城市道路平面线形设计

合集下载

道路勘测设计(平面线形设计1)

道路勘测设计(平面线形设计1)

制定最大超高坡度 ih (max )要根据道路所在地区的气候条件, 还要给驾驶员和乘客以心理上的安全感。对重山区,城市附近, 交叉口以及有相当数量非机动车行驶的道路,最大超高还要比 一般道路小些。
(二)最小半径的计算
《标准》中规定的最小平曲线半径是汽车在曲线部 分能安全而又顺适的行驶的条件而确定的。 最小平曲线半径的实质是汽车行驶在公路曲线部分 时,所产生的离心力等横向力不超过轮胎与路面的 摩阻力所允许的界限,并使乘车人感觉良好舒适的 曲线半径值。
哪一个最优?
2. 当采用长的直线线形时,应注意的问题:
(3)道路两侧过于空旷时,宜采取植不同树种或设
臵一定 建筑物、雕塑、广告牌 等措施,以改善单调
的景观。
(4)长直线或长下坡的尽头的平曲线,除曲线半径、
超高、视距等必须符合规定外,还必须采取设臵标 志、增加路面抗滑能力等安全措施。
美 国 俄 勒 冈 州
X Fcos α Gsin α
X F Gi h Gv 2 Gi h gR v2 G( ih ) gR
Y
X
V2 ih 127R
(一)计算公式与因素
根据汽车行驶在曲线上力的平衡式计算曲线半径: 当设超高时 :
V2 R 127( i h )
式中:V——设计速度,(km/h);

V2 R 127( μ ih )
ih
1.极限最小半径
指各级公路在采用允许最大超高和允许的横向摩阻系数情况 下,能保证汽车安全行驶的最小半径。
V2 R 127( μ ih )
强调说明:极限最小半径是路线设计中的极限值,是在特殊困难 条件下不得已才使用的,一般不轻易采用。
2.一般最小半径

道路平面设计之道路平面线形

道路平面设计之道路平面线形

2 h
l
y
=
l3 6R lh

l7 336 ⋅ R 3lh3
l ―回旋线上任一点到 曲线起点的曲线长度
R―主曲线半径 lh ―缓和曲线长度
坐标原点在ZH、HZ
(4)在圆曲线上任意点的坐标公式
ϕm
=
αm
+
β0
=
90
π
⋅ ( 2lm + lh R
)
x = q + R ⋅sin ϕm
y = ΔR + R(1− cosϕm )
三. 缓和曲线
2、缓和曲线的选择
(1)缓和曲线轨迹特点:由直线驶入圆曲线 转弯时,其轨迹上的任一点的曲率半径与其行 程l(自转弯开始点算起)成反比,此轨迹方程 为回旋曲线方程。因此我国《标准》规定缓和 曲线采用回旋曲线。
三. 缓和曲线
(2)缓和曲线的一般方程式:
ρ ⋅l = C
(2-26)
为了设计方便,使量纲一致,故令A2=C,则
一. 直 线
断背曲线:互相通视的同向曲线间若插以短直 线,容易产生把直线和两端的曲线看成为反向曲 线的错觉,当直线过短时甚至把两个曲线看成是 一个曲线,这种线形破坏了线形的连续性,且容 易造成驾驶操作的失误,通常称为断背曲线。
设计中应尽量避免。
一. 直 线
断背曲线
X 直线的计算
一. 直 线
不设超高最小半径(m) 5500 4000 2500 1500 600 350 150
二. 圆曲线
3、平曲线长度(curve radius)
(1)平曲线最小长度规定
① 从驾驶员操纵方便、行车舒适性以及视觉要求来 看,应对平曲线长度加以限制。

