热统习题解答全
热统作业

第一章习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV = V n R TP P n R T V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV RnT P P V /1)(1==∂∂=β P Pn R T V P V V T T /111)(12=--=∂∂-=κ习题 1.3在00C 和1n p 下,测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和717.810T n p κ--=⨯,T κα,可近似看作常量,今使铜块加热至010C 。
问(1)压强要增加多少n p 才能使铜块体积不变?(2)若压强增加100n p ,铜块的体积改多少。
解:根据固体和液体的物态方程:000(,)(,0)[1()]T V T P V T T T k p α=+-- 两边微分:T dVdT k dp Vα=- 如果系统的体积不变,上式为 Td p d Tk α=因为T κα,可近似看作常量,上式积分可得2121()Tp p T T k α-=-代入数据:52174.8510106227.810n n p p p p --⨯-=⨯=⨯ (2)根据物态方程有:2121174()()107.810100 4.0710-5 =4.8510T VT T k p p V α--∆=---⨯⨯-⨯⨯=⨯因此,铜块的体积将增加原体积的44.0710-⨯倍。
习题1.8习题1.16解:理想气体的熵函数可以表示为0ln ln p S C T nR p S =-+ 在等压过程中温度由1T 升到2T 时,熵增加值p S ∆为21lnp p T S C T ∆= 理想气体的熵函数也可表示为0ln ln V S C T nR p S =++ 在等容过程中温度由1T 升到2T 时,熵增加值V S ∆为 21lnV V T S C T ∆= 因此p p VVS C S C γ∆==∆习题1.17解:(1)为求水的熵变,设想有一系列彼此温差为无穷小的热源,其温度分布在00C 和0100C 。
热统答案(全)

(2)
或
V T , p V T0 , p0 e
T T0 T p p0
.
(3)
考虑到 和 T 的数值很小,将指数函数展开,准确到 和 T 的线性项,有
V T , p V T0 , p0 1 T T0 T p p0 .
lnV dT T dp .
(3)
若 1 , T 1 ,式(3)可表为
T p
1 1 lnV dT dp . p T
(4)
选择图示的积分路线,从 (T0 , p0 ) 积分到 T , p0 ,再积分到(T , p ) ,相应地体
U CV , T n
(4)
(c)根据题给的数据, J , Y , 对
L L0
的曲线分别如图 1-2 (a) , (b) , (c)
所示。
7
1.7 抽成真空的小匣带有活门,打开活门让气体冲入,当压强达到外界 压强 p0 时将活门关上,试证明:小匣内的空气在没有与外界交换热量之前, 它的内能 U 与原来在大气中的内能 U 0 之差为 U U 0 p0V0 ,其中 V0 是它原来在 大气中的体积,若气体是理想气体,求它的温度与体积。 解:将冲入小匣的气体看作系统。系统冲入小匣后的内能U 与其原来在 大气中的内能 U 0 由式(1.5.3)
J YA T2 T1
解:由物态方程
f J , L, T 0
(1)
知偏导数间存在以下关系:
L T J 1. T J J L L T
(2)
所以,有
热统习的题目解答(全)

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。
解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。
证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。
1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。
a 和k 可以近似看作常数。
今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。
热力学统计物理 课后习题 答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果PTT 1,1==κα,试求物态方程。
解: 体胀系数p T V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数TT p V V ⎪⎪⎭⎫⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,= 其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=dp dT VdVT κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫⎝⎛-=dp p dT T V 11ln 则有 C pTV +=lnln , PV=CT 要确定常数C ,需要进一步的实验数据。
1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。
线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂=,其中A 是金属丝的截面。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
试证明,当温度由T1降至T2时,其张力的增加为)T -(T -Y A £12α=∆。
