半导体物理答案知识讲解
(完整版)半导体物理知识点及重点习题总结(可编辑修改word版)

基本概念题:第一章半导体电子状态1.1半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出 E-k 关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和 E-k 关系而提出的一维晶体的势场分布模型,如下图所示X克龙尼克—潘纳模型的势场分布利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出 E-k 关系。
由此得到的能量分布在 k 空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的 E-k 关B c n 系决定。
1.4 本征半导体既无杂质有无缺陷的理想半导体材料。
1.4 空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
半导体物理课后习题解答

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。
试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。
[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h=112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dk E d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dkE d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 210dk =aqE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。
半导体物理知识点及重点习题总结解析

基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.3导带与价带1.4有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k 关系决定。
1.5本征半导体既无杂质有无缺陷的理想半导体材料。
1.6空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
1.7空穴是如何引入的,其导电的实质是什么?答:空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
这样引入的空穴,其产生的电流正好等于能带中其它电子的电流。
所以空穴导电的实质是能带中其它电子的导电作用,而事实上这种粒子是不存在的。
1.8 半导体的回旋共振现象是怎样发生的(以n型半导体为例)答案:首先将半导体置于匀强磁场中。
一般n型半导体中大多数导带电子位于导带底附近,对于特定的能谷而言,这些电子的有效质量相近,所以无论这些电子的热运动速度如何,它们在磁场作用下做回旋运动的频率近似相等。
当用电磁波辐照该半导体时,如若频率与电子的回旋运动频率相等,则半导体对电磁波的吸收非常显著,通过调节电磁波的频率可观测到共振吸收峰。
这就是回旋共振的机理。
1.9 简要说明回旋共振现象是如何发生的。
半导体样品置于均匀恒定磁场,晶体中电子在磁场作用下运动运动轨迹为螺旋线,圆周半径为r ,回旋频率为当晶体受到电磁波辐射时,在频率为 时便观测到共振吸收现象。
半导体物理学简答题及答案知识讲解

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。
半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结基本概念题:第⼀章半导体电⼦状态1.1 半导体通常是指导电能⼒介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的⼩许多。
1.2能带晶体中,电⼦的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.3导带与价带1.4有效质量有效质量是在描述晶体中载流⼦运动时引进的物理量。
它概括了周期性势场对载流⼦运动的影响,从⽽使外场⼒与加速度的关系具有⽜顿定律的形式。
其⼤⼩由晶体⾃⾝的E-k 关系决定。
1.5本征半导体既⽆杂质有⽆缺陷的理想半导体材料。
1.6空⽳空⽳是为处理价带电⼦导电问题⽽引进的概念。
设想价带中的每个空电⼦状态带有⼀个正的基本电荷,并赋予其与电⼦符号相反、⼤⼩相等的有效质量,这样就引进了⼀个假想的粒⼦,称其为空⽳。
它引起的假想电流正好等于价带中的电⼦电流。
1.7空⽳是如何引⼊的,其导电的实质是什么?答:空⽳是为处理价带电⼦导电问题⽽引进的概念。
设想价带中的每个空电⼦状态带有⼀个正的基本电荷,并赋予其与电⼦符号相反、⼤⼩相等的有效质量,这样就引进了⼀个假想的粒⼦,称其为空⽳。
这样引⼊的空⽳,其产⽣的电流正好等于能带中其它电⼦的电流。
所以空⽳导电的实质是能带中其它电⼦的导电作⽤,⽽事实上这种粒⼦是不存在的。
1.8 半导体的回旋共振现象是怎样发⽣的(以n型半导体为例)答案:⾸先将半导体置于匀强磁场中。
⼀般n型半导体中⼤多数导带电⼦位于导带底附近,对于特定的能⾕⽽⾔,这些电⼦的有效质量相近,所以⽆论这些电⼦的热运动速度如何,它们在磁场作⽤下做回旋运动的频率近似相等。
当⽤电磁波辐照该半导体时,如若频率与电⼦的回旋运动频率相等,则半导体对电磁波的吸收⾮常显著,通过调节电磁波的频率可观测到共振吸收峰。
这就是回旋共振的机理。
1.9 简要说明回旋共振现象是如何发⽣的。
半导体样品置于均匀恒定磁场,晶体中电⼦在磁场作⽤下运动运动轨迹为螺旋线,圆周半径为r ,回旋频率为当晶体受到电磁波辐射时,在频率为时便观测到共振吸收现象。
(完整word版)半导体物理知识点及重点习题介绍(良心出品必属精品)