城市道路平面设计

城市道路平面设计
① 最大直线长度
• 最大直线长度的量化还是一个需要研究的课 题,目前各国有不同的处理方法,德国和日 本规定20V,美国为180s的行程。
• 最大直线长度不必太拘泥,最小长度应该保 证。
.
9
.
10
.
11
描述直线的指标
.
12
描述直线的指标
.
13
圆曲线
.
14
(1)平曲线要素 pp203
E
圆曲线的四要素及其计算公式
.
68
加宽表达(平面图或道路分块图)
.
69
.
70
思考题
1.什么是平面曲线三要素? 2.直线道路最小长度有什么规定? 3.圆曲线的半径如何确定? 4.圆曲线最小半径由哪几类?
.
71
道路平面线形由直线、圆曲线和缓和曲线三种 组合而成,“平面线形三要素”。
.
5
直线
直线适用于地形平坦、视线目标无障碍处。在 平原区,直线作为主要线形要素是适宜的。
直线路段能提供较好的超车条件。 但直线过长、景色单调,往往会出现过高的车
速或司机由于缺乏警觉易疲劳而发生事故。
.
6
.
7
.
8
描述直线的指标
.
34
超高过渡方式——无中央带
① 绕内边缘旋转 先将外侧车道绕中线旋转,当达到与内侧车道构 成单向横坡后,整个断面再绕未加宽前的内侧车 道边缘旋转,直至达到超高横坡值为止。
.
35
.
36
各种旋转方式的适用性
绕内边缘线旋转,由于行车道内侧不降低,有利于路基纵 向排水,一般新建公路多用此方式。绕中心线旋转可保持 中线标高不变,且在超高坡度一定的情况下,外侧边缘的 抬高值较小,多用于旧路改建工程。

第2章 道路平面线型规划设计

第2章  道路平面线型规划设计

第2章城市道路平面线形规划设计2.1城市道路平面规划设计的内容和要求道路线形指道路路幅中心线(又称中线)的立体形状,道路中线在平面上的投影形状称为平面线形。

城市道路平面线形规划可划分为总体规划、详细规划两个阶段。

总体规划阶段的城市道路平面线形规划主要是根据城市主要交通联系方向确定城市主要道路中心线的走向,并进一步确定城市路网;详细规划阶段的城市道路平面线形规划设计一般在上一层次已经确定的城市道路网规划基础上进行,需要进一步详细确定用地范围内各级道路主要特征点的坐标,曲线要素等内容,便于进一步的道路方案设计。

在城市道路规划设计中,经常会碰到山体、丘陵、河流和需要保留的建筑,有时还因地质条件差而需要避开不宜建设的地方,所以无论城市道路还是公路不可避免要发生转折,就需要在平面上设置曲线,所以平面线形由直线和曲线组合而成。

如果城市道路转折角度不大,可把转折点设在交叉口,使道路线形呈折线状,这样可以减少道路上的弯道,便于道路施工和管线埋设,也有利于道路两侧建筑的布置。

如果转折点必须设置在路段上,则需要根据车辆运行要求设置成曲线,曲线又可分为曲率半径为常数的圆曲线和曲率半径为变数的缓和曲线。

城市道路平面线形规划设计的主要任务为:根据道路网规划确定的道路走向、道路之间的方位关系,以道路中线为准,考虑地形、地物、城市建设用地的影响,根据行车技术要求确定道路用地范围内的平面线形,以及组成这些线形的直线、曲线和它们之间的衔接关系;对于小半径曲线,还应当考虑行车视距、路段的加宽和道路超高设置要求等。

在学习本章时,尽管公式较多,但道路平面线形设计的一些常用参数,往往是可以通过查阅规范取得的,只有在旧城改造中用地条件苛刻的情况下,才需要计算道路线形要素。

所以,掌握查阅设计规范、理解计算公式的基本原理和适用条件,将是学习本章的关键。

2.2 道路弯道平曲线规划设计2.2.1 曲线要素构成及基本作用在城市道路规划设计中,一般采用圆弧曲线连接直线路段,为了使线形平顺,连接方式必须是切点相连,道路圆曲线一般通过曲线要素来描述。

道路平面线形设计

道路平面线形设计

道路平面线形设计错误!未找到目录项。

道路平面线形设计摘要:本文主要研究道路平面线形设计的基本理论和方法,通过对平面线形三要素――直线、圆曲线以及缓和曲线的研究,完善道路设计的理论和技术,从而使车辆在道路上行驶更加安全、稳定和舒适。

