2018年江西省高考理科数学试卷及答案解析

合集下载

2018年高考全国一卷理科数学答案及解析

2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

最新--全国高考理科数学试题及答案-江西 精品推荐

最新--全国高考理科数学试题及答案-江西 精品推荐

绝密★启用前2018年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页,满分180分,考试时间180分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。

参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())(( 其中nx x x x n+++= (21)ny y y y n +++= (21)锥体的体积公式13V Sh =其中S 为底面积,h 为高 第Ⅰ卷一、选择题:本大题共18小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若iiz 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2答案:C 解析: i i i i i i i z -=--=+=+=21222122 (2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0)B. (21-,0]C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0)答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f (5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 18 D. 55答案:A 解析:11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(18,1),(18.3,2),(18.8,3),(18.5,4),(18,5);变量U 与V 相对应的一组数据为(18,5),(18.3,4),(18.8,3),(18.5,2),(18,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121第一组变量正相关,第二组变量负相关。

2018年全国高考理科数学试卷含解析

2018年全国高考理科数学试卷含解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学(河南、河北、山西、江西、湖北、湖南、广东、安徽、福建使用)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z =A .0B .12C .1D2.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤C .}{}{|1|2x x x x <->UD .}{}{|1|2x x x x ≤-≥U3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅u u u u r u u u r =A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为ABC.4D二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理科数学试卷及答案(清晰word版)

2018年高考理科数学试卷及答案(清晰word版)

理科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题 第2页(共9页)4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+理科数学试题 第3页(共9页)11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。

2018年江西省高考数学试卷(理科)(全国新课标Ⅰ)

2018年江西省高考数学试卷(理科)(全国新课标Ⅰ)

2018年江西省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设,则A. B. C. D.2. 已知集合,则A.B.C.D.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4. 记为等差数列的前项和.若,,则A. B. C. D.5. 设函数.若为奇函数,则曲线在点处的切线方程为()A. B. C. D.6. 在中,为边上的中线,为的中点,则A. B.C. D.7. 某圆柱的高为,底面周长为,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.8. 设抛物线的焦点为,过点且斜率为的直线与交于,两点,则A. B. C. D.9. 已知函数,.若存在个零点,则的取值范围是()A. B.C. D.10. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,.的三边所围成的区域记为,黑色部分记为,其余部分记为.在整个图形中随机取一点,此点取自,,的概率分别记为,,,则()A. B.C. D.11. 已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则A. B. C. D.12. 已知正方体的棱长为,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

