半导体物理与器件
半导体物理与器件

发光器件
发光原理
半导体中的载流子复合时,以光子的形式释放能量。
发光器件类型
包括发光二极管(LED)、激光器等。
工作原理
发光器件利用半导体中的载流子复合发光原理,将电能转换为光能。在外加电压或电流作用下,半导体 中的载流子获得能量并发生复合,以光子的形式释放能量并发出可见光或其他波段的光。
04
CATALOGUE
氧化物半导体材料
如氧化锌(ZnO)、氧化铟镓(InGaO3)等,具有透明 导电、压电等特性,可用于透明电子器件、传感器等领域 。
有机半导体材料
具有柔韧性好、可大面积制备、低成本等优点,可用于柔 性电子器件、有机发光二极管(OLED)等领域。
二维材料在半导体器件中的应用
石墨烯
具有优异的电学、热学和力学性能,可用于 高速电子器件、柔性电子器件等领域。
品中。
陶瓷封装
使用陶瓷材料作为封装外壳,具有 优异的耐高温、耐湿气和机械强度 等性能,适用于高端电子产品和特 殊应用场合。
金属封装
利用金属材料(如铝、铜等)进行 封装,具有良好的散热性能和机械 强度,适用于大功率半导体器件。
测试技术
直流参数测试
通过测量半导体器件的直 流电压、电流等参数,评 估其性能是否符合设计要 求。
荷区,即PN结。
二极管的结构
由P型半导体、N型半导体以 及PN结组成,具有单向导电
性。
二极管的伏安特性
描述二极管两端电压与电流之 间的关系,包括正向特性和反
向特性。
二极管的主要参数
包括最大整流电流、最高反向 工作电压、反向电流等。
双极型晶体管
晶体管的结构
由发射极、基极和集电极组成 ,分为NPN型和PNP型两种。
半导体物理与器件

内建电势差维持着n区多子电子与p区少子电子之间以及p区多子空穴 与n区少子空穴之间的平衡(扩散与漂移的平衡)。 由于空间电荷区是电子的势垒,因而空间电荷区(耗尽区)又称作 势垒区
半导体物理与器件
对于平衡状态的pn结我们有:
EF EFi nn 0 Nd ni exp kT E EF p p 0 N a ni exp Fi kT
半导体物理与器件
1995年,K. K. Ng在《半导体器件指南》一书中,定义了 67种主要的半导体器件及其相关的110多个变种。然而, 所有这些器件都只由以下的少数几种器件单元组成。
半导体物理与器件
第七章
pn结
pn结的基本结构及重要概念 pn结零偏下的能带图 pn结空间电荷区的形成 pn结内建电势差和空间电荷区的内建电场 外加偏压下pn结空间电荷区的变化 反偏pn结电容——势垒电容的概念 突变结与缓变结
-xp
eNd xn eNa
s
因而两侧空间电荷区的宽度xp和xn有 关系:
空间电荷区整 体保持电中性 空间电荷区主 要向低掺杂一 侧延伸
-xp
xn
Na xp Nd x xp xn Nd Na
x=0
半导体物理与器件
根据电场强度和电势的关系,将p区内电场积分可得电势:
x E x dx
当x=0时,电势值连续,因而利用p区电势公式可求出:
' C2
eN a 2 xp 2 s
eN a x 2 eN a 2 x xp xn x s 2 2 s
0 x xn
半导体物理与器件
p
E
n
显然,x=xn时,Φ=Vbi,因而可以求出:
半导体物理与器件基础知识

一、肖特基势垒二极管欧姆接触:通过金属-半导体的接触实现的连接。
接触电阻很低。
金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。
之间形成势垒为肖特基势垒。
在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。
影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。
金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。
附图:电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。
