presented in Section 11.2.8.无功功率和电压控制为了保证电力系统可靠、高效地运行,电压和无功功率的控制应满足以下要求:(a).电力系统中各设备的端电压在允许的范围内。