半导体物理与器件基础知识
半导体物理与器件

发光器件
发光原理
半导体中的载流子复合时,以光子的形式释放能量。
发光器件类型
包括发光二极管(LED)、激光器等。
工作原理
发光器件利用半导体中的载流子复合发光原理,将电能转换为光能。在外加电压或电流作用下,半导体 中的载流子获得能量并发生复合,以光子的形式释放能量并发出可见光或其他波段的光。
04
CATALOGUE
氧化物半导体材料
如氧化锌(ZnO)、氧化铟镓(InGaO3)等,具有透明 导电、压电等特性,可用于透明电子器件、传感器等领域 。
有机半导体材料
具有柔韧性好、可大面积制备、低成本等优点,可用于柔 性电子器件、有机发光二极管(OLED)等领域。
二维材料在半导体器件中的应用
石墨烯
具有优异的电学、热学和力学性能,可用于 高速电子器件、柔性电子器件等领域。
品中。
陶瓷封装
使用陶瓷材料作为封装外壳,具有 优异的耐高温、耐湿气和机械强度 等性能,适用于高端电子产品和特 殊应用场合。
金属封装
利用金属材料(如铝、铜等)进行 封装,具有良好的散热性能和机械 强度,适用于大功率半导体器件。
测试技术
直流参数测试
通过测量半导体器件的直 流电压、电流等参数,评 估其性能是否符合设计要 求。
荷区,即PN结。
二极管的结构
由P型半导体、N型半导体以 及PN结组成,具有单向导电
性。
二极管的伏安特性
描述二极管两端电压与电流之 间的关系,包括正向特性和反
向特性。
二极管的主要参数
包括最大整流电流、最高反向 工作电压、反向电流等。
双极型晶体管
晶体管的结构
由发射极、基极和集电极组成 ,分为NPN型和PNP型两种。
半导体物理及器件

半导体物理及器件随着现代科技的不断发展,半导体技术已经成为了当今世界最具有前沿性的技术之一。
半导体器件的广泛应用已经渗透到了我们日常生活的方方面面,比如智能手机、电脑、平板等等。
那么,什么是半导体物理及器件呢?本文将从物理层面解读半导体及其相关器件的工作原理。
一、半导体物理基础半导体是指在温度较高时表现为导体,在温度较低时表现为绝缘体的物质。
半导体的电子结构与导体和绝缘体不同,它们的导电方式是通过控制外部电场,来控制内部电子的行为。
半导体材料通常由四元素组成,如硅、锗等,这些元素的原子堆积方式形成了晶格结构,其中的电子行为也受到了晶格结构的影响。
半导体中的电子行为分为自由电子和价带电子。
自由电子是指受到外部电场作用后,可以自由移动的电子。
而价带电子则是不能自由移动的电子。
当半导体受到外部电场的作用时,价带电子会被激发到导带电子中,从而形成电流。
二、半导体器件半导体器件是基于半导体材料制造的电子器件。
半导体器件主要包括二极管、场效应晶体管、晶体管等等。
这些器件的工作原理都是基于半导体物理基础的。
1. 二极管二极管是一种最基本的半导体器件,它由P型半导体和N型半导体组成。
P型半导体与N型半导体之间形成了PN结,当施加电压时,PN结中的电子会被激发到导带中,从而形成电流。
当电流方向为从P型半导体流向N型半导体时,二极管可以通过电流;当电流方向为从N型半导体流向P型半导体时,二极管则不导电。
2. 场效应晶体管场效应晶体管(FET)是一种电子管,它是由金属栅极、P型半导体和N型半导体组成。
FET的工作原理是基于电场效应的,当外加电压作用于金属栅极时,会在P型半导体和N型半导体之间形成一个电场,从而控制电子的流动。
FET有很多种类型,其中最常见的是MOSFET。
3. 晶体管晶体管是一种三端半导体器件,它由P型半导体、N型半导体和控制极组成。
晶体管的工作原理是基于PN结的反向偏压和电场效应。
当控制极施加正电压时,会在PN结中形成反向偏压,从而使电流无法通过;当控制极施加负电压时,PN结中的电子会被激发到导带中,形成电流。
半导体物理与器件基础知识

一、肖特基势垒二极管欧姆接触:通过金属-半导体的接触实现的连接。
接触电阻很低。
金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。
之间形成势垒为肖特基势垒。
在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。
影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。
金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。
附图:电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。
附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。
肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。
2.开关特性肖特基二极管更好。
应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。
从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。
二、金属-半导体的欧姆接触附金属分别与N型p型半导体接触的能带示意图三、异质结:两种不同的半导体形成一个结小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。
2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。
10双极型晶体管双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。
之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。
一、工作原理附npn型和pnp型的结构图发射区掺杂浓度最高,集电区掺杂浓度最低附常规npn截面图造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。
半导体物理与器件的基本原理解析

半导体物理与器件的基本原理解析半导体是一种能够在一定条件下既能导电又能绝缘的物质,因其在电子学领域的广泛应用而备受关注。
本文将对半导体物理及器件的基本原理进行解析,为读者提供更全面的了解。
一、半导体物理基础1. 原子结构半导体是由原子构成的,涉及到原子的结构和性质非常重要。
原子包含了原子核和绕核运动的电子。
每个原子都有自己的特定电子结构和能级分布。
2. 能带理论能带理论是解释电子在固体中运动的模型。
根据能带理论,固体的电子能级可以分为多个能带,其中最高填充的被称为价带,最低未被填充的被称为导带。
价带与导带之间的能量间隙称为禁带宽度。
3. 共价键与禁带在半导体中,原子通过共价键形成晶体。
共价键是由原子之间的电子互相共享形成的。
晶体中的共价键形成了价带,而禁带宽度是导带和价带之间的能隙。
二、半导体器件原理解析1. P-N 结P-N 结是最基本也是最重要的半导体器件。
它由一片N型半导体和一片P型半导体组成。
在P-N 结中,P型半导体中的空穴与N型半导体中的电子发生重组,产生了一个空穴-电子对。
这种特殊的结构和电子重组现象使得P-N 结具有二极管特性。
2. 二极管二极管是一种基本半导体器件,它由P-N 结组成。
二极管具有一个P型区域和一个N型区域,其中P型区域为阳极,N型区域为阴极。
正向偏置时,电流可以流过二极管;反向偏置时,电流无法通过二极管。
3. 晶体管晶体管是一种用来放大和开关电信号的半导体器件。
它由三个区域构成:发射极(Emitter)、基极(Base)和集电极(Collector)。
晶体管的工作原理是通过外加电压控制基区的电流,从而控制集电极和发射极之间的电流流动。
4. MOSFETMOSFET(金属-氧化物-半导体场效应晶体管)是一种常见的半导体器件,用于放大和开关电信号。
MOSFET由金属栅极、绝缘层和半导体通道构成。
通过改变栅极电压,可以控制通道中的电流。
5. 整流器整流器是一种将交流电转换为直流电的设备。
半导体物理的基础知识

半导体物理的基础知识半导体物理是研究半导体材料及其电子行为的一门学科。
半导体是介于导体和绝缘体之间的材料,具有独特的电子特性。
本文将介绍半导体物理的基础知识,包括半导体材料的结构、能带理论、杂质掺杂以及PN结等内容。
一、半导体材料的结构半导体材料是由单晶、多晶或非晶三种形态构成。
单晶是指晶体结构完整、无缺陷的材料,拥有良好的导电性能。
多晶是由多个晶粒组成,晶界存在缺陷,导电性能较差。
非晶的特点是结构无序,导电性能较差。
半导体材料的基本结构由共价键和离散缺陷构成。
共价键是指半导体材料中相邻原子之间的化学键,它保持了材料的稳定性。
离散缺陷是指晶体中出现的缺陷,如杂质、空穴等。
这些离散缺陷的存在对半导体材料的导电性能有重要影响。
二、能带理论能带理论是解释物质的导电性能的基础理论。
根据这一理论,半导体材料的电子行为与能带结构有密切关系。
能带是电子能量的分布区域,分为价带和导带两部分。
价带中的电子具有固定位置,不能自由移动;而导带中的电子能够自由移动。
在纯净的半导体中,价带带满,导带没有电子。
半导体的导电性能是通过在半导体中掺入适量的杂质来改变的。
杂质的掺入会导致新的能带形成,同时增加或减少可自由移动的电子数量。
掺杂过程中形成的能带被称为禁带,其能量介于价带和导带之间。