附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。
肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。
2.开关特性肖特基二极管更好。
应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。
从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。
二、金属-半导体的欧姆接触附金属分别与N型p型半导体接触的能带示意图三、异质结:两种不同的半导体形成一个结小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。
2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。
10双极型晶体管双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。
之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。
一、工作原理附npn型和pnp型的结构图发射区掺杂浓度最高,集电区掺杂浓度最低附常规npn截面图造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。
半导体物理与器件

半导体物理与器件什么是半导体物理?半导体物理是研究半导体材料的物理性质和行为的学科。
半导体是一种电阻介于导体和绝缘体之间的材料。
在常规的物理中,导体是电流的快速传输介质,而绝缘体几乎不导电。
而半导体则具有介于两者之间的导电特性,并且可以通过控制外部电压或温度来改变其导电能力。
半导体器件的发展随着半导体物理的深入研究,人们逐渐认识到半导体材料的巨大潜力。
在上个世纪的50年代,第一个晶体管被发明。
晶体管是一种利用半导体材料特性实现放大和开关功能的器件。
它取代了以前广泛使用的真空管,成为现代电子技术的基础。
随后,各种各样的半导体器件相继发展出来,如二极管、场效应晶体管(FET)和集成电路(IC)等。
半导体器件的原理二极管二极管是最简单的半导体器件之一。
它由一个P型半导体和一个N型半导体组成。
这两个半导体通过P-N结相连接。
当施加正向电压时,P型半导体接近正极,N型半导体接近负极,电流能够流动;当施加反向电压时,P-N结会形成一个耗尽区,电流无法通过。
因此,二极管可以将交流信号转换为直流信号。
场效应晶体管(FET)场效应晶体管是一种使用电场控制电流的器件。
它由一个N型或P型半导体构成的通道和两个控制端组成。
当一个电压加到控制端时,电场会调整通道中的电荷分布,进而控制电流的流动。
FET具有高输入阻抗、低输出阻抗和较低的功耗,因此在放大和开关应用中得到广泛应用。
集成电路(IC)集成电路是将大量的电子元件,如晶体管、电阻、电容等,集成在一个芯片上的器件。
它可以实现复杂的电路功能,并具有小体积、低功耗和高可靠性等优点。
集成电路的发展推动了信息技术的快速发展,使得计算机、通信、消费电子等领域得到了革命性的变革。
半导体器件在现代技术中的应用半导体器件在现代技术中起着举足轻重的作用。
它们广泛应用于各种领域,如通信、信息技术、能源和医疗等。
通信半导体器件在通信领域中起到关键作用。
光纤通信、移动通信、卫星通信等都是基于半导体器件的技术实现的。
半导体物理与器件mems

半导体物理与器件mems1.引言1.1 概述半导体物理与MEMS(微机电系统)器件是现代科技领域中非常重要的研究方向。
半导体物理研究了半导体材料的电学、热学和光学特性,以及半导体器件的制备和性能。
而MEMS器件则是利用微纳米加工技术制造出微小的机械结构,并通过集成电路技术实现控制和传感功能。
这两个领域的交叉研究为实现微小化、集成化、高性能的微型传感器、执行器和微系统提供了重要的基础。
半导体物理的研究内容包括材料的能带结构、载流子在半导体中的输运过程、电子在半导体中的行为等。
半导体器件是基于半导体材料的电子元件,如二极管、晶体管、集成电路等。