关键字:道路平面线形;直线;圆曲线;缓和曲线1.选题背景和目的:道路线形是由直线圆曲线和缓和曲线连接而成的空间立体线形形状,也就是道路中心线的空间描绘。

线形设计不好,轻者乘客会感到不舒服,严重则影响车辆行驶的安全性,甚至造成交通事故。

究其原因,道路设计规范只对某些技术指标,如:平曲线半径、竖曲线半径、纵坡坡度、坡长等分别做了规定,而对这些指标之间的组合以及特殊性考虑甚少,如果设计人员不从行驶车辆的安全性上考虑,那么,设计出的道路就不会是一条好的道路。

因此研究道路线形三要素――直线、圆曲线以及缓和曲线如何组合显得尤为重要。

通过研究,完善道路设计的理论和技术,提高道路设计的质量和科学性,从而使车辆在道路上行驶更加安全、稳定和舒适。

2. 基本概念2.1公路平纵横的概念2.1.1平面图:反应路线在平面上的形状、位置、尺寸的图形。

2.1.2纵断面图:反应路线在纵断面上的形状、位置、尺寸的图形。

2.1.3横断面图:反映道路在横断面上的结构、形状、位置、尺寸的图形。

2.2直线:点在空间内沿相同或相反方向运动的轨迹。

2.3圆曲线:指的是道路平面走向改变方向或竖向改变坡度时所设置的连接两相邻直线段的圆弧形曲线。

2.4缓和曲线:指的是平面线形中,在直线与圆曲线,圆曲线与圆曲线之间设置的曲率连续变化的曲线。

2.5坡度:两点的高程差与其水平距离的百分比。

2.6横向力系数(μ):横向力与竖向力的比值。

2.7超高:为抵消车辆在曲线路段上行驶时所产生的离心力,在该路段横断面上设置的外侧高于内侧的单向横波。

2.8平面线形三要素----直线、圆曲线和缓和曲线统称为平面曲线三要素。

(插入图3-3)3.基本理论3.1直线直线具有路线便捷,测设简单,施工容易的特点,但??长的直线易使驾驶人感到单调、疲倦,难以目测车间距离,从而产生尽快驶出直线的急燥情绪;??线线形大多难于与地形相协调。

《道路平面线形 》课件

《道路平面线形 》课件
特点,减少工程量。
满足设计速度
根据道路等级和设计速 度要求,合理选择线形 要素,确保行车安全。
连续性与一致性
保持线形的连续与一致 ,提高行车方向感和驾
驶舒适度。
环保与景观协调
考虑环境保护和景观协 调,合理选择线形要素 ,减少对自然环境的破
坏。
02 道路平面线形要素
直线
直线是最简单的道路平面线形,具有 方向一致、距离短、效率高等优点。
提升道路景观
通过线形优化与周围景观相协 调,提升道路景观品质。
优化方法
现场勘查与数据收集
对道路沿线地形、地貌、交通流量等进行详 细勘查和数据收集。
计算机辅助设计
利用计算机辅助设计软件进行线形设计和模 拟。
数学建模与分析
建立道路平面线形数学模型,运用数学方法 进行优化分析。
多方案比选与综合评估
制定多个优化方案,进行综合评估,选择最 优方案。
加强环境保护措施
采取水土保持、生态修复等措施, 减少道路建设对环境的影响。
03
02
加强交通安全设施
设置交通标志、标线、安全护栏等 ,提高道路安全水平。
加强后期维护管理
定期巡查、保养和维护,确保道路 线形保持良好状态。
04
SketchUp
一款易于学习的三维建模软件,可以用于 道路设计的初步方案制定和可视化展示。
04 道路平面线形优化
优化目标
提高行车安全性
通过优化道路平面线形,降低 交通事故风险,确保行车安全

提高道路通行效率
合理设计道路平面线形,减少 拥堵,提高道路通行速度和效 率。
降低建设和维护成本
优化设计可降低道路建设和维 护成本,实现经济可持续发展 。

4、城市道路平面线形规划设计(2)

4、城市道路平面线形规划设计(2)

