第2节气体实验定律的微观解释

第2节气体实验定律的微观解释
第2节气体实验定律的微观解释

《8.4气体热现象的微观意义》导学案

班级 _______________ 姓名________________ 小组_________________ 得分________________

【学习目标】

1. 知道气体分子运动的特点

2.了解气体压强的微观意义

3.掌握气体实验定律的微观解释

【自主学习】

一、气体分子运动的特点

1. 运动的理想性:气体分子间的距离比较大,除相互碰撞或跟器壁碰撞外,不受力而做

_________ 动,可以在空间自由移动,所以气体没有一定的体积和形状。

2. 运动的无序性:分子的运动永不停息,杂乱无章,在某一时刻,向着运动的分子都有,而且向各个方向运动的气体分子数目都________ 。

3. 运动的高速性:常温下大多数气体分子的速率都达到数百米每秒,在数量级上相当于子弹的速率;分

子速率分布图线呈的规律.

4. 气体分子的热运动与温度的关系

跟踪练习1:(多选)气体分子运动的特点是()

A. 分子除相互碰撞或跟容器碰撞外,可在空间里自由移动

B. 分子的频繁碰撞致使它做杂乱无章的热运动

C. 分子沿各个方向运动的机会均等.

D. 分子的速率分布毫无规律.

二、气体压强的微观意义

1. _________________________________________________________________________ 气体的压强是大量气体分子频繁地_______________________________________________________________________ 而产生的。

2. 影响气体压强的两个因素:

微观:(1)气体分子的;(2)气体分子的

宏观:(1)气体的;(2)气体的_________ .

跟踪练习2 :对于密封在大型气罐内的氧气对器壁的压强,下列说法正确的是()

A. 由于分子向上运动的数目多,因此上部器壁的压强大..

B. 气体分子向水平方向运动的数目少,则侧壁的压强小.

C. 由于氧气的重力会对下部器壁产生一个向下的压力,因此下部器壁的压强大.

D. 气体分子向各个方向运动的可能性相同,撞击情况相同,器壁各处的压强相等.

三、对气体实验定律的微观解释

1. 玻意耳定律:一定质量的理想气体,温度保持不变时,分子的_________________ 是一定的,在这种情况下,体积减小时,分子的____________ 增大,气体的 ______ 就增大。

2. 查理定律:一定质量的理想气体,体积保持不变时,分子的保持不变,在这种情况下,温度升高

时,分子的平均动能—, 气体的压强就__________________ .

3. 盖吕萨克定律:一定质量的理想气体,温度升高时,分子的平均动能—,—只有气体的体积同

时_________ .,使分子的密集程度 ___________ ,才能保持压强 ______________ .

跟踪练习3 :(多选)一定质量的理想气体,在等温变化过程中,下列物理量中发生改变的有()

A. 分子的平均速率

B.单位体积内的分子数

C.气体的压强D?分子总数

【课堂练习】

4. 对于一定质量的气体,下列四个论述中正确的是()

A. 当分子热运动变剧烈时,压强必变大

B. 当分子热运动变剧烈时,压强可以不变

C. 当分子间的平均距离变大时,压强必变小

D. 当分子间的平均距离变大时,压强必变大

5. 下列关于气体的说法中,正确的是()

A、由于气体分子运动的无规则性,所以密闭容器的器壁在各个方向上的压强可能会不相等

B、气体的温度升高时,所有的气体分子的速率都增大

C、一定量的气体,体积一定,气体分子的平均动能越大,气体的压强就越大

D、气体的分子数越多,气体的压强就越大

6、(多选)对于一定质量的气体,如果保持气体的体积不变,温度升高,那么

下列说法中正确的是(

A. 气体的压强增大.

B. 单位时间内气体分子对器壁碰撞的次数增多

C. 每个分子的速率都增大

D. 气体分子的密集程度增大

7. 如图所示,一定质量的理想气体由状态A沿平行纵轴的直线变化到状态

A. 气体的温度不变

B. 气体的内能增加

C. 气体的分子平均速率减少

D. 气体分子在单位时间内与器壁单位面积上碰撞的次数不变

8、有关气体的压强,下列说法正确的是()

9、(多选)关于气体分子运动的特点,以下说法正确的有:()

A. 气体分子间的距离较大,除了相互碰撞或者跟器壁碰撞外,气体分子几乎不受力的作用而做匀速直线运动。

B. 分子的运动杂乱无章,在某一时刻,向各个方向运动的气体分子数目都相等。

C. 温度越高,分子热运动越剧烈。所以每个氧气分子在100 C时的运动速率都比0 C时的运动速率大。

D. 随着温度的升高,氧气分子中速率小的分子所占的比例减少

10、(多选)对一定质量的理想气体,下列说法正确的是()

