动点问题题型方法归纳
七年级数学动点题型归纳

七年级数学动点题型归纳一、直线运动1.速度与时间的关系2.当物体做直线运动时,速度是一个重要的概念。
通常用v表示速度,t表示时间。
在匀速直线运动中,速度是一个常数,不随时间改变。
但在变速运动中,速度会随时间变化。
速度与时间的关系可以用以下方程表示:v = v0 + at,其中v0是初速度,a是加速度。
3.距离与时间的关系4.在直线运动中,距离是另一个重要的概念。
通常用s表示距离,t表示时间。
距离是速度和时间的乘积。
在匀速直线运动中,距离与时间的关系可以用以下方程表示:s = v0t + 1/2at^2。
5.追及问题6.追及问题是直线运动中的一类常见问题。
两个物体在同一时间出发,沿同一直线运动,一个在前,一个在后。
后一个物体要追上前一个物体,求所需时间。
这类问题通常用速度和距离的关系来解决。
二、圆周运动1.速度与角度的关系2.在圆周运动中,速度与角度的关系是一个重要的概念。
通常用v表示速度,θ表示角度。
在匀速圆周运动中,速度是一个常数,不随角度改变。
但在变速圆周运动中,速度会随角度变化。
速度与角度的关系可以用以下方程表示:v = rω = r2π/T,其中r是半径,ω是角速度,T是周期。
3.半径与角度的关系4.在圆周运动中,半径与角度的关系也是一个重要的概念。
通常用r表示半径,θ表示角度。
在匀速圆周运动中,半径和角度的关系可以用以下方程表示:θ = ωt = 2πt/T,其中ω是角速度,t是时间,T是周期。
5.圆内运动问题在圆内做圆周运动的物体需要满足向心力的条件才能保持做圆周运动。
向心力是由半径和速度的平方之间的比例关系决定的:F=mv2/r,其中F是向心力,m是物体的质量,v是速度,r是半径。
如果物体的速度过大或者半径过小,向心力不足,物体就会做离心运动;如果物体的速度过小或者半径过大,向心力过大,物体就会做向心运动。
在求解这类问题时需要注意对应物体的质量、速度和半径之间关系的考虑。
三、坐标几何1.点坐标的确定2.在坐标几何中,点坐标是一个基本概念。
八年级数学动点题型归纳

八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,求公式的长度。
解析:过点公式作公式于点公式。
因为公式,等腰三角形三线合一,所以公式。
在公式中,根据勾股定理公式。
当公式时,公式,则公式。
在公式中,根据勾股定理公式。
2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。
解析:已知公式,则公式,公式。
根据三角形面积公式公式,对于公式,底为公式,高为公式。
所以公式。
二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。
因为四边形公式是矩形,所以公式,公式。
则公式,公式。
在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。
因为公式且公式,所以四边形公式是梯形。
2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
求四边形公式的面积公式与公式的函数关系式。
解析:四边形公式的面积公式。
过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。
所以公式。
因为公式,则公式。
公式。
所以公式。
三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。
动点问题的方法归纳

动点问题的方法归纳
动点问题是指在一段时间内,某个物体或者某个点的位置或者速度的变化问题。
解决动点问题的方法可以归纳为以下几类:
1. 利用公式计算:对于简单的动点问题,可以根据已知条件,利用物理公式或者数学公式计算出所求的位置或者速度。
比如,如果已知物体的初始位置和速度,可以使用匀加速度公式来计算物体在任意时刻的位置。
2. 利用图像分析:对于复杂的动点问题,可以将物体的运动过程绘制成图像,然后通过分析图像中的几何关系,来推导出所求的位置或者速度。
比如,可以绘制出物体在不同时刻的位置,然后通过观察图像的形状和变化趋势,来推导物体的速度。
3. 利用微积分方法:对于连续的动点问题,可以使用微积分的方法来解决。
通过求导或者积分,可以得到物体的速度和加速度与时间的函数关系,然后再根据已知条件,求出所求的位置或者速度。
4. 利用矢量方法:对于多维空间中的动点问题,可以使用矢量的方法进行求解。
通过将问题转化为矢量的形式,可以简化计算过程,并且可以更直观地描述物体的运动过程。
比如,可以将物体在不同时刻的位置表示为矢量函数,然后通过对矢量函数进行求导或者积分,来求得所求的位置或者速度。
以上是解决动点问题的一些常见方法,根据具体问题的情况选择合适的方法进行求解。
中考动点问题题型方法归纳

图(3)B图(1)B 图(2)动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O、P、Q,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o.(1)求⊙O的直径;(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为)2)((<<tst,连结EF,当t为何值时,△BEF为直角三角形.提示:第(3)问按直角位置分类讨论3、如图,已知抛物线33)1(2+-=xay(0≠a)经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥D 平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQOM BH A Cxy 图O M B H ACxy 图(2)PQA CD值及此时PQ 的长.提示:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
七年级下册数学动点问题解题技巧