② 满足行驶力学上的基本要求和视觉、心理上的要求
③ 保证平面线形的均衡与连贯
④ 避免连续急弯的线形
29
第五节:城市道路平面线形设计
平面线形设计步骤
1)初步拟定平面线形 根据道路走向,按照拆迁量、工程经济、车辆运行要求、城市未来发展 要求、城市某区块的规划设计思路等基本要求,合理确定平面线形初步 方案。 2)选用弯道平曲线半径 确定道路级别与设计车速;然后初步估算曲线半径;再查阅城市道路平 面曲线参考值,确定应采用的曲线半径。
第四节:行车视距
26
第四节:行车视距
平面线形视距的保证
横净距:平曲线上,行车视距 长度内,行车轨迹线与行车视 距两端点连线间的垂直距离, 其中最大值为最大横净距。
第四节:行车视距
28
第五节:城市道路平面线形设计

平面线形设计的一般原则
① 平面线形连续顺势,应与地形、地物相适应,与周围环境相协调

行车视距是安全行车必要的保证条件。
按车辆行驶状态要求,行车视距分为停车视距、会车视距和超 车视距三种(城市道路设计中通常不考虑超车视距)。

16
第四节:行车视距
停车视距S停 汽车在道路上行驶时,司机从发现前方障碍物、紧急制动、到 停车后且与障碍物保持一定安全间距,整个过程所需要的最短 行车距离称停车视距S停。
四、城市道路平面线形规划设计(二)
城市道路平面线形规划设计
1 2 3 4 5
平面线形规划设计的内容
平曲线规划设计
路线坐标与方位角计算
行车视距
城市道路平面线形设计
2
城市道路平面线形规划设计
复习:
平面线形三要素包括?
最小平曲线半径有几种?分别在何种情况下使用? 平面线形的组合形式有哪些,设计要点为何?

道路工程平面线型设计

道路工程平面线型设计

道路工程平面线型设计在平面线型设计中,汽车形式轨迹的特性,道路平面线型的要素以及直线的特点与运用等等都是我们需要掌握的特点,如何设计出一条合理且优秀的线型,相信看完今天的内容大家都会有自己的答案。

一、道路平面线型概述一、路线道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。

路线:是指道路中线的空间位置。

平面图:路线在水平面上的投影。

纵断面图:沿道路中线的竖向剖面图,再行展开。

横断面图:道路中线上任意一点的法向切面。

路线设计:确定路线空间位置和各部分几何尺寸。

分解成三步:路线平面设计:研究道路的基本走向及线形的过程。

路线纵断面设计:研究道路纵坡及坡长的过程。

路线横断面设计:研究路基断面形状与组成的过程。

二、汽车行驶轨迹与道路平面线形(一)汽车行驶轨迹行驶中汽车的轨迹的几何特征:(1)轨迹连续:连续和圆滑的,不出现错头和折转;(2)曲率连续:即轨迹上任一点不出现两个曲率的值。

(3)曲率变化连续:即轨迹上任一点不出现两个曲率变化率的值。

(二)平面线形要素行驶中汽车的导向轮与车身纵轴的关系:现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。

二、直线一、直线的特点1.优点:①距离短,直捷,通视条件好。

②汽车行驶受力简单,方向明确,驾驶操作简易。

③便于测设。

2.缺点①线形难于与地形相协调②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。

③易超速二. 最大直线长度问题:《标准》规定:直线的最大与最小长度应有所限制。

德国:20V(m)。

美国:3mile(4.38km)我国:暂无强制规定景观有变化≧20V;<3KM景观单调≦ 20V公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。

采用长的直线应注意的问题:公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章城市道路平面设计1平面设计的内容平曲线形设计23行车视距4城市道路平面线形设计第一节平面设计的内容—主要任务❖道路线形——道路路幅中心线(又称中线)的立体形状。

❖道路平面线形——道路中线在水平面上的投影形状。

❖平面设计的主要任务:1)根据道路网规划确定的道路走向和道路之间的方位关系,以道路中线为准,考虑地形、地物、城市建设用地的影响。

2)根据行车技术要求确定道路用地范围内的平面线形,以及组成这些线形的直线、曲线和它们之间的衔接关系3)对于小半径曲线,还应当考虑行车视距、路段的加宽和道路超高设置等要求。

