重复测量设计的方差分析

合集下载

心理学统计第五部分重复测量方差分析

心理学统计第五部分重复测量方差分析

心理学统计第五部分重复测量方差分析在心理学研究中,有时候研究者需要评估一个或多个因素对参与者的多个测量结果的影响。

这种情况下,重复测量方差分析(Repeated Measures Analysis of Variance,简称为RM ANOVA)是一种常用的统计方法。

重复测量方差分析是一种比较多个组内变量平均数差异的方法,它比较了每个组内变量的差异以及每个组间变量的差异。

与传统的方差分析不同,重复测量方差分析考虑了相同参与者在不同条件下的多次测量结果,因此能够更准确地评估因素对测量结果的影响。

首先,我们需要明确的是,在重复测量方差分析中,我们的因变量是一个连续的测量结果,而自变量是一个或多个处理条件。

例如,我们可能想要评估一个新药物是否对人们的注意力产生影响,我们可以将注意力测量结果作为因变量,而药物与安慰剂作为自变量。

重复测量方差分析有三个基本的假设。

首先,我们假设不同处理条件下的测量结果的总平均数相等,即每组的平均值相等。

其次,我们假设各个处理条件下的测量结果有一定的方差。

最后,我们假设不同处理条件下的测量结果相互独立。

重复测量方差分析有一些优点和注意事项。

首先,这种方法可以减少误差变异,因为我们可以通过比较同一参与者在不同条件下的测量结果来消除参与者间的差异。

其次,重复测量方差分析可以提高统计功效,以便检测到小的差异。

然而,我们需要注意确保多次测量结果之间的独立性,以及在数据分析中正确处理可能的违反方差齐性和正态分布的情况。

总结起来,重复测量方差分析是一种常用的心理学统计方法,用于评估一个或多个因素对参与者的多个测量结果的影响。

它是一种有效的方法,可以提供关于不同处理条件之间差异的信息。

在分析数据时,我们需要检查数据的正态性和方差齐性,并使用适当的修正方法来应对违反这些假设的情况。

重复测量方差分析为心理学研究提供了一个强有力的统计工具,使得研究者能够更好地理解和解释影响行为和心理过程的因素。

教育与心理统计学 第六章 方差分析五 重复测量实验设计的方差分析考研笔记-精品

教育与心理统计学  第六章 方差分析五 重复测量实验设计的方差分析考研笔记-精品

第六章方差分析(五)[测量实验设计的方差分析一、重复测量的方差分析(一)重复测量实验设计的相关含义⑴重复测量实验设计的定义又叫:被试内设计、受试者内设计、单组实验设计、相关样本设计。

是每个被试或每组被试必须接受自变量的所有情况的处理(每个被试接受所有的实验处理水平或处理水平的结合)。

由于被试的行为是重复测量的,所以被试内实验设计也称重复测量实验设计。

(2)重复测量设计的基本原理每个被试者参与所有的实验处理,然后比较相同被试者在不同处理下的行为变化。

这种实验设计下的同一被试者既为实验组提供数据,也为控制组提供数据。

因此,被试者内设计无需另找控制组的被试者。

被试内设计不但节省了被试人数,而且不同组的被试个体差异也得到了最好的控制,被试内设计比被试间设计更有力,能更好的考察实验组和控制组之间的差异,这个优点使得许多研究者更倾向于使用被试内设计。

和被试间设计相反,被试内设计不会受到来自被试个体差异的困扰但却必需面对实验处理之间相互污染的问题。

可以采用平衡技术来控制这些差异。

(3)使用重复测量设计的主要目的重复测量实验设计的目的是所有被试自已做控制,使被试的各方面特点在该因素所有水平上保持恒定,克服被试间设计中存在的被试不同质的问题,以最大限度地控制由被试的个体差异带来的变异。

如果实验者主要想研究一个被试者对实验处理所引起的行为上的变化,一般可以考虑采用被试者内设计。

(二)重复测量实验设计的方差分析的条件重复测量实验设计方差分析是一般方差分析的深化,也具有正态性、变异的可加性和方差齐性等先决条件,还要求各重复测量数据组成的协方差矩阵满足球形性假设。