基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.3导带与价带1.4有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k关系决定。
1.5本征半导体既无杂质有无缺陷的理想半导体材料。
1.6空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
1.7空穴是如何引入的,其导电的实质是什么?答:空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
这样引入的空穴,其产生的电流正好等于能带中其它电子的电流。
所以空穴导电的实质是能带中其它电子的导电作用,而事实上这种粒子是不存在的。
1.8 半导体的回旋共振现象是怎样发生的(以n型半导体为例)答案:首先将半导体置于匀强磁场中。
一般n型半导体中大多数导带电子位于导带底附近,对于特定的能谷而言,这些电子的有效质量相近,所以无论这些电子的热运动速度如何,它们在磁场作用下做回旋运动的频率近似相等。
当用电磁波辐照该半导体时,如若频率与电子的回旋运动频率相等,则半导体对电磁波的吸收非常显著,通过调节电磁波的频率可观测到共振吸收峰。
这就是回旋共振的机理。
1.9 简要说明回旋共振现象是如何发生的。
半导体样品置于均匀恒定磁场,晶体中电子在磁场作用下运动运动轨迹为螺旋线,圆周半径为r ,回旋频率为当晶体受到电磁波辐射时, 在频率为 时便观测到共振吸收现象。
半导体物理学简答题及答案知识讲解