热统期末试题及答案

热统期末试题及答案正文:一、选择题(共10题,每题2分,共计20分)在下列各题中,只有一个选项是正确的,请在答题卡上将相应选项的字母涂黑。
1. 热力学第一定律是指:A. 能量守恒定律B. 熵增加定律C. 焓守恒定律D. 等温过程定律2. 下列哪一个量是揭示物质分子热运动程度的参数?A. 温度B. 压强C. 体积D. 质量3. 在绝热条件下,一个物体放热,它的温度会:A. 升高B. 降低C. 不变D. 无法确定4. 理想气体的等温过程是指:A. 温度不变的过程B. 压强不变的过程C. 体积不变的过程D. 熵不变的过程5. 热力学第二定律是指:A. 能量守恒定律B. 熵增加定律C. 焓守恒定律D. 等温过程定律6. 下面哪一种物质不是理想气体?A. 氮气B. 氧气C. 氢气D. 水蒸气7. 理想气体状态方程是:A. PV=RuTB. P+V=RTC. P/T=RuD. PT=RuV8. 物体绝对零度对应的温度是:A. 0℃B. -273℃C. 273℃D. 100℃9. 混合气体总压强等于各组分分压之和,是根据下列哪个定律得出的?A. 理想气体状态方程B. 热力学第一定律C. 道尔顿定律D. 热力学第二定律10. 热力学第四定律是指:A. 热力学系统能量守恒定律B. 热力学第一定律C. 热力学第二定律D. 热力学第三定律二、计算题(共5题,每题10分,共计50分)1. 一定质量的理想气体,在常温常压下的密度为1.29 kg/m³,求该气体的摩尔质量。
2. 一摩尔单原子理想气体在体积不变的条件下,温度从300 K增加到600 K。
根据理想气体状态方程,求气体末压强与初始压强之比。
3. 理想气体初始状态为120 kPa、300 K,经过等温膨胀,最终体积为初始体积的2倍。
求等温膨胀的过程中气体对外做的功。
4. 一摩尔理想气体在绝热条件下进行等熵过程,初始温度为300 K,初始压强为200 kPa,最终体积为初始体积的4倍。
热统习题解答(全]
![热统习题解答(全]](https://img.taocdn.com/s3/m/8e1fec2beff9aef8941e0650.png)
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。
解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。
证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。
1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。
a 和k 可以近似看作常数。
今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。
热统期末考试题及答案

热统期末考试题及答案一、选择题(每题2分,共10分)1. 热力学第一定律的表达式是:A. ΔU = Q - WB. ΔU = Q + WC. ΔH = Q - WD. ΔH = Q + W答案:B2. 以下哪个选项是热力学第二定律的表述?A. 能量守恒定律B. 熵增原理C. 热能自发地由高温物体传递到低温物体D. 热能自发地由低温物体传递到高温物体答案:B3. 理想气体的内能只取决于:A. 体积B. 温度C. 压力D. 物质的量答案:B4. 根据热力学第三定律,绝对零度是:A. 无法达到的B. 可以无限接近的C. 可以实际达到的D. 与温度无关答案:A5. 熵是表示系统无序程度的物理量,其单位是:A. JB. J/KC. KD. J/mol答案:B二、填空题(每空2分,共20分)1. 热力学系统可以分为__________和__________。
答案:孤立系统;开放系统2. 根据卡诺定理,热机的效率与__________有关。
答案:热源温度3. 理想气体的压强由分子的__________和__________决定。
答案:碰撞频率;平均动能4. 热力学温度T与理想气体的体积V和压强P的关系是__________。
答案:T ∝ (PV)^(1/2)5. 热力学第二定律的克劳修斯表述是:不可能从单一热源__________能量,而不产生其他影响。
答案:提取三、简答题(每题10分,共20分)1. 简述热力学第一定律和第二定律的区别和联系。
答案:热力学第一定律是能量守恒定律在热力学过程中的体现,表明能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,或者从一个物体转移到另一个物体。
而热力学第二定律则描述了能量转换的方向性,即自发过程总是向着熵增的方向进行,表明了热能转换过程中的不可逆性。
2. 解释什么是熵,以及熵增原理的意义。
答案:熵是热力学中描述系统无序程度的物理量,通常用来衡量系统状态的不确定性。
热统复习题与思考题及答案

热统复习题与思考题及答案热力学与统计物理复习题及答案一、解释如下概念⑴热力学平衡态;⑵可逆过程;⑶ 准静态过程;⑷焦耳-汤姆逊效应;⑸μ空间;⑹Γ 空间;⑺特性函数;⑻系综;⑼混合系综;⑽非简并性条件;⑾玻色——爱因斯坦凝聚;⑴热力学平衡态:一个孤立系统经长时间后,宏观性质不随时间而变化的状态。
⑵可逆过程:若系统经一过程从状态A 出发到达B 态后能沿相反的过程回到初态A ,而且在回到A 后系统和外界均回复到原状,那么这一过程叫可逆过程。
⑶ 准静态过程:如果系统状态变化很缓慢,每一态都可视为平衡态,则这过程叫准静态过程。
⑷焦耳一汤姆孙效应:气体在节流过程中气体温度随压强减小而发生变化的现象。
⑸μ空间:设粒子的自由度r ,以r 个广义坐标为横轴,r 个动量为横轴,所张成的笛卡尔直角空间。