博克斯指出,若球状性假设得不到满足,则方差分析的F值是有偏的,会增加犯I类错误的可能。

(三)重复测量实验设计的方差分析的过程①建立检验假设;②计算离差平方和与均方;③进行F检验;④列出方差分析表。

二、单因素重复测量的方差分析(一)重复测量实验设计的基本方法实验中每个被试接受所有的处理水平。

方差分析(重复测量)

方差分析(重复测量)
T 13024 时相测量患者的收缩压,试进行方差分析。
诱导
患者
方法
序号
T0
t3
A
1
120
A
2
118
A
3
119
A
4
121
A
5
127
B
6
121
B
7
122
B
8
128
B
9
117
B
10
118
C
11
131
C
12
129
C
13
123
C
14
123
C
15
125
麻醉诱导时相
t1 t2 t4
108
112
120
117
109
115
H uy nh-F eldt
2336.453
Low er-bound
2336.453
B * G RO U PS phericity A ssum ed 837.627
G reenhouse-G eisser 837.627
H uy nh-F eldt
837.627
Low er-bound
837.627
T es ts of Within-Sub je cts Effe cts
M easure: M E A S U RE _1
S ource
Ty pe III Sum of S quares
B
S phericity A ssum ed 2336.453
G reenhouse-G eisser 2336.453
Within SubjectsMEfafuecthly 's WC hi-Square

重复测量方差分析

重复测量方差分析

重复测量方差分析1. 引言重复测量方差分析(Repeated Measures Analysis of Variance, RM-ANOVA)是一种统计方法,用于分析在不同时间点或不同处理条件下对同一组个体或样本进行多次测量的数据。

通过比较不同时间点或处理条件下的测量结果,我们可以确定是否存在显著的差异,并了解时间或处理对测量结果的潜在影响。

本文档将介绍重复测量方差分析的基本原理、假设条件、计算方法和结果解读,并提供使用Markdown格式编写重复测量方差分析报告的示例。

2. 基本原理重复测量方差分析的基本原理是基于方差分析(ANOVA)方法,但相对于普通的单因素方差分析,重复测量方差分析考虑了测量数据间的相关性。

在重复测量设计中,同一个个体或样本在不同时间点或处理条件下进行多次测量,因此测量数据之间存在一定的相关性。

为了解决相关性的问题,重复测量方差分析使用了独特的矩阵分解方法,将总体方差分解为组内方差和组间方差。

通过计算组间方差与组内方差的比值,可以判断不同时间点或处理条件下的测量结果是否存在显著差异。

3. 假设条件在进行重复测量方差分析之前,需要满足以下假设条件:•正态性假设:每个时间点或处理条件下的测量结果应当服从正态分布。

•同方差性假设:每个时间点或处理条件下的测量结果应具有相同的方差。

•相关性假设:各个时间点或处理条件下的测量结果之间应具有一定的相关性。

如果数据不满足正态性、同方差性或相关性假设,需要采取适当的数据转换、方差齐性检验或相关性分析等方法进行处理。

4. 计算方法重复测量方差分析的计算方法可以通过计算F统计量来进行。

具体步骤如下:步骤1:计算总体方差首先计算总体方差SSTotal,即测量数据的总体波动情况。

步骤2:计算组间方差然后计算组间方差SSBetween,即不同时间点或处理条件下的测量结果之间的差异。

步骤3:计算组内方差接下来计算组内方差SSWithin,即测量数据在同一个时间点或处理条件下的波动情况。

重复测量资料的方差分析

重复测量资料的方差分析

ˆ ˆ ˆ2 2k 式中中的 s 是协方差矩阵中的第 k 行第 l 列元素, s = ( = (∑ s ) / a 是主对角线元素的平均值, s = (∑ s ) / a 是第 k 行的平均值。

ε ˆ 的取值在 1.0 与 1/(a -1)之间。

ε =ˆˆ ˆ分子自由度ν 1 =ν 1 ⨯ε 分母自由度ν 2 =ν 2 ⨯ε 。

具体计算时可用或ε 代替。

用 调整所得的ν 1 及ν 2 的 F 值查临界值表,得 F α (ν ' ,ν ' ) 。

由于ε≤ 1.0,所以调整后的重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间 点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。

这类测量 资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的 治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。