A. 体积不变,压强增大时,气体分子的平均动能一定增大

B. 温度不变,压强减小时,气体的密度一定减小

C. 压强不变,温度降低时,气体的密度一定减小

D. 温度升高,压强和体积都可能不变

11、(多

选)一定质量的理想气体,体积变大的同时,温度也升高了,那么下面判断正确的是()

A ?气体分子平均动能增大B.单位体积内分子数目增多

C.气体的压强一定保持不变

D.气体的压强可能变大

12、一

定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为()

A. 气体分子每次碰撞器壁的作用力增大

B,则它的状态变化过程是(

A.气体分子的平均速率增大,则气体的压强一定增大

B.气体分子的密集程度增大,则气体的压强一定增大

C.气体分子的平均动能增大,则气体的压强一定增大

D.气体分子的平均动能增大,气体的压强有可能减小

B. 单位时间内单位面积器壁上受到气体分子碰撞的次数增多

C. 气体分子的总数增加

D. 气体分子的密集程度不变

12、(多选).下面关于气体压强的说法正确的是()

A.气体对器壁产生的压强是由于大量气体分子频繁碰撞器壁而产生的

B. 气体对器壁产生的压强等于作用在器壁单位面积上的平均作用力

C. 从微观角度看,气体压强的大小跟气体分子的平均动能和分子密集程度有关

D. 从宏观角度看,气体压强的大小跟气体的温度和体积无关

11.封闭在容积不变的容器中的气体,当温度升高时,则气体的(

A.分子的平均速率增大

B.分子数密度增大

C.分子的平均速率减小

D.分子数密度不变

2018年高考物理一轮复习专题十气体实验定律综合应用高效演练.doc

专题十气体实验定律综合应用 高效演练 1. 如图 1 所示,在长为l =57 cm 的一端封闭、另一端开口向上的竖直玻璃管内,用 4 cm 高的水银柱封闭 着51 cm 长的理想气体,管内外气体的温度均为33 ℃. 现将水银徐徐注入管中,直到水银面与管口相平, 此时管中气体的压强为多少?接着缓慢对玻璃管加热升温至多少时,管中刚好只剩下 4 cm高的水银柱?( 大气压强为p0=76 cmHg) 图1 【答案】85 cmHg 318 K 2.如图 2 所示,一粗细均匀、导热良好、装有适量水银的U形管竖直放置,右端与大气相通,左端封闭气 柱长l 1=20 cm( 可视为理想气体) ,两管中水银面等高.现将右端与一低压舱( 未画出) 接通,稳定后右管水 银面高出左管水银面h=10 cm.( 环境温度不变,大气压强p0=75 cmHg)

图2 (1) 稳定后低压舱内的压强为__________( 用“cmHg”做单位) . (2) 此过程中左管内的气体对外界________( 填“做正功”“做负功”或“不做功”),气体将__________( 填“吸热”或“放热”) . 【答案】(1)50 cmHg (2) 做正功吸热 2 3.如图 3 所示,厚度和质量不计、横截面积为S=10 cm 的绝热汽缸倒扣在水平桌面上,汽缸内有一绝热的“T”形活塞固定在桌面上,活塞与汽缸封闭一定质量的理想气体,开始时,气体的温度为T0=300 K,压强为p=0.5 ×10 5Pa ,活塞与汽缸底的距离为h=10 cm,活塞可在汽缸内无摩擦滑动且不漏气,大气压 强为p0=1.0 ×10 5 Pa. 求: 图3 (1) 此时桌面对汽缸的作用力F N; (2) 现通过电热丝给气体缓慢加热到T,此过程中气体吸收热量为Q=7 J,内能增加了ΔU=5 J,整个过程活塞都在汽缸内,求T 的值. 【答案】(1)50 N (2)720 K

专题三:气体实验定律_理想气体的状态方程

专题三:气体实验定律 理想气体的状态方程 [基础回顾]: 一.气体的状态参量 1.温度:温度在宏观上表示物体的________;在微观上是________的标志. 温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的). 绝对零度为____0 C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到. 2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________. 3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律 1.玻意耳定律(等温变化) 一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化) (1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化) (1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体 能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程: 2 2 2111T V P T V P = 3.密度方程: 2 22111ρρT P T P = [重难点阐释]: 一.气体压强的计算