半导体物理的研究能够帮助我们更好地理解和设计各类半导体器件,进一步推动半导体技术的发展。
MEMS器件是在微纳米尺度上制造的微小机械系统。
它们通常由微电子器件、微机械结构和传感器等组成。
MEMS器件具有体积小、质量轻、功耗低、快速响应和高集成度等特点。
MEMS器件的研究涉及到微纳加工工艺、微尺度机械结构设计、传感与控制等一系列技术和理论。
随着纳米技术和微电子技术的不断发展,MEMS器件在医疗、通信、汽车、航空航天等领域有着广泛的应用前景。
半导体物理与MEMS器件的结合为微电子技术的发展提供了新的思路和方向。
通过将半导体物理与MEMS器件相结合,我们可以实现更小型化、更高性能的器件和系统。
这不仅能够满足日益增长的微型化和集成化需求,还有助于推动人工智能、物联网、生物医学等领域的技术创新和应用。
因此,对于半导体物理与MEMS器件的研究和深入理解具有重要意义,将为科技进步和社会发展提供强有力的支撑。
1.2文章结构1.2 文章结构本文分为三个主要部分,分别是引言、正文和结论。
在引言部分,我们将提供对半导体物理与MEMS器件的简要概述,介绍其重要性和应用领域。
同时,我们将阐明本文的目的和意义。
接着,正文部分将深入探讨半导体物理和MEMS器件的相关内容。
在半导体物理部分,我们将介绍半导体材料的基本原理、能带理论和半导体器件的工作原理。
半导体物理与器件

有机半导体:由有机分子组成的半 导体,如蒽、萘等
半导体中的载流子
载流子的定义:在半导体中,能够自由移动的电子和空穴被称为载流子。 载流子的类型:自由电子、空穴、离子化杂质等。 载流子的运动:在电场作用下,载流子会发生漂移和扩散两种运动。 载流子的作用:载流子是半导体器件工作的基础,它们的运动和相互作用决定了器件的性能。
生物芯片等
感谢您的观看
汇报人:XX
频率特性参数
频率响应:描述器 件在不同频率下的 性能
截止频率:器件能 够正常工作的最高 频率
增益带宽积:描述 器件在增益和带宽 之间的权衡关系
噪声系数:描述器 件在放大信号时的 噪声性能
噪声特性参数
噪声源:半导体器件内部 的热噪声、散粒噪声等
噪声类型:白噪声、粉红 噪声、布朗噪声等
噪声影响:影响器件的信 噪比、增益、带宽等性能
半导体物理与器件
汇报人:XX
目录
添加目录标题
01
半导体物理基础
02
半导体器件工作原理
03
半导体器件的特性参 数
04
半导体器件的应用领 域
05
半导体器件的发展趋 势与挑战
06
添加章节标题
半导体物理基础
半导体的定义与特性
半导体:介于导体和绝缘体之 间的材料
半导体的特性:导电性受温度、 光照、电场等外界因素影响
半导体的能带结构
半导体的能带结构:由价 带、导带和禁带组成
价带:电子占据的最高能 级,电子不能在此能级上 自由移动
导带:电子占据的最低能 级,电子可以在此能级上 自由移动
禁带:价带和导带之间的 能量区域,电子不能在此 区域内自由移动
半导体的能带结构决定了 其电导性质和光学性质
半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。
半导体物理与器件物理

半导体物理、材料、工艺 半导体器件物理 集成电路工艺 集成电路设计和测试 微系统,系统
微电子学发展的特点
向高集成度、高性能、低功耗、高可靠性电路方向发展 与其它学科互相渗透,形成新的学科领域: 光电集成、MEMS、生物芯片
半导体概要
固体材料:绝缘体、半导体、导体 (其它:半金属,超导体)
MEM
Math
Bus
Controller
IO
Graphics
PCB集成 工艺无关
系统
亚微米级工艺 依赖工艺 基于标准单元互连 主流CAD:门阵列 标准单元
集成电路芯片
世纪之交的系统设计
SYSTEM-ON-A-CHIP
深亚微米、超深亚 微米级工艺 基于IP复用 主流CAD:软硬件协 同设计
1970
1980
1990
2000
2010
存储器容量 60%/年 每三年,翻两番
1965,Gordon Moore 预测 半导体芯片上的晶体管数目每两年翻两番