高三数学-2018年普通高等学校招生全国统一考试(江西卷)理科数学 精品

高三数学-2018年普通高等学校招生全国统一考试(江西卷)理科数学 精品

绝密★启用前2018年普通高等学校招生全国统一考试(江西卷)数 学 第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}230,31,(1)x M x N y y x x R x ⎧⎫=≥==+∈⎨⎬-⎩⎭||,则M N ⋂等于 A.∅ B.{}1x x ≥| C. {}1x x |>D. {}10x x x ≥或|<2.已知复数z 满足3)3i z i =,则z 等于A.322- B.344-C. 32D.34+ 3.若0,0a b >>,则不等式1b a x-<<等价于 A.1100x x b a-或<<<< B. 11x a b-<< C. 11x x a b-或<>D. 11x x b a-或<>4.设O 为坐标原点, F 为抛物线24y x =的焦点, A 为抛物线上一点,若4OA AF ⋅=-,则点A 的坐标为A.(2,±B. (1,2)±C. (1,2)D. 5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有 A.(0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥D. (0)(2)2(1)f f f +>6.若不等式210x ax ++≥对一切1(0,2x ∈]成立,则a 的最小值为A.0B.2-C.52-D. 3-7.已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+ ,且A 、B 、C 三点共线(该直线不过点O ),则200S 等于 A.100B.101C.200D.2018.在2006(x 的二项展开式中,含x 的奇次幂的项之和为S ,当x =, S 等于A.30042B 30042-C. 30092D. 30092-9.P 为又曲线221916x y -=的右支上一点,M 、N 分别是圆222(5)4(5)1x y x y ++=-+=和上的点,则PM PN -的最大值为A.6B.7C.8D.910.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,不同的分组数为a ,甲、乙分在同一组的概率为P ,则a 、P 的值分别为A .5105,21a P ==B. 4105,21a P ==C. 5210,21a P ==D. 4210,21a P ==11.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC 、DC 分别截于E 、F .如果截面将四面体分为体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别为1S 、2S ,则必有A.12S S <B. 12S S >C. 12S S =D. 1S 、2S 的大小关系不能确定12.某地一年内的气温()Q t (单位:℃)与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10℃,令()C t 表示时间段[]0,t 的平均气温, ()C t 与t 之间的函数关系用下列图表示,则正确的应该是第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.数列2141n ⎧⎫⎨⎬-⎩⎭的前n 项和为n S ,则lim n n S →∞= ___________. 14.设3()log (6)f x x =+的反函数为1()f x -,若11()6()627f m f n --⎡⎤⎡⎤++=⎣⎦⎣⎦,则()f m n +=_____________.15.如图,在直三棱柱111ABC A B C -中,底面为直角三角形,190,6,ACB AC BC CC P ∠=︒===是1BC 上一动点,则1CP PA +的最小值为__________.16.已知圆22:(cos )(sin )1M x y θθ++-=,直线:l y kx =,下面四个命题 (A)对任意实数k 和θ,直线l 和圆M 相切;(B)对任意实数k 和θ,直线l 和圆M 有公共点;(C) 对任意实数θ,必存在实数k ,使得直线l 和圆M 相切; (D) 对任意实数k ,必存在实数θ,使得直线l 和圆M 相切.其中真命题的代号是_______________(写出所有真命题的代号).三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值. (1) 求a 、b 的值及函数()f x 的单调区间;(2) 若对[]1,2x ∈-,不等式2()f x c <恒成立,求c 的取值范围.18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.令ξ表示甲、乙两人摸球后获得的奖金总额,求(1) ξ的分布列;(2) ξ的数学期望.如图,已知△ABC 是边长为1的正三角形, M 、N 分别是边AB 、AC 上的点,线段MN 经过△ABC 的中心,G .设2()33MGA ππαα∠=≤≤. (1) 试将△AGM 、△AGN 的面积(分别记为1S 与2S )表示为α的函数; (2) 求221211y S S =+的最大值与最小值.20.(本小题满分12分)如图,在三棱锥A BCD -中,侧面ABD 、ACD 是全等的直角三角形, AD 是公共的斜边,且1AD BD CD ===.另一个侧面ABC 是正三角形.(1) 求证: AD BC ⊥(2) 求二面角B AC D --的大小;(3) 在线段AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定点E 的位置;若不存在,说明理由.21.(本小题满分12分)如图,椭圆2222:1(0)x y Q a b a b+=>>的右焦点为(,0)F c ,过点F 的一动直线m 绕点F转动,并且交椭圆于A 、B 两点, P 为线段AB 的中点.(1) 求点P 的轨迹H 的方程;(2) 若在Q 的方程中,令221cos sin ,sin (0).2a b πθθθθ=++=≤<确定θ的值,使原点距椭圆Q 的右准线l 最远.此时设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD 的面积最大?已知数列{}n a 满足:*11133,(2,)221n n n na a a n n N a n --==≥∈+-且. (1) 求数列{}n a 的通项公式;(2) 证明:对一切正整数n ,不等式122!n a a a n ⋅⋅⋅⋅< 恒成立.理科数学试题参考答案一. 选择题 1.C 2.D 3.D 4.B5.C6.C7.A8.B9.D10.A11.C12.A二.填空题 13.1214.215.16.B 、D三.解答题 17.解:322(1)(),()32,f x x ax bx c f x x ax b '=+++=++22124()0,(1)320,3931,2,2()32(32)(1),():f a b f a b a b f x x x x x f x ''-=-+==++==-=-'=--=+-由得函数的单调区间如下表所以函数()f x 的递增区间为2(,)3-∞-与(1,)+∞; 递减区间为2(,1)3-. [][]32221222(2)()21,2,,(),2327(2)2,(2)2.