1、 重复测量资料方差分析中自由度调整方法1.调整系数 ε 的计算有两个调整系数,第一个是 Greenhouse-Geisser 调整系数 ε (G - G ε ) ,计算 公式为ε =a 2(s kl - s 2) 2(a -1)[∑ ∑ (s kl ) 2 - (2a )(∑ (s 2 ) 2 ) + a 2 (s 2 ) 2 ]k l kkl 2 2 ∑∑ s k l 2 kl ) / a 2 是所有元素的总平均值, s 2 kk l2 2 ll2 2 kkll 第 2 个系数是 Huynh-Feldt 调整系数 ε (H - F ε ) 。

研究表明,当 ε 真值在 0.7 以上时,用 ε 进行自由度调整后的统计学结论偏于保守,故 Huynh 和 Feldt 提 出用平均调整值 ε 值进行调整。

ε 值的计算公式为ng (a - 1)ε - 2 (a - 1)[(n - 1)g - (a - 1)ε ]式中中的 g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。

重复测量设计的方差分析

重复测量设计的方差分析
区组内实验单位彼此不独立。
u 随机区组设计 ●处理因素在区组内随机分配; 每个区组内实验单位彼此独立。
第二节
重复测量数据 的两因素两水平分析
高血压患者治疗前后的舒张压(mmHg)
处理组 a1
对照组(安慰剂组)a2
顺序号 治疗前 治疗后 合计(Mj) 顺序号 治疗前 治疗后 合计(Mj)
●处理因素在区组内随b机1分配; b2
118
124
-6
132
122
10
134
132
2
114
96
18
118
124
-6
128
118
10
118
116
2
132
122
10
120
124
-4
134
128
6
1248
1206
42
124.8
120.6
4.2
7.90
9.75
8.02
三、重复测同相量一关受的设试。计者的(单血样因重素复测)量的结果是高度
受试者血糖浓度(mmol/L)
214
17
118
明“服8药”有效; 138
122
260
18
132
重复测量设计与随机区组设计区别
降压药9物与安慰剂间疗12效6差别无统计学1意08义;
234
19
120
注若意球事 对1项称0 1性、质单不因能素满实足1验2,重4则复方测差量分数析据的1分F0析值6是偏大的,2增3大0了犯第一类错2误0 的概率。 134
重复测量设计的方差分析
讲课内容
第一节 重复测量资料的数据特征 第二节 重复测量数据的两因素两水平分析

7重复测量设计与方差分析

7重复测量设计与方差分析

1.重复测量数据的主要特征是什么?答:(1)重复测量设计中“处理”是在区组(受试者)间随机分配,区组内的备时间点是固定的,不能随机分配。

(2)重复测量设计区组内实验单位彼此不独立。

在医学研究中.常见的情况是每个受试者的某项指标重复测量若干次,如住院患者人院后定期测量的体温、血压等。

同一受试者的重复测量结果通常高度相关,而且越相邻的数据相关性越高。

2.前后测量设计、设立对照的前后测量设计为什么不等同于配对设计和随机区组设计?答:(l)前后测量设计不能同期观察试验结果,虽然可以在前后测量之间安排处理,但本质上比较的是前后差别,推论处理是否有效是有条件的,即假定测量时间对观察结果没有影响。

配对设计中同一对子的两个实验单位可以随机分配处理,两个实验单位同期观察试验结果,可以比较处理组间差别。

(2)前后测量设计前后两次观察结果通常与差值不独立,大多数情况第一次观察结果与差值存在负相关的关系。

配对t检验和随机区组设计要求同一区组的实验单位的观察结果相互独立。

3.重复测量设计、随机区组设计、两因素析因试验三者有何联系与区别?答:(1)联系:在数据处理时,三者都采用两因素方差分析。

(2)区别:实验设计和处理的分配方式不同。

重复测量设计在区组间随机分配处理,随机区组设计在区组内随机分配处理,两因素析因试验有两个干预因素,每个试验单位只接受一种处理。

重复测量设计与方差分析重复测量设计医学与卫生研究领域,尤其是临床医学中十分常见的一种实验设计方法,其显著特点是同一实验单位(如人、动物、实验室样品)的某一观察指标在不同的场合(最常见的场合是时间)多次被反复观测。

