分数应用题解题技巧

合集下载

分数应用题的解题方法

分数应用题的解题方法

分数应用题的解题方法1、引言在数学学习中,分数应用题是经常出现的题型之一。

解答这类题目需要掌握一定的解题方法和技巧。

本文将为大家介绍几种常见的解题方法,以帮助大家更好地解决分数应用题。

2、换算法在分数应用题中,经常需要将一个分数表达成另一种形式,这就需要用到换算法。

换算法的基本原理是乘以一个合适的分式,使得原分数的分母变化为所需的分母。

例如,将分数$\frac{2}{3}$转换成分母为6的分数,我们可以乘以$\frac{6}{2}$,得到$\frac{2}{3}\times\frac{6}{2}=\frac{12}{6}$,即$\frac{2}{3}=\frac{12}{6}$。

通过换算法,我们可以灵活地将分数转换为需要的形式,便于进行计算和分析。

3、化简法有时,分数应用题给出的分数较为复杂,需要进行化简才能得到准确的结果。

化简法是一种常见的解题方法。

化简法的关键在于找到分子和分母的最大公约数,并将分子分母同时除以最大公约数,从而将分数化简为最简形式。

例如,将分数$\frac{15}{25}$化简为最简形式,我们可以找到15和25的最大公约数为5,然后将分子分母同时除以5,得到$\frac{15}{25}=\frac{3}{5}$。

通过化简法,我们可以得到最简分数,便于进行计算和比较。

4、分数的加减法在分数应用题中,经常需要进行分数的加减运算。

分数的加减法需要找到相同的分母,然后按照相同的分母进行计算。

具体步骤如下:(1)找到两个分数的最小公倍数,作为相同的分母;(2)将分子按照相同的分母进行放大或缩小;(3)按照相同的分母进行分子的加减运算;(4)化简得到最简分数形式。

例如,计算$\frac{2}{3}+\frac{1}{4}$:(1)相同的分母为12,即$\frac{2}{3}\times\frac{4}{4}=\frac{8}{12}$,$\frac{1}{4}\times\frac{3}{3}=\frac{3}{12}$;(2)按照相同的分母进行计算,$\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$;(3)化简得到最简分数形式,$\frac{11}{12}$。

五六年级分数应用题解题技巧

五六年级分数应用题解题技巧

五六年级分数应用题解题技巧一、找准单位“1”1. 技巧一般来说,“是”“比”“占”后面的量就是单位“1”。

例如:男生人数比女生人数多公式,这里女生人数就是单位“1”。

在分数应用题中,总量通常也可看作单位“1”。

比如:一堆煤,用去了它的公式,这堆煤的总量就是单位“1”。

2. 题目解析例:果园里有苹果树和梨树共360棵,苹果树的棵数是梨树的公式,求苹果树和梨树各有多少棵?解析:这里“梨树的棵数”是单位“1”。

设梨树的棵数为公式棵,那么苹果树的棵数就是公式棵。

根据“苹果树和梨树共360棵”可列方程公式,解得公式,则梨树有200棵,苹果树有公式棵。

例:某工厂去年计划生产零件1200个,实际生产的比计划多公式,实际生产了多少个零件?解析:计划生产的零件个数是单位“1”。

实际生产的是计划的公式,所以实际生产的零件个数为公式个。

二、画线段图辅助解题1. 技巧用线段图可以直观地表示出数量关系。

先画出单位“1”的线段,再根据题目中的分数关系画出其他相关量的线段。

2. 题目解析例:学校图书馆有故事书480本,科技书比故事书少公式,科技书有多少本?解析:先画表示故事书的线段,长度表示480本。

因为科技书比故事书少公式,所以把故事书的线段平均分成6份,科技书的线段比故事书的线段少1份。

那么科技书的本数就是故事书的公式,所以科技书有公式本。

例:修一条路,已经修了全长的公式,还剩250米没修,这条路全长多少米?解析:画一条线段表示这条路的全长,将其平均分成8份,已经修的占3份,没修的占公式,这公式对应的长度是250米。

设这条路全长为公式米,可列方程公式,解得公式米。

三、根据分数的意义解题1. 技巧理解分数表示的是部分与整体的关系或者两个量之间的比例关系。

例如公式表示把一个整体平均分成5份,取其中的3份。

2. 题目解析例:一块长方形地,长是120米,宽是长的公式,这块地的面积是多少平方米?解析:根据宽是长的公式,由分数的意义可知,把长看作单位“1”,平均分成3份,宽占2份。