三、杂质掺杂杂质掺杂是一种通过引入少量外来原子来改变半导体材料导电性能的方法。
根据杂质掺入的原子种类不同,可以分为n型和p型两种半导体。
n型半导体是通过掺入五价元素,如磷(P)或砷(As),在半导体中形成额外的自由电子,增加导电性能。
这些自由电子会填满主导带,并进入导带,从而形成导电能力。
n型半导体表现为电子富余。
p型半导体是通过掺入三价元素,如硼(B)或铋(Bi),在半导体中形成额外的空穴,增强导电性能。
空穴是一种电子缺失的状态,它通过与晶格中的自由电子结合来传导电荷。
p型半导体表现为电子贫缺。
四、PN结PN结是将p型半导体和n型半导体通过一定方法连接而成的结构。
半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。
半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。
半导体物理学与电子器件

半导体物理学与电子器件半导体物理学和电子器件是现代电子科技的基础理论和应用技术。
本文将从半导体的基本原理、器件的工作原理以及未来发展的趋势等方面进行论述。
一、半导体物理学基本原理1. 半导体的概念与特性半导体是介于导体和绝缘体之间的一类材料。
它的电导率比绝缘体要高,但又远远低于导体。
半导体具有独特的能带结构,包括价带和导带,其中导带带电子,价带带价电子。
其半导体材料的能带间隙决定了其导电性能的好坏。
2. PN结与二极管PN结是半导体器件中最基本的结构之一。
通过N型半导体和P型半导体的结合形成。
PN结的存在使得半导体器件具有整流作用,即二极管。
正向偏置时,电流容易通过PN结,而反向偏置时,电流几乎不能通过。
二极管在电子电路中广泛应用,例如整流电路、信号检波等。
3. 流变效应与晶体管晶体管是一种半导体器件,用于放大和开关电路。
它由三个不同掺杂的半导体层形成,即发射区、基区和集电区。
当在基区施加一个控制电流时,可以调控晶体管的放大倍数。
晶体管是现代电子技术的重要组成部分,被广泛应用于计算机、通信等领域。
二、电子器件的工作原理1. MOSFET金属氧化物半导体场效应晶体管(MOSFET)是一种常用的放大器和开关。
它由源极、漏极、栅极和绝缘层组成。
栅极电压的改变可以调控通道中载流子的浓度,从而调节MOSFET的导电能力。
MOSFET具有高输入阻抗、低噪声和小功耗等特点,广泛应用于集成电路领域。
2. 功率器件功率器件是半导体器件中的一类,用于控制和驱动大电流和大功率的电路。
常见的功率器件包括IGBT和MOSFET。
IGBT是一种三极双控型晶体管,集结了MOSFET和双极型晶体管的优点,具有高耐压特性和低导通压降。
功率器件的应用范围广泛,例如电动汽车、电力电子等领域。
三、未来发展趋势1. 光电子器件光电子器件是利用半导体材料对光信号的电学效应进行转换的器件。
随着光通信和光传感技术的发展,光电子器件的需求将会越来越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9金属半导体与半导体异质结
一、肖特基势垒二极管
欧姆接触:通过金属-半导体的接触实现的连接。
接触电阻很低。
金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。
之间形成势垒为肖特基势垒。
在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。
影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。
金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。
附图:
电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。
附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。
肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。
2.开关特性肖特基二极管更好。
应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。
从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。
二、金属-半导体的欧姆接触
附金属分别与N型p型半导体接触的能带示意图
三、异质结:两种不同的半导体形成一个结
小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。