1.E+9 1.E+8 1.E+7 1.E+6 1.E +5 1.E+4 1.E+3
’70 ’74 ’78 ’82 ’86 ’90 ’94 ’98 ’2002
Pentium II: 7,500,000
微处理器的性能
100 G 10 G Giga 100 M 10 M Mega Kilo
1970 1980 1990 2000 2010
Peak Advertised Performance (PAP)
Moore’s Law
Real Applied Performance (RAP) 41% Growth
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体物理与器件
电导率和温度的关系
右图所示为一块N型半 导体材料中,当施主 杂质的掺杂浓度ND为 1E15cm-3时,半导体材 料中的电子浓度及其 电导率随温度的变化 关系曲线。
半导体物理与器件
从图中可见,在非本征激发为主的中等温度区间内(即大 约200K至450K之间),此时杂质完全离化,即电子的浓度基本 保持不变,但是由于在此温度区间内载流子的迁移率随着温度 的升高而下降,因此在此温度区间内半导体材料的电导率也随 着温度的升高而出现了一段下降的情形。 当温度进一步升高,则进入本征激发区,此时本征载流子 的浓度随着温度的上升而迅速增加,因此电导率也随着温度的 上升而迅速增加。 而当温度比较低时,则由于杂质原子的冻结效应,载流子 浓度和半导体材料的电导率都随着温度的下降而不断减小。
v
eE cp m*
半导体物理与器件
简单模型 假设载流子在两次碰撞之间的自由路程为l,自由时间 为г,载流子的运动速度为v:
l t v
在电场作用下:
v vd vth
vd为电场中的漂移速度,vth为热运动速度。
半导体物理与器件
弱场:
E 103V / cm
VT Vd
vth 107 c杂质浓度的关系 右图所示为N 型和P型硅单 晶材料在室 温(300K)条 件下电阻率 随掺杂浓度 的变化关系 曲线。
半导体物理与器件
右图所示为N型 和P型锗、砷化 镓以及磷化镓单 晶材料在室温 (300K)条件下电 阻率随掺杂浓度 的变化关系曲线。
半导体物理与器件
电阻率(电导率)同时受载流子浓度(杂质浓度)和 迁移率的影响,因而电阻率和杂质浓度不是线性关系。 对于非本征半导体来说,材料的电阻率(电导率)主 要和多数载流子浓度以及迁移率有关。 杂质浓度增高时,曲线严重偏离直线,主要原因: 杂质在室温下不能完全电离 迁移率随杂质浓度的增加而显著下降 由于电子和空穴的迁移率不同,因而在一定温度下, 不一定本征半导体的电导率最小。
半导体物理与器件
问题:本征半导体的导电性(常温下)是 否一定比掺杂半导体更差?
p 1/ 2 n 1/ 2 n ni ( ) 和p ni ( ) n p
min
2b i b 1
1/ 2
其中σi是本征半导体的电导率,b=μn/μp σSi-min≈0.86σSi-I; σGaAs-min≈0.4σGaAs-I;
半导体物理与器件
1 , 又 E 1 1 C E E vd E C (常数)
速度饱和
半导体物理与器件
迁移率和电场的关系
右图所示为 锗、硅及砷 化镓单晶材 料中电子和 空穴的漂移 运动速度随 着外加电场 强度的变化 关系。
半导体物理与器件
从上述载流子漂移速度随外加电场的变化关系曲线中可 以看出,在弱场条件下,漂移速度与外加电场成线性变化关系, 曲线的斜率就是载流子的迁移率;而在高电场条件下,漂移速 度与电场之间的变化关系将逐渐偏离低电场条件下的线性变化 关系。以硅单晶材料中的电子为例,当外加电场增加到 30kV/cm时,其漂移速度将达到饱和值,即达到107cm/s;当载 流子的漂移速度出现饱和时,漂移电流密度也将出现饱和特性, 即漂移电流密度不再随着外加电场的进一步升高而增大。 对于砷化镓晶体材料来说,其载流子的漂移速度随外加 电场的变化关系要比硅和锗单晶材料中的情况复杂得多,这主 要是由砷化镓材料特殊的能带结构所决定的。
半导体物理与器件
电导率和电阻率
电流密度:
I