()(1,2),(2)2,1 2.f x x x x c x x f x c f c f c f x c x c f c c c =--+∈-=-=+=+=+∈-=+-当时为极大值而则为最大值要使恒成立只须解得或 <> <>18.解:(1) ξ的所有可能的取值为0,10,20,50,60.3222239729(0)();10100019918243(10)();10101010100011818(20);10101000919(50);1010100011(60);101000P P P P P ξξξξξ=====⨯+⨯===⨯===⨯==== 7292431891(2)010205060 3.310001000100010001000E ξ=⨯+⨯+⨯+⨯+⨯=(元) 19.解:(1)因为G 为边长为1的正三角形ABC 的中心,所以2,.3236AG MAG π=⨯=∠= 由正弦定理,sinsin()66GM GA πππα=--12,6sin()61sin sin (212sin()6,sin sin()666sin()61sin sin()(212sin ()6GM S GM GA GN GAGN S GN GA παααπαππαααπαπαα=+=⋅⋅==+=-=-=⋅⋅-==-得则或又得则或 2222221211144(2)sin ()sin ()72(3cot ).sin 66y S S ππαααα⎡⎤=+=++-=+⎢⎥⎣⎦ 因为233ππα≤≤,所以当233ππαα==或时,y 的最大值min 240y =;当2πα=时, y 的最小值min 216y =.20.解法一:(1)方法一:作AH ⊥面BCD 于H ,连.DH,AB BD HB BD ⊥⇒⊥3,1AD BD ==AB BC AC BD DC ∴===∴⊥又BD CD =,则BHCD 是正方形. 则..DH BC AD BC ⊥∴⊥方法二:取BC 的中点O ,连AO 、DO , 则有,.AO BC DO BC ⊥⊥,.BC AOD BC AD ∴⊥∴⊥面(2)作BM AC ⊥于M ,作MN AC ⊥交AD 于N ,则BMN ∠就是二面角B AC D --的平面角.AB AC BC ===M 是AC 的中点,且MN ∥CD则111,222BM MN CD BN AD =====由余弦定理得222cos 2BM MN BN BMN BMN BM MN +-∠==∴∠=⋅(3)设E 为所求的点,作EF CH ⊥于F ,连FD .则EF ∥AH∴,EF BCD EDF ⊥∠面就是ED 与面BCD 所成的角,则30EDF ∠=︒.设EF x =,易得1,,AH HC CF x FD ====则tan ,3EF EDF FD ∴∠===解得 1.x CE ===则 故线段AC 上存在E 点,且1CE =时,ED 与面BCD 成30︒角.解法二:(1) 作AH ⊥面BCD 于H ,连BH 、CH 、DH ,则四边形BHCD 是正方形, 且1AH =,以D 为原点,以DB 为x 轴,DC 为y 轴建立空间直角坐标系如图, 则(1,0,0),(0,1,0),(1,1,1).B C A(1,1,0),(1,1,1),0,.BC DA BC DA BC AD =-=∴⋅=⊥则(2)设平面ABC 的法向量为1(,,),n x y z = 则由1n BC ⊥知: 10n BC x y ⋅=-+=; 同理由1n CA ⊥知: 10.n CA x z ⋅=+= 可取1(1,1,1).n =-同理,可求得平面ACD 的一个法向量为2(1,0,1).n =- 由图可以看出,三面角B AC D --的大小应等于<12,n n > 则cos <12,n n>12123n n n n ⋅===即所求二面角的大小是 (3)设(,,)E x y z 是线段AC 上一点,则0,1,x z y ==> 平面BCD 的一个法向量为(0,0,1),(,1,),n DE x x == 要使ED 与面BCD 成30︒角,由图可知DE 与n 的夹角为60︒, 所以1cos ,cos60.21DE n DE n DE n⋅===︒=+<>则2x 解得,x =,则 1.CE == 故线段AC 上存在E 点,且1CE =,时ED 与面BCD 成30︒角. 21.解:如图(1)设椭圆2222:1x y Q a b+=上的点1,1()A x y 、2,2()B x y ,又设P 点坐标为(,)P x y ,则2222221122222222b x a y a b b x a y a b⎧+=⎪⎨+=⎪⎩………………①1︒ 当AB 不垂直x 轴时,12,x x ≠由①—②得………………②22121221221222222()2()20,,0,(*)b x x x a y y y y y b x yx x a y x cb x a y b cx -+-=-∴=-=--∴+-=2︒当 AB 垂直于x 轴时,点P 即为点F ,满足方程(*). 故所求点P 的轨迹H 的方程为: 222220b x a y b cx +-=.(2)因为,椭圆Q 右准线l 方程是2a x c =,原点距椭圆Q 的右准线l 的距离为2a c,222222,1c o s s i n ,s i n (0).2s 2s i n ().24c a b a b a c πθθθθθπ=-=++=≤==+由于则<2πθ=当时,上式达到最大值,所以当2πθ=时,原点距椭圆Q 的右准线l 最远.此时222,1,1,(2,0),1a b c D DF ====.设椭圆 22:121x y Q +=上的点1,1()A x y 、2,2()B x y , △ABD 的面积1212111.222S y y y y =+=- 设直线m 的方程为1x ky =+,代入22121x y +=中,得22(2)210.k y ky ++-= 由韦达定理得12122221,,22k y y y y k k+=-=-++ ()()222212121222814()()4,2k S y y y y y y k+=-=+-=+令211t k =+≥,得28424tS t≤=,当1,0t k ==取等号. 因此,当直线m 绕点F 转动到垂直x 轴位置时, 三角形ABD 的面积最大.22.解:(1)将条件变为:1111(1)3n n n n a a ---=-,因此,1n n a ⎧⎫-⎨⎬⎩⎭为一个等比数列.其首项为1113n a -=,公比为13,从而11,3n n n a -=据此得3(1)31nn nn a n ⋅=≥-. (2)证:据①得,122!.111(1)(1)(1)333n n n a a a =---为证122!,n a a a n ⋅<只要证*n N ∈时有21111(1)(1)(1)3332n --->.…………② 显然,左端每个因式皆为正数,先证明,对每个*,n N ∈22111111(1)(1)(1)1(),333333k k---≥-+++…………③ 用数学、归纳法证明③式: 11n ︒=时,显然③式成立, 2︒设n k =时,③式成立即22111111(1)(1)(1)1(),333333kk ---≥-+++则当1n k =+时,212121122111111111(1)(1)(1)(1)1()(1)33333333111111111()()3333333311111().3333k k k k k k k k k k +++++----≥-+++-=-+++-++++≥-++++[] 即当1n k =+时,③式也成立. 故对一切*n N ∈,③式都成立. 利用③得, 22111111(1)(1)(1)1(),333333n n ---≥-+++11[1]3311131111111[1].232232n n n -=--=--=+()()()>故②式成立,从而结论得证.。