按重复测量设计进行实验而获得的数据被称为重复测量数据(repeated measures data)。

如果重复测量的场合是几个不同的时间点,则重复测量数据又称为追踪数据或纵向数据(longitudinal data),医学科研中经常遇到的便是这种重复测量数据。

重复测量数据的统计分析方法众多且较复杂,常用的分析方法有考虑重复测量因素效应的单变量方差分析(univariate analysis of variance,ANOV A)、轮廓分析(profile analysis)、多变量方差分析(multivariate analysis of variance,MANOV A)、正交多项式回归分析模型以及混合效应模型(mixed effect models)也称多水平模型(multilevelmodels)或随机效应模型(random effect models)等,其中轮廓分析、多变量方差分析、正交多项式回归分析模型和混合效应模型的计算繁杂,有赖于专业软件(如SAS、SPSS、MLn)的应用。

重复测量设计的方差分析

重复测量设计的方差分析

第十五章重复测量设计的方差分析通过学习本章,您可以了解:●进行重复测量设计的方差分析的前提假设●如何逐步进行重复测量设计的方差分析●如何进行简单效应分析和多重比较。

在重复测量设计中,每个被试需接受所有水平的实验处理,即同一因变量先后被观测多次。

用于区分各个实验水平的变量通常是定性变量(Qualitative Variable),顺序变量或名义变量均可,SPSS称之为重测因素,或被试内因素。

被观测的因变量必须是数量变量(Quantitative Variable)。

单因素的重复测量设计只包括一个被试内因素。

多因素的重复测量设计可以有多个被试内因素或被试间因素。

本章将重点介绍单因素重复测量设计的方差分析过程,以及简单介绍多因素重复测量设计的分析思路。

在使用SPSS处理重复测量设计(被试内设计)的数据时,其数据的组织方式不同于被试间设计。

在数据窗口中不需要定义自变量和因变量。

对于单因素设计,数据文件中变量的个数等于自变量(因素)的水平;对于多因素设计,变量的个数等于因素之间的水平组合数。

而且变量的性质都是连续型变量。

在进行方差分析的过程中,需要对因素的个数及变量间的关系进行定义。

1. 前提假设如果被试内因素只有两个水平,则Repeated Measure执行一次标准的一元方差分析。

如果被试内因素有两个以上的水平,则执行三种检验:标准一元方差分析、备选的一元方差分析和多元方差分析。

事实上,三种分析检验的零假设相同,即因素各水平上的均值相同。

但具体采用哪一种分析的结果需要浏览全部三种分析的结果之后才能决定。

当因素水平数超过两个时,需要查看球形假设是否能够满足。

当球形假设可以满足时,可以使用标准一元方差分析的结果。

但是由于球形假设通常无法满足,此时方差分析的显著性水平p值不准确,所以标准一元方差分析在这种情况下并不常用。

备选一元方差分析适用于球形假设(Sephericity Assumption)不满足的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

处理组
顺序号
对照组(安慰剂组)
治疗前 治疗后 差值
治疗前 治疗后 差值
130
114
16
11
118
124
-6
124
110
14
12
132
122
10
136
126
10
13
134
132
2
128
116