I J s
对于一段长为l,截面面积为s,电阻率为ρ的均匀导体,若施加
以电压V,则导体内建立均匀电场E,电场强度大小为:
V E l
对于这一均匀导体,有电流密度:
El I V J /s /s E l s R s
将电流密度与该 处的电导率以及 电场强度联系起 来,称为欧姆定 律的微分形式
半导体物理与器件
半导体的电阻率和电导率
J drf
e n n p p E E e n n p p 1
I eNAvt Nev v A At
1 e n n p p
显然:电导率(电阻率)与载流子 浓度(掺杂浓度)和迁移率有关
半导体物理与器件
负微分迁移率 从砷化镓晶体材料中电子漂移速度随外加电场的变化关 系曲线可以看出,在低电场条件下,漂移速度与外加电场成线 性变化关系,曲线的斜率就是低电场下电子的迁移率,为 8500cm2/V·s,这个数值要比硅单晶材料高出很多;随着外加电 场的不断增强,电子的漂移速度逐渐达到一个峰值点,然后又 开始下降,此时就会出现一段负微分迁移率的区间,此效应又 将导致负微分电阻特性的出现。此特性可用于振荡器电路的设 计。 负微分迁移率效应的出现可以从砷化镓单晶材料的E-k关 系曲线来解释:低电场下,砷化镓单晶材料导带中的电子能量 比较低,主要集中在E-k关系图中态密度有效质量比较小的下能 谷,mn*=0.067m0,因此具有比较大的迁移率。
半导体物理与器件
当电场比较强时,导带中 的电子将被电场加速并获得能量, 使得部分下能谷中的电子被散射 到E-k关系图中态密度有效质量 比较大的上能谷,mn*=0.55m0, 因此这部分电子的迁移率将会出 现下降的情形,这样就会导致导 带中电子的总迁移率随着电场的 增强而下降,从而引起负微分迁 移率和负微分电阻特性。
半导体物理与器件
电阻率和温度的变化关系:
ρ 杂质全部电离,载流子浓度不变;晶格振动散
射起主要作用,随温度升高迁移率下降 本征区,载 流子浓度随 温度升高而 迅速升高,
低温 饱和 本征
T
低温下晶格振动不明显,本征载流子浓度低。 电离中心散射随温度升高而减弱,迁移率增加
半导体物理与器件
载流子的漂移速度饱和效应 前边关于迁移率的讨论一直建立在一个基础之上:弱 场条件。即电场造成的漂移速度和热运动速度相比较小,从 而不显著改变载流子的平均自由时间。但在强场下,载流子 从电场获得的能量较多,从而其速度(动量)有较大的改变, 这时,会造成平均自由时间减小,散射增强,最终导致迁移 率下降,速度饱和。对于热运动的电子:
上述随机热运动能量对应于硅材料中电子的平均热运动速度 为107cm/s;如果我们假设在低掺杂浓度下硅材料中电子的迁移 率为μn=1350cm2/V·s,则当外加电场为75V/cm时,对应的载流 子定向漂移运动速度仅为105cm/s,只有平均热运动速度的百分 之一。
半导体物理与器件
在弱场条件下,载流子的平均自由运动时间基本上由载流子的 热运动速度决定,不随电场的改变而发生变化,因此弱场下载 流子的迁移率可以看成是一个常数。 当外加电场增强为7.5kV/cm之后,对应的载流子定向漂移 运动速度将达到107cm/s,这与载流子的平均热运动速度持平。 此时,载流子的平均自由运动时间将由热运动速度和定向漂移 运动速度共同决定,因此载流子的平均自由运动时间将随着外 加电场的增强而不断下降,由此导致载流子的迁移率随着外加 电场的不断增大而出现逐渐下降的趋势,最终使得载流子的漂 移运动速度出现饱和现象,即载流子的漂移运动速度不再随着 外加电场的增加而继续增大。
l VT e * m vd E E
平均漂移速度 :
半导体物理与器件
较强电场:
103 E 105V / cm
l vd vth
E ,vd , ,
∴平均漂移速度Vd随电场增加而缓慢增大
强电场:
E 105V / cm
vd vth l 1 2vd E
半导体物理与器件
高场畴区与耿氏振荡 当外加电压使样品内部电场强度最初处于负微分电导区 时,就可以产生微波(高频)振荡
-
-
+ + + +
+
vd
畴区的重复形成 和消失的频率, 即为振荡频率, 显然该频率和长 度有关
E