2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。
10双极型晶体管
双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。
之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。
一、工作原理
附npn型和pnp型的结构图
发射区掺杂浓度最高,集电区掺杂浓度最低
附常规npn截面图
造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。
2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。
通常情况下,BE结是正偏的,BC结是反偏的。
称为正向有源。
附图:
由于发射结正偏,电子就从发射区越过发射结注入到基区。
BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。
附基区中电子浓度示意图:
电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,
那里的电场会将电子扫到集电区。
我们希望更多的电子能够进入集电区而不是在基区和多子空穴复合。
因此和少子扩散长度相比,基区宽度必须很小。
工作模式:附共发射极电路中npn型双极型晶体管示意图
1.如果B——E电压为零或者小于零(反偏),那么发射区中的多子电子就不会注入到基区。
由于B——C也是反偏的,这种情况下,发射机电流和集电极电流是零。
称为截至状态。
2.随着B——E结电压增大,集电极电流会增大,从而集电极上电阻分压Vr增大,意味着在晶体管CB上分压绝对值减小;在某一点出,集电极电流会增大到组后大使得电阻分压后再BC结零偏。
过了这一点后,集电极电流微笑增加会导致Vr 微小增加,从而使B——C结变为正偏(Vcb<0)。
称为饱和。
饱和时,B——E结和B——C结都是正偏的,集电极电流不受B——E结电压。
附双极型晶体管共发射极的电流电压特性,添加了负载线:
Ic=0时晶体管处于截至区。
当基极电流变化时,集电极电流没有变化,处于饱和区。
当Ic=βIb成立时,晶体管处于正向有源区。
小结:
1.基区宽度调制效应(厄尔利效应):中性基区宽度随B——C结电压变化而发生变化,于是集电极电流随B——C结或C——E结电压变化而变化。
2.大注入效应使得集电极电流随C——E结电压增加而低速率增加。
11金属-氧化物-半导体场效应晶体管基础
MOSFET的核心是MOS电容。
在半导体中,由于施加了一个穿过MOS电容的电压,氧化物-半导体界面的能带将发生弯曲。
其费米能级是该电压的函数,因此通过适当的电压可以使得半导体表面的特性从p型转换为N型,或n型转换为p型。
附基本mos电容结构
平带电压:使半导体内部没有能带弯曲所加的栅压。
阈值电压:达到阈值反型点所需要的栅压。
阈值反型点:表面势Øs为两倍的Øf(费米能级与本征费米能级之差)的状态.当小于阈值电压时,未强反型,沟道未形成,截至;大于等于阈值电压时,强反型,沟道形成,导通。
阈值电压大于零,为增强型,零栅压时未反型。
阈值电压小于零,为耗尽型,零栅压时已反型。
对于p型衬底的Mos,能使反型层电荷密度改变的来源有:1.来自空间电荷区P 型衬底的少子电子的扩散;2.热运动产生的电子空穴对。
界面态:半导体在界面处的周期突然停止,使得电子能级存在于禁带中,这些允许的能太称为界面态。
三、MOSFET的基本工作原理
附N沟增强型MOSFET和耗尽型的剖面图:(注意电路符号)
附I(D)-V(GS)曲线的原理图
附n沟增强型MOSFET的特性曲线
当V(DS)大于阈值电压时,沟道中反型电荷为零的点移向愿端。
此时电子从源端进入沟道,通过沟道流向漏端。
在电荷为零的点处,电子被注入空间电荷区,并被电场扫向漏端。
附n沟耗尽型MOSFET的特性曲线
亚阈值电导是指在MOSFET中当栅源电压小于阈值电压时漏电流不为零。
这种情况下,晶体管被偏置在弱反型模式下,漏电流是由扩散机制而非漂移机制控制。
该电导会在集成电路中产生一个明显的静态偏置电流。
13结型场效应晶体管
PnJEFT的基本工作原理
以N沟为例,多数载流子电子自源极流向漏极,器件的栅极是控制端。
附改变栅源电压的电流电压特性曲线
现在分析栅电压为零,漏电压变化的情况。
随着漏源电压的增大,栅与沟道形成的Pn结反偏,空间电荷区向沟道扩展。
随着空间电荷区的扩展,有效沟道电阻增大,曲线斜率变小。
附改变漏源电压时的特性曲线。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。