气体实验定律及应用参考答案

第2节气体实验定律及应用 知识梳理 一、气体分子运动速率的统计分布气体实验定律理想气体 1.气体分子运动的特点 (1)分子很小,间距很大,除碰撞外不受力. (2)气体分子向各个方向运动的气体分子数目都相等. (3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布.(4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大. 2.气体的三个状态参量 (1)体积;(2)压强;(3)温度. 3.气体的压强 (1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力. (2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p=. (3)常用单位及换算关系: ①国际单位:帕斯卡,符号:Pa,1Pa=1N/m2. ②常用单位:标准大气压(atm);厘米汞柱(cmHg). ③换算关系:1atm=76cmHg= 1.013×105Pa≈1.0×105Pa. 4.气体实验定律 (1)等温变化——玻意耳定律: ①内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比. ②公式:p1V1=p2V2或pV=C(常量). (2)等容变化——查理定律: ①内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T 成正比.②公式:=或=C(常量). ③推论式:Δp=·ΔT. (3)等压变化——盖—吕萨克定律: ①内容:一定质量的某种气体,在压强不变的情况下,其体积V与热力学温度T 成正比. ②公式:=或=C(常量). ③推论式:ΔV=·ΔT. 5.理想气体状态方程 (1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. ①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在. ②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关. ③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体. (2)一定质量的理想气体状态方程: =或=C(常量). 典例突破 考点一气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2.决定因素 (1)宏观上:决定于气体的温度和体积. (2)微观上:决定于分子的平均动能和分子的密集程度. 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程.求得气体的压强. (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.

气体实验定律及应用答案

第2节 气体实验定律及应用 知识梳理 一、气体分子运动速率的统计分布 气体实验定律 理想气体 1.气体分子运动的特点 (1)分子很小,间距很大,除碰撞外不受力. (2)气体分子向各个方向运动的气体分子数目都相等. (3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布. (4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大. 2.气体的三个状态参量 (1)体积;(2)压强;(3)温度. 3.气体的压强 (1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力. (2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p =F S . (3)常用单位及换算关系: ①国际单位:帕斯卡,符号:Pa,1 Pa =1 N/m 2. ②常用单位:标准大气压(atm);厘米汞柱(cmHg). ③换算关系:1 atm =76 cmHg =1.013×105 Pa ≈1.0×105 Pa. 4.气体实验定律 (1)等温变化——玻意耳定律: ①内容:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比. ②公式:p 1V 1=p 2V 2或pV =C (常量). (2)查理定律: ①内容:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比. ②公式:p 1p 2=T 1T 2或p T =C (常量). ③推论式:Δp =p 1 T 1 ·ΔT . (3)等压变化——盖—吕萨克定律: ①内容:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成正比. ②公式:V 1V 2=T 1T 2或V T =C (常量). ③推论式:ΔV =V 1 T 1 ·ΔT . 5.理想气体状态方程 (1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. ①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在. ②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关. ③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体. (2)一定质量的理想气体状态方程: p 1V 1T 1=p 2V 2T 2或pV T =C (常量). 典例突破 考点一 气体压强的产生与计算 1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2.决定因素 (1)宏观上:决定于气体的温度和体积. (2)微观上:决定于分子的平均动能和分子的密集程度. 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程.求得气体的压强. (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强. (3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等. 4.加速运动系统中封闭气体压强的求法 选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解. 例1.如图中两个汽缸质量均为M ,内部横截面积均为S ,两个活塞的质量均为m ,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下.两个汽缸内分别封闭有一定质量的空气A 、B ,大气压为p 0,求封闭气体A 、B 的压强各多大? 解析:题图甲中选m 为研究对象. p A S =p 0S +mg 得p A =p 0+mg S 题图乙中选M 为研究对象得p B =p 0-Mg S . 答案:p 0+mg S p 0-Mg S 例2 .若已知大气压强为p 0,在下图中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强. 解析:在甲图中,以高为h 的液柱为研究对象,由二力平衡知p 气S =-ρghS +p 0S

应用气体实验定律解决“三类模型问答”

专题强化十四应用气体实验定律解决“三类模型问题” 专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题. 2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法. 3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等.

命题点一 “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化): p 1T 1 = p 2T 2 或p T =C (常数). (3)盖—吕萨克定律(等压变化): V 1T 1 = V 2T 2 或V T =C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路

3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.

类型1 单独气体问题 例 1(2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和K2.K1长为l,顶端封闭,K2上端与待测气体连通;M下端经橡皮软管与充有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图(b)所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M的容积为V0,水银的密度为ρ,重力加速度大小为g.求:

应用气体实验定律解决“三类模型问题”

专题强化十四 应用气体实验定律解决“三类模型问题” 专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题. 2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法. 3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等. 命题点一 “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或p T =C (常数). (3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V T =C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路 3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p =ρgh (其中h 为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg ”等,使计算过程简捷.