七年级下册数学动点问题解题技巧一、动点问题解题技巧概述。
1. 分析动点的运动轨迹。
- 明确动点是在直线(如数轴、坐标轴上的直线)上运动,还是在平面图形(如三角形、四边形的边或内部)中运动。
例如,在数轴上的动点,其位置可以用一个数来表示,而动点在平面直角坐标系中的坐标则需要用一对数(x,y)来表示。
2. 用含时间t(或其他变量)的代数式表示相关线段的长度。
- 若动点在数轴上,设动点的初始位置为a,速度为v,运动时间为t,则经过t时间后动点的位置为a + vt(当向右运动时v为正,向左运动时v为负),两点间的距离可以根据它们在数轴上的坐标相减的绝对值来表示。
- 在平面直角坐标系中,如果动点P(x,y)从点A(x_1,y_1)出发,沿x轴方向速度为v_x,沿y轴方向速度为v_y,运动时间为t,则x = x_1+v_xt,y=y_1 + v_yt。
对于线段长度,可以利用两点间距离公式d=√((x_2 - x_1)^2+(y_2 - y_1)^2),将坐标用含t 的式子代入来表示线段长度。
3. 根据题目中的等量关系列方程求解。
- 常见的等量关系有:线段相等、面积相等、三角形相似对应边成比例等。
例如,若两个三角形相似,根据相似三角形对应边成比例的性质列出方程,然后求解方程得到关于t(或其他变量)的值。
二、题目及解析。
1. 已知数轴上A、B两点对应的数分别为 - 1和3,点P为数轴上一动点,其对应的数为x。
- 若点P到点A、点B的距离相等,求点P对应的数x。
- 解析:因为点P到点A、点B的距离相等,所以| x - (-1)|=| x - 3|,即| x + 1|=| x - 3|。
当x+1=x - 3时,方程无解;当x + 1=-(x - 3)时,x+1=-x + 3,2x=2,解得x = 1。
- 若点P在点A、点B之间,且PA+PB = 4,求点P对应的数x。
- 解析:因为点P在A、B之间,PA=| x+1|=x + 1,PB=| x - 3|=3 - x,由PA+PB = 4可得x + 1+3 - x=4,恒成立,所以-1中的任意数都满足条件。
七年级数轴动点问题题型归纳

七年级数轴动点问题题型归纳
一、动点位置确定
在数轴上,动点的位置可以根据其相对于参考点的位置来确定。
在解题时,我们需要先确定参考点,然后根据题目中给出的条件来确定动点的位置。
二、动点运动规律
动点在数轴上的运动往往遵循一定的规律,如匀速运动、加速运动等。
在解决这类问题时,我们需要根据题目中给出的条件,建立动点运动的时间模型,从而求解出动点的位置。
三、动点与定点距离
在数轴上,动点与定点之间的距离可以通过绝对值或模运算来求解。
在解题时,我们需要先确定定点和动点的位置,然后根据绝对值或模运算的公式来求解。
四、动点与静点距离
在数轴上,动点与静点之间的距离也可以通过绝对值或模运算来求解。
在解题时,我们需要先确定静点的位置,然后根据题目中给出的条件来确定动点的位置,最后通过绝对值或模运算来求解。
五、动点与动点距离
在数轴上,两个动点之间的距离可以通过坐标运算来求解。
在解题时,我们需要先确定两个动点的位置,然后根据坐标运算的公式来求解。
六、动点与数轴交点
在数轴上,动点与数轴的交点可以通过求解方程得到。
在解题时,我们需要先确定动点的位置,然后建立方程求解交点的位置。
七、动点与坐标关系
在数轴上,动点的坐标与时间之间存在一定的关系。
在解题时,我们需要先确定动点的位置和时间的关系,然后建立坐标和时间的函数关系式,最后通过求解函数关系式来得到答案。
初二动点问题的方法归纳