第一节平面设计的内容——基本原则❖平面设计的原则:1)遵循城市道路网规划原则;2)符合各级道路的技术指标原则;3)处理好直线与平曲线的衔接,科学设置缓和曲线和超高、加宽等,合理行车视距并辅以适当的保护措施原则;4)根据道路类别、等级、合理设置交叉口、沿线建筑物入口、停车场出入口、分隔带断口、公交停靠站位置等;5)平面线形标准需分期实施时,应满足近期使用要求,兼顾远期发展,使远期工程尽可能减少对前期工程的废弃。

第一节平面设计的内容—基本要求❖平面设计的基本要求:1)适应汽车行驶轨迹;汽车行驶轨迹特征——“三个连续”:◆行车迹线是连续的,任何一点上不出现错头、折点或间断;◆迹线的曲率是连续的,即在迹线上任何一点不出现两个曲率值;◆轨迹线的曲率对里程或时间的变化率是连续的,轨迹线上任何一点不出现两个曲率变化值。

2)合理确定平曲线形三要素直线—曲率为零;圆曲线—曲率为常数;缓和曲线—曲率为变数第二节平面线形设计—平面线形要素:直线❖平面线形基本要素的特点与运用:1)直线优点:简洁、直达、视距良好、测设方便等;缺点:过长直线易使驾驶员感到单调、疲倦,难以准确目测车间距,易急躁和超速,引发交通事故;运用:◆不受地形、地物限制的平坦地区;◆城市及其近郊规划方正地区;◆长大桥梁、隧道等构造物路段;◆道路交叉口及其前后路段。

《规范》对直线的要求原文❖最短直线长度:当设计车速时,直线的最小长度宜满足下列要求:同向曲线间的直线最短长度(单位:m )宜大于或等于;反向曲线间的直线最小长度(单位:m )宜大于或等于;当设计车速、地形条件困难,直线长度可不受上述限制,但应满足缓和曲线或缓和段的要求。

60/v km h ≥6v 60/v km h ≥2v第二节平面线形设计—平面线形要素:圆曲线❖平面线形基本要素的特点与运用:1)直线2)圆曲线优点:地形适应性好、可循性好,线形美观、易于测设等;缺点:小半径圆曲线受离心力的影响,车辆横向稳定性差,视距不良等、车辆各轮的行驶轨迹不相同,需要加宽车道等;运用:◆适应地形和地物灵活布置;◆城市道路交叉口多,将道路转折点设在交叉口处,交叉口按非正交路口设计,可省略道路平曲线。

圆曲线设计❖ 1.圆曲线的半径与长度υυ(3-2-1)❖式中m ——汽车的质量(kg); G ——汽车的重量(N );g ——重力加速度(≈9.81m/s 2); v ——汽车行驶速度(m/s );V ——计算行车速度(km/h );R ——圆曲线半径(m ).弯道内侧弯道外侧R GV gR G Rm C 127222===υυ(3-2-1)❖把作用在汽车上(通过重心)的汽车重力G 和水平方向的离心力C 沿垂直于路面方向和平行于路面方向进行分解,可以把离心力所提取的、指向运动轨迹外侧的水平力称为横向力。

则横向力为:❖由于(3-2(3-2-1)i tg 0sin =≈αα❖由于α很小,故,。

于是有:0.1cos ≈α圆曲线设计圆曲线设计i 0❖式中——道路横坡,“-”表示车辆在弯道内侧车道上行驶;“+”表示车辆在未设超高的曲线外侧车道上行驶。

❖单位车重的横向力称为横向力系数μ,表示汽车在做圆周运动时,每单位车辆所受的横向力,即汽车、乘客、车上装载物所受到的横向力与其自身重量的比值。

❖把式3-2-3移项,可得圆曲线半径的计算公式:(3-2-4)❖式中(3-2-2)(3-2-3)❖式中V ——计算行车速度(km/h )——横向力系数。

——道路横坡。

“-”表示车辆在未设超高的曲线外侧车道上行驶;“+”表示车辆在曲线外内车道上行驶。

μi❖汽车所受的横向力Y 使汽车向弯道外侧滑动,而轮胎和路面之间的摩阻力阻止汽车滑移,因此,汽车不产生横向滑移的必要条件是:φG 横(3-2-5)(3-2-4)❖汽车所受的横向力Y 使❖式中Ф——横向摩阻力系数,与车速、路面种类及状态、轮胎状况等有关。