类型1 单独气体问题 例1 (2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M 的上端和下端分别连通两竖直玻璃细管K 1和K 2.K 1长为l ,顶端封闭,K 2上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R 连通.开始测量时,M 与K 2相通;逐渐提升R ,直到K 2中水银面与K 1顶端等高,此时水银已进入K 1,且K 1中水银面比顶端低h ,如图(b)所示.设测量过程中温度、与K 2相通的待测气体的压强均保持不变.已知K 1和K 2的内径均为d ,M 的容积为V 0,水银的密度为ρ,重力加速度大小为g .求: 图1 (1)待测气体的压强; (2)该仪器能够测量的最大压强. 答案 (1)ρπgh 2d 24V 0+πd 2?l -h ? (2)πρgl 2d 24V 0 解析 (1)水银面上升至M 的下端使玻璃泡中气体恰好被封住,设此时被封闭的气体的体积为V ,压强等于待测气体的压强p .提升R ,直到K 2中水银面与K 1顶端等高时,K 1中水银面比顶端低h ;设此时封闭气体的压强为p 1,体积为V 1,则 V =V 0+1 4πd 2l ① V 1=1 4πd 2h ② 由力学平衡条件得 p 1=p +ρgh ③ 整个过程为等温过程,由玻意耳定律得 pV =p 1V 1 ④ 联立①②③④式得 p =ρπgh 2d 2 4V 0+πd 2?l -h ? ⑤ (2)由题意知 h ≤l ⑥ 联立⑤⑥式有 p ≤πρgl 2d 24V 0 ⑦ 该仪器能够测量的最大压强为

气体实验定律(学生)

气体实验定律 ★1.关于温度,下列说法中正确的是( ).【1】 (A)气体的温度升高1℃,也可以说温度升高1K;温度下降5K,也就是温度下降5℃ (B)温度由摄氏温度t升至2t,对应的热力学温度由T升至2T (C)绝对零度就是当一定质量的气体体积为零时,用实验方法测出的温度 (D)随着人类制冷技术的不断提高,总有一天绝对零度会达到 ★2.一定质量的气体在等温变化过程中,下列物理量中将发生变化的是( ).【1】 (A)分子的平均动能(B)单位体积内的分子数 (C)气体的压强(D)分子总数 ★★3.一定质者的气体在等容变化过程中.温度每升高1℃,压强的增加等于它在300K时压强的( ).【2】 (A)1/27 (B)1/273 (C)1/300 (D)1/573 ★★4.下列关于盖·吕萨克定律的说法中正确的是( ).【2】 (A)对于一定质量的理想气体,在保持压强不变的情况下,温度每升高1℃时,其体积的增量是温度升高前体积的1/273 (B)对于一定质量的理想气体.在保持压强不变的情况下,温度每升高1℃时,其体积的增量是它在0℃时体积的1/273 (C)对于一定质量的气体,在保持压强不变的情况下,其体积与温度成止比 (D)对于一定质量的气体,在保持压强不变的情况下,其体积与热力学温度成正比 ★★5.如图所示,将一只倒置的试管竖直地插入容器内,试管内原有的空气被压缩,此 时,试管内外水面的高度差为h,若使试管插入水中的深度增大一些,则试管内外水面 的高度差将( ).(1990年上海高考试题)【2.5】 (A)增大(B)减少(C)保持不变(D)无法确定 ★★6.如图所示,密封的U形管中装有水银,左、右两端都封有空气,两水银 面的高度差为h.把U形管竖直浸没在热水中,高度差将( ).【3】 (A)增大(B)减小 (C)不变(D)两侧空气柱的长度未知,不能确定 ★★7.在冬季,剩有半瓶热水的暖水瓶经过一个夜晚,第二天拔瓶口的软木 塞时觉得很紧,不易拔出来,主要原因是( ).(2001年上海理科综合试题)【2】 (A)软木塞受潮膨胀(B)瓶口因温度降低而收缩变小 (C)白天气温升高,大气压强变大(D)瓶内气体因温度降低而压强减小 ★★8.人们常常用充气泵为金鱼缸内的水补充氧气,右图所示为充气 泵气室的工作原理图.没大气压强为p0,气室中的气体压强为p,气通 过阀门S1、S2与空气导管相连接,下列选项中正确的是( ). (A)当橡皮碗被拉伸时,p>p0,S1关闭S2开通

12.高考必考十四大经典物理专题集锦应用气体实验定律解决“三类模型问题”(解析版)

【专题12】应用气体实验定律解决“三类模型问题” (解析版) 考点分类:考点分类见下表 考点内容 常见题型及要求 考点一 “玻璃管液封”模型 计算题 考点二 “汽缸活塞类”模型 计算题 考点三 “变质量气体”模型 计算题 考点一: “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或p T =C (常数). (3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V T =C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路