分数应用题解题技巧4则

分数应用题解题技巧4则

分数应用题解题技巧4则分数应用题是数学中的一大类题目,涉及的概念和计算方法较为抽象,对于很多学生来说是一个难题。

但只要我们掌握了一些基本的解题技巧,这类题目便会迎刃而解。

下面,就为大家介绍四种实用的分数应用题解题技巧。

技巧一:明确题目中的分数表示的是什么很多学生在解分数应用题时,首先就被分数给弄糊涂了。

实际上,我们需要明白,分数只是一个表示比例或者部分的形式。

因此,首要任务就是明确题目中的分数到底表示的是什么。

例如,它可能表示一个整体中的部分,也可能是两个量之间的比例关系。

只有明确了分数的具体意义,我们才能进行下一步的计算。

技巧二:合理转化分数形式在明确了分数的具体意义后,下一步就是进行合理的分数形式转化。

有些分数应用题中,给出的分数形式可能并不适合直接计算,这时就需要我们将其转化为更容易计算的形式。

例如,可以将带分数转化为假分数,或者将复杂的分数化简为更简单的形式。

这样,计算过程就会变得更加简便。

技巧三:利用线段图进行分析对于一些较为复杂的分数应用题,我们可以尝试利用线段图进行分析。

线段图可以直观地表示出各个量之间的关系,使我们更容易理解题目的意思。

通过线段图,我们可以清晰地看出各个部分之间的关系,进而找出解决问题的方法。

技巧四:注意检验答案的合理性在解完分数应用题后,很多学生都忽视了检验答案这一重要步骤。

实际上,检验答案的合理性是非常必要的。

我们可以通过逆运算或者代入原题等方法,检验我们的答案是否正确。

如果答案不合理,那么我们就需要重新审视自己的解题过程,找出错误所在。

以上就是四种实用的分数应用题解题技巧。

当然,要想真正掌握这些技巧,还需要大量的练习和思考。

只有通过不断的实践,我们才能更加熟练地运用这些技巧,解决各种复杂的分数应用题。

希望这些技巧能对大家有所帮助,祝大家在数学学习中取得更大的进步!。

六年级数学上应用题分数技巧与方法

六年级数学上应用题分数技巧与方法

六年级数学上应用题分数技巧与方法一、分数应用题的解题方法1. 找单位“1”的量。

在审题时,首先要把问题中涉及的量与分率对应起来,看题目中有几个量,每个量所占的分率是多少,并确定出单位“1”的量。

2. 确定解题方法。

如果题目中单位“1”的量是未知的,就采用除法,进而转化为乘法运算;如果题目中单位“1”的量是已知的,就采用乘法运算。

3. 对应解题。

根据数量关系,把具体数量与分率对应起来,列出算式并计算。

二、分数应用题的解题步骤1. 读懂题意,确定解题方法。

在解答分数应用题时,首先要认真审题,弄清题目中涉及的量和分率,然后根据数量关系列出算式并计算。

2. 找准量与分率的对应关系。

在分数应用题中,量与分率对应是解题的关键。

要分清每个量所占的分率,进而确定出单位“1”的量。

3. 掌握基本数量关系式。

在分数应用题中,常用的数量关系式有:单位“1”的量×分率=部分量等。

4. 逐步解答。

在解答分数应用题时,要按照题目所给的条件,逐步解答。

一般可采用综合算式或分步计算的方法进行解答。

5. 检验答案。

在解答分数应用题时,要检验答案是否正确。

可以采用逆向思维或代入法进行检验。

三、分数应用题的练习方法1. 专项训练。

可以针对某一类型的分数应用题进行专项训练,如工程问题、行程问题等。

通过专项训练,可以加深对某一类型题目的理解和掌握。

2. 多做练习。

熟能生巧,多做练习是提高分数应用题解题能力的有效方法。

可以通过练习册、习题集等途径进行练习。

3. 归纳总结。

在练习过程中,要注意归纳总结解题方法,形成自己的解题思路和技巧。

同时,也可以借鉴他人的经验和技巧,不断提高自己的解题能力。

4. 注重思路。

在练习过程中,不要只关注答案是否正确,更要注重解题思路是否清晰、合理。

只有掌握了正确的解题思路,才能真正提高分数应用题的解题能力。

(完整版)六年级分数应用题解题技巧

(完整版)六年级分数应用题解题技巧

(完整版)六年级分数应用题解题技巧六年级分数应用题解题技巧一、问题分析在解题过程中,首先要明确问题是要求什么,例如计算、比较大小、化简等,然后根据具体情况选择合适的解题方法。