⑹Γ空间:该系统自由度f ,则以f 个广义坐标为横轴,以f 个广义动量为纵轴,由此张成的f 2维笛卡尔直角空间叫Γ空间。
⑺特性函数:若一个热力学系统有这样的函数,只要知道它就可以由它求出系统的其它函数,即它能决定系统的热力学性质,则这个函数叫特性函数。
⑻系综:大量的彼此独立的具有相同结构但可以有不同微观状态的假想体系的集合叫系综,常见的有微正则系综、正则系综、巨正则系综。
⑼混合系综:设系统能级E 1…,E n …,系综中的n 个系统中,有n 1个处于E 1的量子态;…,有n i 个系统处于E i 的相应量子态,则这样的系综叫混合系综。
⑽非简并性条件:指1/<<="" p="">a ω,此时不可识别的粒子可视为可识别的粒子的条件。
⑾玻色―爱因斯坦凝聚:对玻色系统,当温度T 低于临界温度c T 时,处于基态的粒子数0n 有与总粒子数n 相同数量级的现象叫玻色-爱因斯坦凝聚。
二回答问题⒈写出热力学第一定律的文字叙述、数学表示、简述该定律的重要性、适用范围。
⒉写出热力学第二定律的文字叙述、数学表示、适用条件,在热力学中的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 热力学的基本规律1。
1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。
解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。
证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V ,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程.1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10—5K—1,k=7.8×10—7atm-1.a和k可以近似看作常数。
今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100at m,铜块的体积改变多少?解:(a)由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b )475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。
1.4 描述金属丝的几何参量是长度L ,力学参量是张力F ,物态方程是 f (F ,L,T)=0.实验通常在1p n 下进行,其体积变化可以忽略。
线胀系数定义为F T L L a )(1∂∂=,等温杨氏模量定义为 T LFA L Y )(∂∂=, 其中A 是金属丝的截面积.一般来说,α和Y 是T 的函数,对F 仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常量.假设金属丝两端固定。
试证明,当温度由T 1降至T2时,其张力的增加为21()F YA T T α∆=--证明:(a )设(,)F F T L =,则L TF F dF dT dLT L ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭(1)由于1L F TF T L T L F ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 所以L T F F F L T L T ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭(2)将(2)式代入(1)式,并利用线胀系数α和等温杨氏模量的定义式,得TF TF L F AY dF dT dL AYdT dL L T L L α∂∂∂⎛⎫⎛⎫⎛⎫=-+=-+ ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭(3)(b )当金属丝两端固定时,dL =0,由(3)式得dF aAYdT =-当温度由T 1降至T 2时,积分上式得21()F YA T T α∆=--(4)1。
5 一理想弹性物质的物态方程为2020()L L F bT L L =-,其中L 是长度,L 0是张力F为零时的L 值,它只是温度T 的函数,b 是常数。
试证明:(a) 等温杨氏模量为)2(2200L L L L A bT Y +=A bT Y 30=.(b ) 在张力为零时, 线膨胀系数2/1/13033030+--=L L L L T αα 其中.10dL dL T =α (c) 上述物态方程适用于橡皮带,设,1 2 10 33 . 1 , 300 - - . ⨯ = = K N b K T.105,10114026---⨯=⨯=K m A α试计算当0L L分别为0。
5,1.0,1。
5和2.0时的F ,Y ,α对0L L的曲线。
证明:(a )由弹性物质得物态方程,可得203021T L F bT L L L ⎛⎫∂⎛⎫=+⎪ ⎪∂⎝⎭⎝⎭ (1)将上式代入等温杨氏模量的定义式22003200221T L L L F L bT L Y bT A L A L L A L L ⎛⎫⎛⎫∂⎛⎫==+=+⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭(2) 当F=0时,L=L 0,由(2)式得()0312bT bTY A A=+=(3)(b )在F 不变下,将物态方程对T求导,得22000002022400220F F F F L L L L L L L L L L L L T T T T T L L L L ⎡∂∂⎤∂∂⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎢⎥⎛⎫∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥-+-= ⎪⎢⎥⎝⎭⎢⎥⎣⎦由上式解出F L T ∂⎛⎫ ⎪∂⎝⎭,可得 222300022230000023203220002111111(4)222F F L L L L L L L L L T L L T L L L L L L L L L L T T T L L L L LL L ααα⎛⎫⎛⎫∂⎛⎫+----⎪ ⎪ ⎪∂∂⎝⎭⎛⎫⎝⎭⎝⎭===-=- ⎪∂⎛⎫⎝⎭+++ ⎪⎝⎭其中0001dL L dT α=1.6 1mol 理想气体,在27o C 的恒温下体积发生膨胀,其压强由20p n准静态地降到1pn ,求气体所作的功和所吸收取的热量。