3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷. 考点二“汽缸活塞类”模型 汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题. 1.一般思路 (1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统). (2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程. (3)挖掘题目的隐含条件,如几何关系等,列出辅助方程. (4)多个方程联立求解.对求解的结果注意检验它们的合理性. 2.常见类型 (1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题. (2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题. (3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解. 说明当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部分为研究对象进行受力分析,列出平衡方程或动力学方程. 考点三:“变质量气体”模型 分析变质量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化为定质量气体问题,用气体实验定律求解. (1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中气体质量变化问题转化为

气体实验定律

气体实验定律 专题一:密闭气体压强的计算 一、平衡态下液体封闭气体压强的计算 1. 理论依据 ① 液体压强的计算公式 gh p ρ=。 ② 液面与外界大气相接触。则液面下h 处的压强为 gh + p = p 0ρ 帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递(注意:适用于密闭静止的液体或气体) ③ 连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强 是相等的。 2、计算的方法步骤(液体密封气体) ① 选取假想的一个液体薄片(其自重不计)为研究对象 ② 分析液体两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两面侧的压 强平衡方程 ③ 解方程,求得气体压强 例1:试计算下述几种情况下各封闭气体的压强,已知大气压P 0,水银的密度为ρ,管中 水银柱的长度均为h 。均处于静止状态 练1:计算下图中各种情况下,被封闭气体的压强。(标准大气压强0p =76cmHg ,图中液体为水银 θ θ

练2、如图二所示,在一端封闭的U 形管内,三段水银柱将空气柱A 、B 、C 封在管中,在竖直放置时,AB 两气柱的下表面在同一水平面上,另两端的水银柱长度分别是h 1和h 2,外界大气的压强为0p ,则A 、B 、C 三段气体的压强分别是多少? 练3、 如图三所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。已知12cm Hg =h 1,15cm Hg =h 2,外界大气压强76cm Hg =p 0,求空气柱1和2的压强。 二、平衡态下活塞、气缸密闭气体压强的计算 1. 解题的基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。 注意:不要忘记气缸底部和活塞外面的大气压。 例2 如下图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。不计圆板与容器内壁之间的摩擦。若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( ) A B. C. D. P Mg S 0+ cos θP Mg S 0cos cos θθ + P Mg S 02+ cos θ P Mg S 0+

高考物理小题狂做专练三十一气体实验定律

31 气体实验定律 1.【2018全国I 卷】如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K 。开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0。 现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为8 V 时,将K 关闭,活塞平衡时其下方气体的体积减小了 6 V ,不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g 。求流入汽缸内液体的质量。 2.【湖北、山东部分重点中学2019届高三第一次联考】如图为“研究一定质量气体在体积不变的条件下,压强变化与温度变化的关系”的实验装置示意图。粗细均匀的弯曲玻璃管A 臂插入烧瓶中,B 臂与玻璃管C 下部用橡胶管连接,C 管开口向上,一定质量的理想气体被水银封闭于烧瓶内。开始时,烧瓶中气体温度为300 K , B 、 C 内的水银面等高。已知大气压强p 0=75 cmHg 且保持不变,现对烧瓶中气体缓慢加热使其温度变为360 K 。 (1)为保证气体体积不变,C 管应该向哪移动?移动距离是多少? (2)为保证气体压强不变,C 管应该向哪移动?说明理由。 一、解答题

3.【兰州一中2019届期中】如图所示,一个质量为m的T形活塞在汽缸内封闭一定质量的理想气体,活塞的体积可忽略不计,距汽缸底部h0处连接一U形细管(管内气体体积可忽略),初始时,封闭气体温度为T0,活塞水平部分距离汽缸底部1.4h0。现缓慢降低气体的温度,直到U形管中两边水银面恰好相平,此时T形活塞的竖直部分与汽缸底部接触。已知大气压强为p0,汽缸横截面积为S,活塞竖直部分高为1.2h0,重力加速度为g。求: (1)汽缸底部对T形活塞的支持力大小; (2)两水银面相平时气体的温度。 4.【济宁2019届调研】如图所示,一个高为H=60 cm,横截面积S=10 cm2的圆柱形竖直放置的导热汽缸,开始活塞在汽缸最上方,将一定质量的理想气体封闭在汽缸内,现在活塞上轻放一个质量为5 kg的重物,待整个系统稳定后,测得活塞与汽缸底部距离变为h。已知外界大气压强始终为p0=1×105 Pa,不计活塞质量及其与汽缸之间的摩擦,取g=10 m/s2。求: (1)在此过程中被封闭气体与外界交换的热量; (2)若开始环境温度为27 ℃,现将汽缸开口朝上整体竖直放在87 ℃的热水系统中,则 稳定后活塞与汽缸底部距离变为多少?