初二动点问题的方法归纳动点问题是在数学中常见的一种题型,其中涉及到的知识点包括函数、方程、不等式等。
解决动点问题需要学生具备一定的数学思维和逻辑推理能力。
本文将就初二动点问题的解决方法进行归纳,主要包括以下五个方面:一、理解题意解决动点问题的第一步是理解题意。
学生需要仔细阅读题目,明确题目所给的条件和要解决的问题。
在理解题意的过程中,学生需要注意以下几点:1.确定题目中涉及到的知识点和公式;2.弄清楚各个变量之间的关系;3.判断是否需要分类讨论。
二、画图分析画图分析是解决动点问题的重要步骤。
通过画图可以帮助学生更好地理解题意,将抽象的问题具体化。
在画图分析的过程中,学生需要注意以下几点:1.根据题目所给条件画出图形;2.在图形上标注出已知量和未知量;3.根据问题要求,在图形上标出必要的点和线。
三、建立模型建立模型是解决动点问题的关键步骤。
通过建立数学模型,可以将实际问题转化为数学问题,从而更好地解决问题。
在建立模型的过程中,学生需要注意以下几点:1.根据题意确定需要的方程或不等式;2.根据图形关系建立方程或不等式;3.对于多个变量的情况,需要考虑分类讨论。
四、求解模型求解模型是解决动点问题的核心步骤。
在求解模型的过程中,学生需要注意以下几点:1.选择合适的方法进行求解;2.对于多个变量的情况,需要分别求解并综合结果;3.对于实际问题需要考虑实际情况,如是否有解、解是否合理等。
五、整合答案整合答案是解决动点问题的最后一步。
在整合答案的过程中,学生需要注意以下几点:1.将求解结果进行整理和归纳;2.根据题目要求给出答案;3.对于实际问题需要考虑实际情况,如是否有解、解是否合理等。
初中动点问题的方法归纳

初中动点问题的方法归纳初中动点问题是初中物理学习中非常重要的内容,它涉及到物体在运动中所具有的一系列特性和规律。
在学习过程中,我们经常会遇到一些与动点问题相关的题目,这些题目需要我们运用一定的方法和技巧来解决。
下面将对初中动点问题的解决方法进行归纳总结。
一、描述物体的运动状态1.位置、速度和加速度在解决动点问题时,首先要对物体在运动过程中的状态进行描述,这包括物体的位置、速度和加速度。
位置是物体所处的空间位置,速度是物体在单位时间内所移动的距离,加速度是物体在单位时间内速度的变化量。
在描述物体的运动状态时,我们需要了解物体的初始位置、初速度、加速度等参数,这可以帮助我们解决动点问题。
2.坐标系的选择在描述物体的运动状态时,我们通常会选择合适的坐标系来进行描述。
常见的坐标系有直角坐标系和极坐标系。
在选择坐标系时,应该根据具体情况确定物体的运动方向和位置,选择合适的坐标系可以简化问题的分析和解决过程。
二、分析物体的运动规律1.运动图象的绘制在解决动点问题时,通常会涉及到物体的位移-时间图象、速度-时间图象和加速度-时间图象。
这些图象可以帮助我们直观地了解物体在运动过程中的变化规律。
绘制这些图象需要根据物体的运动状态和参数,通过计算得出相应的数值,并将其表示在坐标系中,从而得到相应的运动图象。
2.运动规律的表达物体在运动过程中,其运动规律可以用公式来表示。
常见的运动规律有匀速直线运动、匀变速直线运动和曲线运动。
在解决动点问题时,需要根据具体情况选用相应的运动规律,将其与物体的运动参数相结合,从而得出问题的解决方法。
三、解决动点问题的方法和技巧1.运动的方程在解决动点问题时,我们通常会使用位移、速度和加速度之间的关系来求解。
位移-时间关系、速度-时间关系和加速度-时间关系都可以用来描述物体的运动规律,通过这些关系可以得到相应的运动方程,从而求解出问题的答案。
2.分段计算在解决复杂的动点问题时,有时需要将问题分段计算,分别求解不同阶段的运动情况,然后综合得出整体的运动规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O、P、Q,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。
然后画出各类的图形,根据图形性质求顶点坐标。
图(3)B图(1)B图(2)2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的运动.面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
二、 特殊四边形边上动点 4、(2009年吉林省)如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; (3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y图(1)图(2)轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.注意:第(2 第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t 值。
利用OB ⊥AC,再求OP 与AC 夹角正切值.6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒.(1)求∠ABC 的度数;(2)当t 为何值时,AB∥DF; (3)设四边形AEFD 的面积为S . ①求S 关于t 的函数关系式;②若一抛物线y=x 2+mx 经过动点E ,当S<23时,求m 的取值范围(写出答案即可).注意:发现特殊性,DE ∥OA7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且∠AOC=60°,点B的坐标是,点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D. (1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B ,C 三点的抛物线的解析式;(3)当3,a OD ==时,求t 的值及此时直线PQ 的解析式; (4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明.8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.9、(09年黄冈市)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点A,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t (单位:秒) (1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 提示:第(3)问用相似比的代换,得PF=OA (定值)。
第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF.(此题备用)三、 直线上动点8、(2009年湖南长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标; (3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.2)问发现特殊角∠CAB=30°,∠CBA=60°特殊图形四边形BNPM 为菱形;画出与△ABC相似的△BNQ ,再判断是否在对称轴上。
9、(2009眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。
⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。
提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE为直径画圆与x轴交点即为所求点P,②A为直角顶点时,过点A作AE垂线交x轴于点P,③E为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。
10、(2009年兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.注意:第(4)问按点P分别在AB、BC、CD边上分类讨论;求t值时,灵活运用等腰三角形“三线合一”。