2018年高考真题——数学(江西)Word版

2018年高考真题——数学(江西)Word版

2018年普通高等学校招生全国统一考试<江西卷)文科数学本试卷分第I卷<选择题)和第II卷<非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

满分150分,考试时间120分钟。

b5E2RGbCAP考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

p1EanqFDPw2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

第II 卷用0.5毫M的黑色墨水签字笔在答题卡上书写作答,在试卷卷上作答,答题无效。

DXDiTa9E3d3.考试结束,务必将试卷和答题卡一并上交。

参考公式:锥体体积公式V=Sh,其中S为底面积,h为高。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 若复数z=1+i (i为虚数单位> 是z的共轭复数,则+²的虚部为A 0B -1C 1D -22 若全集U=|x∈R||x+1|≤1}的补集CuA为A |x∈R |0<x<2|B |x∈R |0≤x<2|C |x∈R |0<x≤2|D |x∈R |0≤x≤2|3.设函数,则f<f<3))=A. B.3 C. D.4.若,则tan2α=A.-B.C.-D.5.观察下列事实|x|+|y|=1的不同整数解<x,y)的个数为 4 ,|x|+|y|的不同整数解<x,y)的个数为8, |x|+|y|=3的不同整数解<x,y)的个数为12 ….则|x|+|y|=20的不同整数解<x,y)的个数为RTCrpUDGiTA.76B.80C.86D.926.小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为5PCzVD7HxAA.30%B.10%C.3%D.不能确定7.若一个几何体的三视图如图所示,则此几何体的体积为A. B.5 C.4 D.8.椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。