气体实验定律-理想气体的状态方程

气体实验定律-理想气体的状态方程

[课堂练习] 1.一定质量的理想气体处于某一初始状态,现要使它的温度经过状态变化后,回到初始状态的温度,用下列哪个过程可以实现( ) A .先保持压强不变而使体积膨胀,接着保持体积不变而减小压强 B .先保持压强不变而使体积减小,接着保持体积不变而减小压强 C .先保持体积不变而增大压强,接着保持压强不变而使体积膨胀 D . 先保持体积不变而减少压强,接着保持压强不变而使体积减小 2.如图为 0.2mol 某 种气体的压强与 温度关系.图中 p 0为标准大气压.气体在B 状态时的体积是_____L .

3.竖直平面内有右图所示的均匀玻 璃管,内用两段水银柱封闭两段空气 柱a、b,各段水银柱高度如图所示.大 气压为p0,求空气柱a、b的压强各多大? 4.一根两端封闭,粗细均匀的玻璃管,内有一小段水银柱把管内空气柱分成a、b两 部分,倾斜放置时,上、下两段空气 柱长度之比L a/L b=2.当两部分气体的 温度同时升高时,水银柱将如何移 动? 5.如图所示,内径均匀的U型玻璃管竖直放置,截面积为5cm2,管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞.两管中分别封入L=11cm 的空气柱A和B,活塞上、下气体压强相等为76cm 水银柱产生的压强,这时两管内的水银面的高度

差h=6cm,现将活塞用细线缓慢地向上拉,使两管内水银面相平.求: (1)活塞向上移动的距离是多少? (2)需用多大拉力才能使活塞静止在这个位置上? 6、一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是() A.p1 =p2,V1=2V2,T1= 21T2 B.p1 =p2,V1=21V2,T1= 2T2 C.p1=2p2,V1=2V2,T1= 2T2 D.p1 =2p2,V1=V2,T1= 2T2 7、A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银 槽组成,除玻璃泡在管上的位置

高中物理-气体实验定律(Ⅱ)练习

高中物理-气体实验定律(Ⅱ)练习 [A级抓基础] 1.一定质量的理想气体经历等温压缩过程时,气体的压强增大,从分子微观角度来分析,这是因为( ) A.气体分子的平均动能增大 B.单位时间内器壁单位面积上分子碰撞的次数增多 C.气体分子数增加 D.气体分子对器壁的碰撞力变大 解析:温度不发生变化,分子的平均动能不变,分子对器壁的碰撞力不变,故A、D错;质量不变,分子总数不变,C项错误;体积减小,气体分子密集程度增大,单位时间内器壁单位面积上分子碰撞次数增多,故B正确. 答案:B 2.(多选)一定质量的理想气体在等压变化中体积增大了1 2 ,若气体原来温度 是27 ℃,则温度的变化是( ) A.升高到 450 K B.升高了 150 ℃C.升高到 40.5 ℃D.升高了450 ℃ 解析:由V 1 V 2 = T 1 T 2 得 V 1 V 1 + 1 2 V 1 = 273+27 T 2 ,则T2=450 K Δt=450-300= 150(℃). 答案:AB 3.一定质量的理想气体被一绝热气缸的活塞封在气缸内,气体的压强为p0,如果外界突然用力压活塞,使气体的体积缩小为原来的一半,则此时压强的大小为( ) A.p<2p0B.p=2p0 C.p>2p0D.各种可能均有,无法判断 解析:外界突然用力压活塞,使气体的体积瞬间减小,表明该过程中气体和外界没有热变换,所以气体的内能将会变大,相应气体的温度会升高,若温度不变时,p=2p0,因为温度变高,压强增大,则p>2p0,故选项C正确. 答案:C

4.如图所示是一定质量的气体从状态A经B到状态C的V-T图象,由图象可知( ) A.p A>p B B.p C

T A,故p B>p A,A、C错误,D 正确;由B→C为等压过程p B=p C,故B错误. 答案:D 5.如图所示的四个图象中,有一个是表示一定质量的某种理想气体从状态a 等压膨胀到状态b的过程,这个图象是( ) 解析:A项中由状态a到状态b为等容变化,A错;B项中由状态a到状态b 为等压压缩,B错;C项中由状态a到状态b为等压膨胀,C对;D项中由状态a 到状态b,压强增大,体积增大,D错. 答案:C 6.一水银气压计中混进了空气,因而在27 ℃,外界大气压为758 mmHg时,这个水银气压计的读数为738 mmHg,此时管中水银面距管顶80 mm,当温度降至-3℃时,这个气压计的读数为743 mmHg.求此时的实际大气压值. 解析:初状态:p1=(758-738)mmHg=20 mmHg, V =80S mm3(S是管的横截面积), 1