解:(a) 在恒温准静态膨胀过程中,理想气体所作的功为⎰⎰==='2121,ln 12V V V V V V RT V dVRT pdV W因为 ,,2211RT V p RT V p == 故有 ,2112p pV V =.1046.720ln 30031.8ln1321-⋅⨯=⨯=='∴mol J p p RT W(b ) 理想气体在恒温膨胀过程中,内能不变,根据热力学第一定律,求得.1046.713-⋅⨯='=mol J W Q1。
7 在25o C 下,压强在0至1000p n 之间,测得水的体积为13263)10046.010715.0066.18(---⋅⨯+⨯-=mol cm p p V如果保持温度不变,将1mo l的水从1pn 加压至1000pn ,求外界所作的功.解:写出,2cp bp a V +++ 则 dV = (b+2cp )d p =dp p )10046.0210715.0(63--⨯⨯+⨯-所要求的功2110002310001133263331312(2)()2312(0.715)10(10)0.04610(10)23326.83/33.1(10.101324)V V n n W pdV p b cp dp bp cp p cm mol J mol p cm J ⋅---=-=-+=-+⎡⎤=⨯-⨯⨯+⨯⨯⨯⨯⎢⎥⎣⎦=⋅=⋅⋅=⎰⎰1.8 承前1.5题,使弹性体在准静态等温过程中长度由L 0压缩为,20L 试计算外界所作的功.解:外界对弹性体作的元功表达式为dW FdL = (1)将物态方程代入上式,得2020L L dW bT dLL L ⎛⎫=- ⎪⎝⎭(2)注意到在等温过程中L 0不变,当弹性体在等温过程中长度由L 0压缩为L0/2时,外界所作的功为00/2202058L L L L W bT dL bTL L L ⎛⎫=-= ⎪⎝⎭⎰(3)1.9 在0oC 和1p n下,空气的密度为1.291-⋅m kg 。
空气的定压比热容.41.1,96611=⋅⋅=--γK kg J c p 今有27m 3的空气,试计算:(i)若维持体积不变,将空气由0o C 加热至20o C所需的热量. (i i)若维持压强不变,将空气由0o C 加热至20o C 所需的热量. (iii )若容器有裂缝,外界压强为1p n ,使空气由0o C 缓慢地加热至20oC 所需的热量。
解:1cal=4.2J 所以 1111238.0966----⋅⋅=⋅⋅=K g cal K kg J c p(i)这是定容加热过程,定容热容量可以从定压热容量算出,.deg /169.041.1/238.0⋅===g cal C C pV γ27m 3的空气,其质量可由它的密度算得:g M 461048.3102700129.0⨯=⨯⨯=考虑到热容量为常数,使温度由0oC 升至20o C 所需得热量20169.01048.3)(41221⨯⨯=-==⎰T T MC dT MC Q V T T V V即得J cal Q V 5510920.410176.1⨯=⨯= (ii ) 在定压加热过程中,).(937.6)(10658.120238.01048.3)(5412J cal T T MC Q p p =⨯=⨯⨯⨯=-=(iii ) 因为加热过程使缓慢得,所以假定容器内的压力保持1pn。
本问题,空气的质量是改变的。
在保持压力p 和容积V 不变的条件下加热时,在温度T 下的质量M (T)可由物态方程)(为空气的平均分子量其中μμRT MpV =确定之。
设T 1时,容器内的空气质量之为M 1,则由11)(RT T M pV μ=算得T T M T M 11)(=, 所以 2211211111()ln (1)T T P p p T T T dTQ M T C dT M T C M T C T T ===⎰⎰将T 1=273K , T 2=293K, M1C p=K cal /1029.83⨯代入(1)式,即得J cal Q 55310678.61060.1273293ln2731029.8⨯=⨯=⨯⨯=1.10 抽成真空的小匣带有活门,打开活门让气体冲入.当压强达到外界压强0p 时将活门关上。
试证明:小匣内的空气在没有与外界交换热量之前,它的内能U 与原来在大气中的内能U0之差为000V p U U =-,其中V 0是它原来在大气中的体积.若气体是理想气体,求它的温度与体积.解: (a ) 求解这个问题,首先要明确我们所讨论的热力学系统是什么。
为此,可以设想:使一个装有不漏空气的无摩擦活塞之绝热小气缸与绝热小匣相连。
假定气缸所容空气的量,恰好为活门打开时进入该小匣内的那一部分空气的量.这样,原来在小气缸中,后来处于小匣内的那一部分空气(为了方便,设恰为1mol 空气),就是我们所讨论的热力学系统。
系统的初态(0000;,,U p T V )和终态);,,(U p T V 如图所示:当打开活门,有少量空气进入原来抽为真空的小匣,小气缸内的气压就降为比大气压小一点,外界空气就迫使活塞向匣内推进。