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。
半导体物理学刘恩科课后习题解答

半导体物理学刘恩科课后习题解答半导体物理学是研究半导体材料的电学、热学和光学性质的学科。
它是现代电子技术和光电子技术的基础,对于理解和应用半导体器件和集成电路有着重要的意义。
以下是刘恩科《半导体物理学》课后习题的解答:1.请简述半导体材料的能带结构和载流子的概念。
半导体材料的能带结构是指半导体中电子的能级分布情况。
在半导体中,电子可以占据价带或导带中的能级。
价带是指最高填充电子的能级,导带是指最低未填充电子的能级。
两者之间的能级称为禁带(带隙),禁带的宽度决定了半导体的导电性能。
载流子是指在半导体中参与电荷运动的带电粒子。
在固体中,载流子可以是电子或空穴。
电子是带有负电荷的粒子,其带负电荷的能力使其成为半导体中的载流子。
空穴是带有正电荷的粒子,它是由电子从价带跃迁到导带留下的,因此也可以参与电荷运动。
2.请解释半导体的n型和p型材料是如何形成的。
n型半导体是指掺杂了能够提供自由电子的杂质的半导体材料。
通常使用磷(P)、砷(As)等元素来掺杂硅(Si)或锗(Ge)材料。
这些杂质原子在半导体晶体中取代了一部分硅或锗原子,形成了额外的电子。
这些额外的电子成为自由电子,增加了半导体的导电性能。
p型半导体是指掺杂了能够提供自由空穴的杂质的半导体材料。
通常使用硼(B)、铝(Al)等元素来掺杂硅或锗材料。
这些杂质原子在半导体晶体中取代了一部分硅或锗原子,形成了缺电子的空位。
这些空位称为空穴,它们可以参与电荷运动,增加了半导体的导电性能。
3.请解释pn结的形成原理和特性。
pn结是由n型半导体和p型半导体的结合形成的。
当n型和p型半导体接触时,由于两者之间的能带结构不同,会形成一个电势差,这个电势差被称为内建电势。
内建电势的产生是由于在接触面上发生了电子和空穴的扩散,使得电子从n区域扩散到p区域,空穴从p区域扩散到n区域。
pn结的特性包括正向偏置和反向偏置。
正向偏置是指在外加电源的作用下,将正电压施加在p区域,负电压施加在n区域,使得电子从n区域向p区域移动,空穴从p区域向n区域移动,电流得以通过。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体物理答案一、选择1.与半导体相比较,绝缘体的价带电子激发到导带所需的能量(比半导体的大);2.室温下,半导体Si 掺硼的浓度为1014cm -3,同时掺有浓度为1.1×1015cm -3的磷,则电子浓度约为(1015cm -3 ),空穴浓度为(2.25×105cm -3),费米能级为(高于E i );将该半导体由室温度升至570K ,则多子浓度约为(2×1017cm -3),少子浓度为(2×1017cm -3),费米能级为(等于E i )。
3.施主杂质电离后向半导体提供(电子),受主杂质电离后向半导体提供(空穴),本征激发后向半导体提供(空穴、电子);4.对于一定的n 型半导体材料,温度一定时,减少掺杂浓度,将导致(E F )靠近E i ;5.表面态中性能级位于费米能级以上时,该表面态为(施主态);6.当施主能级E D 与费米能级E F 相等时,电离施主的浓度为施主浓度的(1/3)倍;重空穴是指(价带顶附近曲率较小的等能面上的空穴)7.硅的晶格结构和能带结构分别是(金刚石型和间接禁带型)8.电子在晶体中的共有化运动指的是电子在晶体(各元胞对应点出现的几率相同)。
9.本征半导体是指(不含杂质与缺陷)的半导体。
10.简并半导体是指((E C -E F )或(E F -E V )≤0)的半导体11.3个硅样品的掺杂情况如下:甲.含镓1×1017cm -3;乙.含硼和磷各1×1017cm -3;丙.含铝1×1015cm -3这三种样品在室温下的费米能级由低到高(以E V 为基准)的顺序是(甲丙乙)12.以长声学波为主要散射机构时,电子的迁移率μn 与温度的(B 3/2次方成反比)13.公式*/q m μτ=中的τ是载流子的(平均自由时间)。
14.欧姆接触是指(阻值较小并且有对称而线性的伏-安特性)的金属-半导体接触。
15.在MIS 结构的金属栅极和半导体上加一变化的电压,在栅极电压由负值增加到足够大的正值的的过程中,如半导体为P 型,则在半导体的接触面上依次出现的状态为(多数载流子堆积状态,多数载流子耗尽状态,少数载流子反型状态)。
16.在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带(曲率小),对应的有效质量(大),称该能带中的空穴为(重空穴E )。
17.如果杂质既有施主的作用又有受主的作用,则这种杂质称为(两性杂质)。
18.在通常情况下,GaN 呈(纤锌矿型 )型结构,具有(六方对称性),它是(直接带隙)半导体材料。
19.同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4,m n */m 0值是乙的2倍,那么用类氢模型计算结果是(甲的施主杂质电离能是乙的32/9,的弱束缚电子基态轨道半径为乙的3/8 )。
20.一块半导体寿命τ=15µs,光照在材料中会产生非平衡载流子,光照突然停止30µs后,其中非平衡载流子将衰减到原来的(1/e 2)。
21.对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、n i >> /N D -N A / 时,半导体具有 (本征) 半导体的导电特性。
22.在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向(Ev )移动;当掺杂浓度一定时,温度从室温逐步增加,费米能级向( Ei )移动。
23.把磷化镓在氮气氛中退火,会有氮取代部分的磷,这会在磷化镓中出现(产生等电子陷阱)。
24.对于大注入下的直接复合,非平衡载流子的寿命不再是个常数,它与(非平衡载流子浓度成反比)。
25.杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是(变小,变大)。
26.如在半导体的禁带中有一个深杂质能级位于禁带中央,则它对电子的俘获率(等于)空穴的俘获率,它是(有效的复合中心)。
27.同一块半导体中,电子的有效质量小于空穴的有效质量,所以电子的迁移率(大于)空穴的迁移率。
28.下列半导体材料中,属于N型半导体的是(锗掺入磷)。
29.pn结空间电荷区又称为(耗尽区)。