(完整版)2018年高考全国一卷理科数学答案及解析

(完整版)2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为()
A.7 B.9 C.10 D.11
【答案】B
【解析】 , ,选B
8.若 则 ()
A. B. C. D.1
【答案】B
【解析】设 ,则 , ,所以 .
9.在平面直角坐标系中, 分别是 轴和 轴上的动点,若以 为直径的圆 与直线 相切,则圆 面积的最小值为()
解:(1) 面 面 ,面 面 = ,
面 ……………………………………2分
又 面 ……………………………………3分
……………………………………4分
(2)过P作 ,由(1)有 面ABCD,
作 ,连接PM,作 ……………………………………5分
设AB=x.
…7分
当 即 时, ……………………………………9分
16.已知函数 ,其中
(1)当 时,求 在区间 上的最大值与最小值;
(2)若 ,求 的值.
【解析】(1) ,
……………………………………………………………3分
, …………………………………………………………4分
;……………………………………………………………6分
(2)
又 , …………………………………………7分
【答案】
【解析】
13.若曲线 上点 处的切线平行于直线 ,则点 的坐标是________.
【答案】
【解析】
14.已知单位向量 与 的夹角为 ,且 ,向量 与 的夹角为 ,则 =
【答案】
【解析】
15.过点 作斜率为 的直线与椭圆 : 相交于 ,若 是线段 的中点,则椭圆 的离心率为
【答案】
【解析】
三.简答题
A. B. C. D.
【答案】A
【解析】原点O到直线 的距离为 ,则 ,点C到直线 的距离是圆的半径 ,由题意知C是AB的中点,又以斜边为直径的圆过三个顶点,则在直角 中三角形中,圆C过原点O,即 ,圆C的轨迹为抛物线,O为焦点, 为准线,所以 , ,所以选A。
10.如右图,在长方体 中, =11, =7, =12,一质点从顶点A射向点 ,遇长方体的面反射(反射服从光的反射原理),将 次到第 次反射点之间的线段记为 , ,将线段 竖直放置在同一水平线上,则大致的图形是()
【答案】C
【解析】
所以选C.
3.已知函数 , ,若 ,则 ()
A.1 B. 2 C. 3 D. -1
【答案】A
【解析】
所以选A。
4.在 中,内角A,B,C所对应的边分别为 ,若 则 的面积()
A.3 B. C. D.
【答案】C
【解析】
所以选C。
5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()
(1)求双曲线 的方程;
(2)过 上一点 的直线 与直线 相交于点 ,与直线 相交于点 ,证明点 在 上移动时, 恒为定值,并求此定值
【答案】B
【解析】俯视图为在底面上的投影,易知选:B
6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是()
A.成绩B.视力C.智商D.阅读量
【答案】D
【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D
如图建立空
, ……………………………………10分
设面 、面 的法向量分别为 ,
设 ,则 ,
同理可得 ……………………………………11分
平面 与平面 夹角的余弦值为 。…………………………………12分
20.(本小题满分13分)
如图,已知双曲线 的右焦点 ,点 分别在 的两条渐近线上, 轴, ∥ ( 为坐标原点).
【答案】C
【解析】A(0,0,0),E(4,3,12), (8,6,0), ( ,7,4), (11, ,9), , , ,
……
二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
11(1).(不等式选做题)对任意 , 的最小值为()
已知函数 .
(1)当 时,求 的极值;
(2)若 在区间 上单调递增,求b的取值范围.
【解析】1)当 时, 的定义域为
令 ,解得
当 时, ,所以 在 上单调递减;
当 时, ,所以 在 上单调递增;
所以,当 时, 取得极小值 ;当 时, 取得极大值 。
(2) 在 上单调递增 且不恒等于0对x 恒成立……………………7分
2018年普通高等学校招生全国统一考试(江西卷)
数学(理科)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 是 的共轭复数.若 ,( ( 为虚数单位),则 ()
A. B. C. D.
【答案】D
【解析】
所以选D。
2.函数 的定义域为()
A. B. C. D.
,…………………………………………8分
…………………………………………10分
,又 ,所以 ………………12分
17、(本小题满分12分)
已知首项都是1的两个数列 ( ),满足 .
(1)令 ,求数列 的通项公式;
(2)若 ,求数列 的前n项和 .
【解析】(1)
同时除以 ,得到 ……………………………………………………2分
A. B. C. D.
【答案】B
【解析】
11(2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点, 轴的非负半轴为极轴建立极坐标系,则线段 的极坐标为()
A. B. C. D.
【答案】A
【解析】
所以选A。
3.填空题:本大题共4小题,每小题5分,共20分.
12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.
……………………………………8分
……………………………………10分
……………………………………11分
……………………………………12分
19(本小题满分12分)
如图,四棱锥 中, 为矩形,平面 平面 .
(1)求证:
(2)若 问 为何值时,四棱锥 的体积最大?并求此时平面 与平面 夹角的余弦值.
【解析】
即: ……………………………………………………3分
所以, 是首项为 ,公差为2的等差数列…………………………………4分
所以, ……………………………………………………5分
(2) , ………………………………………6分
………………………9分
两式相减得:
…………………11分
…………………12分
18、(本小题满分12分)
相关文档
最新文档