高中物理选修3-3:《气体实验定律》含解析

第三单元 气体实验定律 (时间:90分钟,满分:100分) 一、选择题(本题共11小题,每小题5分,共55分.在每小题给出的四个选项中,至少有一个选项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错或不答的得0分.) 1.各种卡通形状的氢气球,受到孩子们的喜欢,特别是年幼的小孩,小孩一不小心松手,氢气球就会飞向天空,上升到一定高度会胀破,是因为( ) A .球内氢气温度升高 B .球内氢气压强增大 C .球外空气压强减小 D .以上说法均不正确 2.一端封闭的玻璃管倒插入水银槽中,管竖直放置时,管内水银面比管 外高h ,上端空气柱长为l ,如图所示,已知大气压强为ρgH ,下列说法正确的是( ) A .此时封闭气体的压强是ρg (l +h ) B .此时封闭气体的压强是ρg (H -h ) C .此时封闭气体的压强是ρg (H +h ) D .此时封闭气体的压强是ρg (H -l ) 3.如图所示为一定质量的气体在不同温度下的两条等温线,则下列说法中正确的是( ) A .从等温线可以看出,一定质量的气体在发生等温变化时,其压强与体积成反比 B .一定质量的气体,在不同温度下的等温线是不同的 C .由图可知T 1>T 2 D .由图可知T 1

理想气体状态方程与气体实验定律的应用

一、热力学第一定律 1、内能:_______________________________________________________________ 2、改变内能的两种方式:__________________________________________________ 3、热力学第一定律公式:__________________________________________________ 二、理想气体状态方程与气体实验定律的应用 (一)理想气体状态方程与气体实验定律的关系: 1、理想气体状态方程: 2、气体实验定律 (1)公式: 图像: (2)公式: 图像: (3)公式: 图像: 题型1:图像类 1.如图为一定质量的理想气体两次不同体积下的等容变化图线,有关说法正确的是 A .a点对应的气体状态其体积大于b点对应的气体体积 B.a点对应的气体状态其体积小于b点对应的气体体积 C.a点对应的气体分子密集程度大于b点的分子密集程度 D.a点气体分子的平均动能等于b点的分子的平均动能 2.如图所示,一定质量的理想气体,由状态a沿直线ab变化到 状态b。在此过程中 A.气体的温度保持不变 B.气体分子平均速率先减小后增大 C.气体的密度不断减小 D.气体必然从外界吸热 3.定质量的理想气体,由状态A(1,3)沿直线AB变化到C (3,1),如图所示,气体在A、B、C三个状态中的温度之 比是 A.1:1:1 B.1:2:3 C.3:4:3 D.4:3:4 4.如图所示,是某同学利用DIS实验系统研究一定质量的理想气体的状态变化,得到的P-T图象。气体状态由A变化至B的过程中,气体的体积将(填“变大”或“变小”),这是(填“吸 热”或“放热”)过程。 5.一定质量的理想气体,经历一膨胀过程,这一过程可以用下 图上的直线ABC来表示,在A、B、C三个状态上,气体的温度 T A、T B、T C相比较,大小关系为( ) A.T B=T A=T C B.T A>T B>T C C.T B>T A=T C D.T B