30.主要利用半导体的(隧道效应)制造欧姆接触。
31.光强度一定是,在半导体温度升高,非平衡载流子浓度(不变)。
32.温度一定时,半导体掺杂浓度增加其导电性(增大)。
33.下列半导体材料中,属于直接带隙半导体的是(砷化镓)。
34.N型半导体,随着掺杂浓度增加,费米能级(上升)。
35.非平衡载流子通过复合中心的复合称为(间接复合)。
36.制造半导体器件时,必须引出金属端子引脚,必然出现金属与半导体接触,此时需要采取(欧姆接触)方法减少接触对器件特性影响。
二、填空1.纯净半导体Si中掺V族元素的杂质,当杂质电离时释放。
这种杂质称杂质;相应的半导体称型半导体。
2.当半导体中载流子浓度的分布不均匀时,载流子将做运动;在半导体存在外加电压情况下,载流子将做运动。
3.n o p o=n i2标志着半导体处于状态,当半导体掺入的杂质含量改变时,乘积n o p o改变否?;当温度变化时,n o p o改变否?。
4.非平衡载流子通过而消失,叫做寿命τ,寿命τ与在中的位置密切相关,对于强p型和强n型材料,小注入时寿命τn 为,寿命τp为。
5.是反映载流子在电场作用下运动难易程度的物理量,是反映有浓度梯度时载流子运动难易程度的物理量,联系两者的关系式是,称为关系式。
6.半导体中的载流子主要受到两种散射,它们分别是和。
前者在下起主要作用,后者在下起主要作用。
7.半导体中浅能级杂质的主要作用是;深能级杂质所起的主要作用。
8.对n型半导体,如果以E F和E C的相对位置作为衡量简并化与非简并化的标准,那末,为非简并条件;为弱简并条件;为简并条件。
12.当P-N结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为,其种类为:、和。
13.指出下图各表示的是什么类型半导体?14.当半导体中载流子浓度存在浓度梯度时,载流子将做运动;半导体存在电势差时,载流子将做运动,其运动速度正比于,比例系数称为。
15.np>n i2意味着半导体处于状态,其中n= ;p 。
这时半导体中载流子存在净复合还是净产生?。
16.半导体中浅能级杂质的主要作用是增强载流子的浓度;深能级杂质所起的主要作用增强载流子的复合。
17.非平衡载流子通过而消失,叫做寿命τ,寿命τ与在中的位置密切相关,当寿命τ趋向最小。
18.半导体中的载流子主要受到两种散射,它们分别是和。
前者在下起主要作用,后者在下起主要作用。
19.半导体中掺杂浓度很高时,杂质电离能(增大、减小、不变?),禁带宽度(增大、减小、不变?)。
20.p-n结电容包括电容和电容,在反向偏压下,电容起主要作用。
21.原子组成晶体后,由于电子壳层的交叠,电子不再局限在某个原子上,可以从一个原子上转移到另一个原子上,电子将在整个晶体中运动,这种运动称为:共有化运动。
22.空穴携带__正___电荷,具有___正__的有效质量。
23.本证硅中掺入III价元素杂质,为__P___型半导体。
24.当用适当波长的光照射半导体,产生的载流子称为__非平衡___载流子。
25._爱因斯坦____方程是漂移运动和扩散运动同时存在时少数载流子所遵循的运动方程,是研究半导体器件原理的基本方程之一。
26.常见的元素半导体有__硅____和___铬___,常见的化合物半导体有_砷化镓_____。
27.半导体材料硅和锗的晶体结构为______金刚石______型结构。
28.金属中导电的粒子是电子,半导体中导电的粒子是__电子______和 ____空穴____。
29.晶体中电子的能量状态是量子化的,电子在各状态上的分布遵守费米分布规律,当E-E F>>k0T时,可近似为____波尔兹曼________分布。
30.pn结具有电容特性,包括___势垒_____电容和____扩散____电容两部分。
三、名词解释1.有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。
2.热平衡状态:在没有外界影响的条件下,热力学系统的宏观性质不随时间变化的状态。
所谓外界影响,是指外界对系统作功或传热。
不能把平衡态简单理解为不随时间变化的状态。
3.散射概率4.迁移率:单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。
迁移率的表达式为:μ=qτ/m* 。
可见,有效质量和弛豫时间(散射)是影响迁移率的因素。
5.平均自由时间:粒子在两次散射之间经历的平均时间,其倒数即为散射几率。
6.热载流子:是指比零电场下的载流子具有更高平均动能的载流子。
7.载流子的散射:①电离杂质的散射:施主杂质在电离后是一个带正电的离子,而受主杂质电离后则是负离子。
在正离子有或负离子周围形成一个库仑势场,载流子将受到这个库仑场的作用,即散射。
②晶格振动的散射:光学波和声学波散射。
随着温度的增加,晶格振动的散射越来显著,而杂质电离的散射变得不显著了。
③其他因素引起的散射:等同的能谷间散射、中性杂质散射、位错散射、合金散射。
另外,载流子之间也有散射作用,但这种散射只在强简并时才显著。
8.态。
9.复合几率:10.复合率:11.准费米能级: 半导体处于非平衡态时,导带电子和价带空穴不再有统一的费米能级,但可以认为它们各自达到平衡,相应的费米能级称为电子和空穴的准费米能级。
12.直接复合:电子从导带直接跃迁至价带与空穴相遇而复合。
13.间接复合: 电子通过禁带中的能级而跃迁至价带与空穴相遇而复合。
14.直接复合机构15.间接复合机构16.雪崩击穿:在晶体中运行的电子和空穴将不断的与晶体原子发生碰撞,通过这样的碰撞可使束缚在共价键中的价电子碰撞出来,产生自由电子-空穴对.新产生的载流子在电场作用下撞出其他价电子,又产生新的自由电子空穴对.如此连锁反应,使得阻挡层中的载流子的数量雪崩式地增加,流过PN结的电流就急剧增大,所以这种碰撞电离称为雪崩击穿.17.隧道击穿效应:隧道击穿是在强电场作用下,由隧道效应,使大量电子从价带穿过禁带而进入到导带所引起的一种击穿现象。
18.肖特基接触:指金属和半导体材料相接触的时候,在界面处半导体的能带弯曲,形成肖特基势垒。
势垒的存在才导致了大的界面电阻。
与之对应的是欧姆接触,界面处势垒非常小或者是没有接触势垒。
19.欧姆接触:指金属与半导体的接触,而其接触面的电阻值远小于半导体本身的电阻,使得组件操作时,大部分的电压降在活动区(Active region)而不在接触面。
20.N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。