12
14
114
96
18
122
102
20
15
118
124
-6
118
100
18
16
128
118
10
116
98
18
17
118
124
-6
132
122
10
134
132
2
114
96
18
118
124
-6
128
118
10
118
116
2
132
122
10
120
124
-4
134
128
6
1248
1206
42
124.8
120.6
4.2
7.90
9.75
8.02
7
顺序号
1 2 3 4 5 6 7 8 9 10 合计 均数 标准差
高血压患者治疗前后的舒张压(mmHg)
S 相关与回归分析
7.08
9.31
3.13
rXY 0.602
Yˆ 49.534 1.266X
5
配对设计与前后测量设计的区别与联系
配对设计
前后测量设计
两种处理作用于同一对的两个个体 一种处理作用于同一个体
可以对两个个体同时观测
同一个体两个不同时间的观测
两个个体的实验观测结果相互独立 两个不同时间观测结果常不相互独立
1
0.82
0.65
0.51
1.98
2
0.73
0.54
0.23
1.50
3
0.43
0.34
0.28
1.05
4
0.41
0.21
0.31
0.93
5
n
Xij
j1
Xi
n
Xi2j
j1
0.68 3.07 0.614 2.0207
0.43 2.17 0.434 1.0587
0.24 1.57 0.314 0.5451
1.35 6.81 0.454 3.6245
13
第二节 重复测量数据 的两因素两水平分析
14
高血压患者治疗前后的舒张压(mmHg)
顺序号
1 2 3 4 5 6 7 8 9 10 合计 均数 标准差
第12章
重复测量设计 资料的方差分析
ANOVA for Repeated Measurement Design Data
第二军医大学卫生统计学教研室 张罗漫
1
讲课内容
第一节 重复测量资料的数据特征(重点) 第二节 重复测量数据的两因素两水平分析 第三节 重复测量数据的两因素多水平分析 第四节 重复测量数据统计分析需注意的问
121
148
132
C
13
123
123
120
143
136
C
14
123
121
116
145
126
C
15
125
124
118
142
130
10
重复测量设计与随机区组设计区别 重复测量设计
●处理因素在区组间(受试者)随机分配 ;
●区组内各时间点固定,不能随机分配; 区组内实验单位彼此不独立。
随机区组设计 ●处理因素在区组内随机分配; 每个区组内实验单位彼此独立。
处理组 治疗后
114 110 126 116 102 100 98 122 108 106 1102 110.2 9.31
差值
16 14 10 12 20 18 18 16 18 18 160 16.0 3.13
顺序号
11 12 13 14 15 16 17 18 19 20 合计 均数 标准差
对照组(安慰剂组) 治疗前 治疗后 差值
对差数用成对资料 t 检验推论两种处理 对差数用成对资料 t 检验推论该处理有
有无差别
无作用;
处理前后的相关与回归分析。
6
二、设立对照的前后测量设计
高血压患者治疗前后的舒张压(mmHg)
顺序号
1 2 3 4 5 6 7 8 9 10 合计 均数 标准差
治疗前
130 124 136 128 122 118 116 138 126 124 1262 126.2 7.08
编号 1 2 3 4 5 6 7 8 9 10
X
治疗前(X) 130 124 136 128 122 118 116 138 126 124 126.2
治疗后(Y) 114 110 126 116 102 100 98 122 108 106 110.2
差值(d) 16 14 10 12 20 18 18 16 18 18 16.0
135 4.65 4.70 5.04 5.04 4.93 5.26 4.93 4.48
9
四、重复测量设计(两因素)
不同麻醉诱导时相患者的收缩压(mmHg)
诱导
患者
麻醉诱导时相
方法
序号
T0
T1
T2
T3
T4
A
1
120
108
112
120
117
A
2
118
109
115
126
123
A
3
119
112
119
124
受试者编号
1 2 3 4 5 6 7 8
受试者血糖浓度(mmol/L)
放 置 时 间(分)
0 5.32 5.32 5.94 5.49 5.71 6.27 5.88 5.32
45 5.32 5.26 5.88 5.43 5.49 6.27 5.77 5.15
90 4.98 4.93 5.43 5.32 5.43 5.66 5.43 5.04
118
116
2
138
122
16
18
132
122
10
126
108
18
19
120
124
-4
124
106
18
20
134
128
6
1262
1102
160
合计
1248
1206
42
126.2
110.2
16.0
均数
124.8
120.6
4.2
7.08
9.31
3.13
标准差
7.90
9.75
8.02
8
三、重复测量设计(单因素)
题(重点)
2
第一节 重复测量 资料的数据特征
3
十八岁正常中国男子身高值(m)
➢对5个不同的人各测量1次:
1.80 1.56 1.90 2.10 1.74
相互独立
➢对1个人测量5次:
提供较多信息
1.77 1.78 1.76 1.77 1.77
组内相关
4
一、前后测量设计
高血压患者治疗前后的舒张压(mmHg)
118
A
4
121
112
119
126
120
A
5
127
121
127
133
126
B
6
121
120
118
131
137
B
7
122
121
119
129
133
B
8
128
129
126
135
142
B
9
117
115
111
123
131
B
10
118
114
116
123
133
C
11
131
119
118
135
129
C
12
129
128
11
各放置时间点受试者血糖浓度的相关系数
放置时间
放置时间(分)
(分)
0
45
90
135
0
1
0.978** 0.936** 0.860**
45
1
0.879** 0.876**
90
1
0.896**
135
1
** P<0.01
12
随机区组设计
不同药物作用后小白鼠肉瘤重量(g)
区组
A药
B药
C药
g
Xij
i 1
相关文档
最新文档