理想气体实验定律

第二课时 理想气体实验定律 一、气体的三个状态参量:温度、体积、压强 气体的压强: ①产生原因:大量分子无规则运动,碰撞器壁,对器壁各处形成了一个持续的均匀的压力而产生。 ②大小:气体的压强在数值上等于气体作用在 上的压力.公式:p = ③求解方法 【练习1】1、如图,一端封闭的玻璃管内用长为L 厘米的水银柱封闭了一部分气体, 已知大气压强为p 0厘米汞柱,则封闭气体的压强为________厘米汞柱. 若开口朝下竖直放置? 2、若大气压强为P0,活塞质量为m ,求下列三种情况下气体的压强 二、理想气体状态方程 1、理想气体: 情况下都遵循气体的三个实验定律的气体。实际气体在温度不太低压强不太高的情况下课视为理想气体。 2、理想气体状态方程:一定质量的理想气体, 3、 理想气体状态方程的三种特例: ①波义耳定律( 变化): ②查理定律 ( 变化) ③盖吕萨克定律 ( 变化) 【练习2】在图示气缸中封闭着温度为127C ?的空气,一重物用绳索经滑轮与缸中活塞相连接,重物和活塞均处于平衡状态,这时活塞离缸底的高度为10cm ,如果缸内空气温度变为-23C ?,则重物_________(填“上升”或“下降”),这时重物将从原处移动____________cm 。(设活塞与气缸壁间无摩擦) 【练习3】 如图所示,一内壁光滑的气缸固定于水平地面上,在距气缸底部L 1=54 cm 处有一固定于气缸上的卡环,活塞与气缸底部之间封闭着一定质量的理想气体,活塞在图示位置时封闭气体的温度t 1=267℃、压强p 1=1.5 atm.设大气压强p 0恒为1 atm ,气缸导热性能良好,不计活塞的厚度.由于气缸缓慢放热,活塞最终会左移到某一位置而平衡.求: ① 活塞刚要离开卡环处时封闭气体的温度; ② 封闭气体温度下降到t 3=27℃时活塞与气缸底部之间的距离. 【练习4】如图所示,气缸放置在水平平台上,活塞质量为10 kg ,横截面积50 cm 2,厚度1 cm ,气缸全长21 cm , 气缸质量20 kg ,大气压强为1×105 Pa ,当温度为7℃时,活塞封闭的气柱长10 cm ,若将气缸倒过来放置时,活塞下方的空气能通过平台上的缺口与大气相通.g 取10 m/s 2,封闭的气体可视为理想气体,在转动过程中没有发生漏气.求: ①若气柱温度不变,气柱达到新的平衡时的长度; ②缓慢升高气柱的温度,当活塞刚好接触平台时气柱的温度. 【练习5】某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增大到p,设充气过程为等温过程,空气可看作理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同,压强也是p 0,体积为( )的空气。 A. 0p p V B. p p V C.( p p -1)V D.( p p +1)V 三、气体状态变化的图象问题 在以下各图中按要求画线,并写出作图依据 ①等温线 ②等容线 ③等压线 【练习6】定质量的理想气体,从图示的A 状态开始,经历了B 、C ,最后到D 状态,下列说法中正确的是( ) A .A →B 温度升高,体积不变 B .B →C 压强不变,体积变小 C .C →D 压强变小,体积变大 D .A 状态的温度最高,C 状态的体积最小 【练习7】一定质量理想气体的状态经历了如图2-7所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( ). A .ab 过程中不断减小 B .bc 过程中保持不变 C .cd 过程中不断增加 D .da 过程中保持不变 【练习8】已知理想气体的内能与温度成正比。如图所示的实线为汽缸内一定质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的温度 。

专题43 气体实验定律

专题43 气体实验定律 一、单项选择题 1.【2011·上海卷】如图,一定量的理想气体从状态a 沿直线变化到状态b ,在此过程中,其压强 A .逐渐增大 B .逐渐减小 C .始终不变 D .先增大后减小 【答案】A 【解析】因为 a a b b a b PV PV T T = ,从图像上看,a b a b V V T T >,所以a b P P <,A 正确 2.【2012·福建卷】空气压缩机的储气罐中储有1.0atm 的空气6.0L ,现再充入1.0 atm 的空气9.0L 。设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为_____。(填选项前的字母) A .2.5 atm B .2.0 atm C .1.5 atm D .1.0 atm 【答案】A 3.【2012·重庆卷】题图为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定量的空气。若玻璃管内水柱上升,则外界大气的变化可能是 A .温度降低,压强增大 B .温度升高,压强不变 C .温度升高,压强减小 D .温度不变,压强减小 【答案】A

4.【2013·重庆卷】某未密闭房间的空气温度与室外的相同,现对该室内空气缓慢加热,当室内空气温度高于室外空气温度时, A.室内空气的压强比室外的小 B.室内空气分子的平均动能比室外的大 C.室内空气的密度比室外大 D.室内空气对室外空气做了负功 【答案】B 【解析】未密闭房间说明是等压变化,压强不变,故A错误;温度是分子平均动能的标志;温度升高分子平均动能增加,故B正确;等压升温度,体积增大,密度变小,故C错误;体积增大,对外做正功,故D错误。 5.【2013·福建卷】某自行车轮胎的容积为V,里面已有压强为p0的空气,现在要使轮胎内的气压增大到p,设充气过程为等温过程,空气可看作理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同,压强也是p0,体积为的空气(填选项前的字母) A.V p p 0B.V p p C.V p p ?? ? ? ? ? -1 D.V p p ?? ? ? ? ? +1 【答案】C 【解析】设需充入的气体体积为V0,由于整个过程中气体的温度保持不变,根据玻意耳定律有:p0(V+V0) =pV,解得:V p p V?? ? ? ? ? - =1 ,故选项C正确。 6.【2015·福建·29(2)】如图,一定质量的理想气体,由a经过ab过程到达状态b或者经过ac过程到达状态c。设气体在状态b和状态c的温度分别为T b和T c,在过程ab和ac中吸收的热量分别为Q ab和Q ac。则。 A.T b>T c,Q ab>Q ac B.T b>T c,Q ab<Q ac C.T b=T c,Q ab>Q ac D.T b=T c,Q ab<Q ac 【答案】C

相关文档
最新文档