由于Y =μG ,上式可写成:(3-2-6)❖式3-(3-2-7)(3-2-6)❖式3-2-5表明保证车辆行驶稳定的极限条件是μ= ,那么式3-2-4可以写成: 横❖不设超高的最小半径:指道路半径较大,离心力较小时,汽车若沿双向路拱外侧行驶时,路面的摩擦力足以保证汽车安全行驶所采用的最小半径。

在计算过程中,公路一般μ采用0.035,城市道路一般μ采用0.067。

❖极限最小半径:指圆曲线半径采用的极限最小值。

它指当地形困难或条件受限制时方可使用。

采用极限最小半径时,设置最大超高。

城市道路在郊区的超高横坡度可采用2%~6%,μ一般采用0.15。

❖一般最小半径:指设超高时的推荐半径。

其数值介于不设超高的最小半径和极限最小半径之间。

超高值随半径增大而按比例减小。

❖由式3-2-7算出的R值,称为圆曲线不设超高容许的最小半径。

城市道路圆曲线的最小半径与最小长度4085140平曲线最小长度(m )204070圆曲线最小长度(m )20100250设超高的极限半径(m )40200400设超高的推荐半径(m )704001000不设超高的最小半径(m )2080计算行车速度(km/h )100501503006006050502540851503070357015030040❖2.小半径弯道路面的超高与加宽❖1)超高设置如果因为地形、地物的原因,道路实际允许的最大转弯半径小于不设超高的圆曲线的最小半径时,车辆在弯道外侧行驶就要减速,否则就会产生过大的横向力。

为了减小横向力,就需要把弯道外侧横坡做成与内侧同向的单向横坡。

即称为超高横坡度i超(%)。

(3-2-8)❖式中V——计算行车速(km/h);R——圆曲线半径(m);μ——横向力系数。

❖超高缓和段——为了使道路从直线段的双坡面顺利转换到具有超高的单坡面,需要一个渐变的过渡段。

26最大超高横坡度(%)80计算行车速度(km/h )460,5040,30,20城市道路设计车速与最大超高横坡图3-2-2 超高缓和段的设置❖①绕内边缘旋转(3-2-9)先将外侧车道绕路中线旋转,当达到与内侧车道同样的单向横坡后,整个断面绕未加宽前的内侧车道边缘旋转,直至超高横坡值。

)m (P i l 超超∆=B (3-2-9)❖式中——超高缓和段长度(m );B ——路面宽度(m );——i0与i 超代数值。

P ——超高渐变率,即旋转轴与车行道(设置路缘带时,则为路缘带)外侧边缘之间相对升降的比率。

超l 超i ∆(a )绕路边旋转①②❖②绕中线旋转先将外侧车道绕路中线旋转,当达到与内侧车道构成单向横坡时,整个断面一同绕路中线旋转,直至达到超高横坡值。

一般多用于旧路改建工程。

❖式中B ——路(3-2-9)(m )◆绕中线旋转的方式,在同样超高值下,缓和段长度较短,但内缘线降低较多,在纵坡不大的挖方路段将不利于排水。

◆这种绕中线旋转的方式,对纵断面线形设计标高无影响。

◆在设计时,要综合考虑边沟排水、构造物控制标高等因素,合理选择旋转方式。

)(20P i i l 超超+=B (3-2-9)(m )❖式中 B ——路面宽度;——道路横坡度(%)。

0i ①②圆曲线设计—加宽❖2)加宽设置❖为了保证汽车在转弯时不侵占相邻车道,凡小于250m 半径的曲线路段均需要加宽。

对于双车道路面总加宽值可按下式确定:❖式中:e ——双车道加宽值(m );V ——计算行车速度(km/h );L ——小型汽车、普通汽车前保险杠至后轴轴心线的距离;铰接车前保险杠到中轴轴心线的距离(m )。

R ——设加宽的圆曲线半径(m )。

❖当道路有三四条车道时,可按e 的一倍半,两倍来计算车道总加宽值,更多车道可以此类推。

(3-2-11)(m )第二节平面线形设计❖平面线形基本要素的特点与运用:1)直线2)圆曲线3)缓和曲线平曲线设计—缓和曲线❖3.缓和曲线❖较理想的缓和曲线应符合汽车转向行驶轨迹和离心力逐渐增加的要求,可以使汽车在从直线段驶入半径为R的平曲线时,既不降低车速又能徐缓均衡转向,使汽车回转的曲率半径能从直线段ρ=∞有规律地逐渐减小到ρ=R,这一变化路段即为缓和曲线。

图3-2-5 汽车在缓和曲线上的行驶情况❖1)缓和曲线的作用:①曲率连续变化,便于车辆遵循车道行驶。

②离心加速度逐渐变化③超高横坡度逐渐变化,行车更加平稳④与圆曲线配合得当,增加线形美观❖2)缓和曲线长度①顾客感觉舒适离心加速度的变化率:缓和曲线最小长度公式:(3-2-12)❖式中V ——汽车行驶速度(km/h );R ——圆曲线半径(m );——离心加速度的变化率(m/ )3S s α❖在设置缓和曲线时,通常采用0.6m/ ,并以V (km/h )代替v (m/s ),则:3S s α(3-2-13)❖设计中,可根据实际情况选取不同的,高速路要小些,低速度要大些;平原城市要小些,山地城市大些;直通路要小些,交叉口大些。

s α(3-2-14)❖②按视觉条件计算❖在一般情况下,特别是当圆曲线半径较大时,车速较高时,应该使用更长的缓和曲线。

❖回旋线参数表达式:A 2=R ·Ls❖根据国外经验,当使用回旋线作为缓和曲线时,回旋线参数A 和所连接的圆曲线应保持的关系式一般为:R/3≤A≤R❖根据经验,当R 在100m 左右时,通常取A=R ;如果R 小于100m,则选择A 等于R 或大于R 。

反之,在圆曲线较大时,可选择A 在R /3左右,如R 超过了3000m,A 可以小于R /3。

2229R A R ≤≤第二节平曲线设计——缓和曲线❖③行驶时间不过短缓和曲线不管其参数如何,都不可使车辆在缓和曲线上的行驶时间过短而使司机驾驶操纵过于匆忙。

一般认为。

汽车在缓和曲线上的行驶时间至少应有3s,所以:(3-2-15)《标准》按行驶时间不小于3s的要求制定了各级公路缓和曲线最小长度。

《城规》制定了城市道路的最小缓和曲线长度,如表3.4.1表3.4.2。

第二节平曲线设计❖3)缓和曲线的省略①计算行车速度小于40km/h 时,缓和曲线可用直线代替。

②圆曲线半径大于表3-2-8不设缓和曲线的最小圆曲线半径时,直线与圆曲线可直接连接。

5002000不设缓和曲线的最小圆曲线半径(m )80计算行车速度(km/h )10006040不设缓和曲线的最小圆曲线半径70050表3-2-8❖4.平面线形的组合与衔接反向曲线同向曲线复曲线❖Ⅰ.小圆半径大于表3-2-8所列不设缓和曲线的最小圆曲线半径时;❖Ⅱ.小圆半径小于表3-3-8所列不设缓和曲线的最小圆曲线半径时,但大圆与小圆的内移值之差小于或等于0.1m 时;❖Ⅲ.大圆半径(R 1)与小圆(R 2)之比:计算行车速度大于或等于80km/h ,且R1︰R2<1.5时;计算行车速度小于80km/h ,且且R1︰R2<2.0时。

相关文档
最新文档