二、解题步骤1. 分析题意:仔细阅读题目,理解题意,明确所给信息和要求。

2. 提取关键信息:找出题目中的关键信息,将其列出。

3. 列式计算:根据题目要求列出对应的算式。

4. 计算结果:根据列出的算式进行计算,得到结果。

5. 检查答案:将结果带入原题中,验证答案是否正确。

三、解题技巧1. 找出最小公倍数:如果题目中需要对两个或多个分数进行计算,要先找出最小公倍数,然后统一分母进行计算。

2. 化简分数:当出现大分子大分母的分数时,可以通过约分化简来简化计算。

3. 分数的大小比较:将两个分数化为相同的分母,然后比较分子的大小。

4. 分数的加减运算:将两个分数化为相同的分母,然后分子进行相应的加减运算。

5. 分数的乘除运算:将两个分数的分子相乘,分母相乘,然后进行相应的乘除运算。

四、注意事项1. 仔细读题:对于应用题,要仔细读题并理解题意,避免因为理解错误而导致计算错误。

2. 注意算式的正确性:在列出算式和进行计算时,要注意符号和数字的位置,确保算式的正确性。

3. 及时检查答案:解答完题目后,要及时检查答案,确保计算的准确性。

五、例题分析例题1:某班有30个学生,其中男生占总人数的3/5,女生占总人数的几分之几?解题步骤:1. 分析题意:计算女生占总人数的分数。

2. 提取关键信息:男生占总人数的3/5。

3. 列式计算:女生占总人数的分数为:1 - 3/5。

4. 计算结果:女生占总人数的分数为:2/5。

5. 检查答案:男生占总人数的3/5 + 女生占总人数的2/5等于总人数的1。

例题2:甲乙两个人在同一时间、同一速率下走,甲比乙走得快12分之8,问甲、乙每走8米,甲要比乙多走几分之几?解题步骤:1. 分析题意:计算甲比乙多走的分数。

2. 提取关键信息:甲比乙走得快12分之8。

分数应用题的解题方法和技巧

分数应用题的解题方法和技巧

分数应用题解题的一般步骤:
1、 找出单位“1” (标准量),观察单位“1”(标准量)是已知还是未知,如果已知时,可以确定用乘法计算;如果未知就用除法计算。

2、分析题意,找出各个信息所对应的量。

并能有条理地说明解题思路、有根有据地说清楚自己是怎么思考的,这样是培养逻辑思维能力的一个有效方法。

3、 根据(比较量 ÷单位“1” =对应分率)(单位“1”×对应分率=比较量)(比较量 ÷对应分率=单位“1”)各量之间的关系列式计算。

总结:以上步骤可以用一句话概括:一找二定三列式,即第一步找单位“1”,第二步确定单位“1”已知还是未知,第三步列式解答。

分数或百分数应用题解题的口诀
知“1”用乘:单位“1”的量×所求的量对应的分率=所求的量
求“1”用除:已知的量÷已知的量对应的分率=单位“1”的量
了解什么是“1”。

“1”,就是单位“1”,也就是“标准量”。

如: 我班女生人数是男生人数的32。

这里是把男生人数做为一个标准,拿女生人数跟男生人数去做比较,我们就把这里的男生人数叫做单位“1”的量,即标准量。

女生人数是比较量,32
是女生所对应的分率。

如何判断单位“1”?
找到关键句,即含有分数或百分数的句子,把句子补充完整,与分数(或百分数)最接近的那个量是单位“1”,或“比”字“是”字后面,“的”字前面。

五年级分数应用题解题技巧

五年级分数应用题解题技巧

五年级分数应用题解题技巧一、分数应用题解题技巧及例题解析。

1. 确定单位“1”- 技巧:一般来说,“是”“比”“占”后面的量就是单位“1”。

- 例1:五年级一班男生人数占全班人数的(3)/(5),全班有50人,男生有多少人?- 解析:这里全班人数是单位“1”,已知全班人数为50人,求男生人数,就是求50的(3)/(5)是多少,用乘法计算,50×(3)/(5)=30(人)。

2. 已知单位“1”,求部分量。

- 技巧:用单位“1”的量乘以部分量对应的分率。

- 例2:果园里有苹果树200棵,梨树的棵数是苹果树的(3)/(4),梨树有多少棵?- 解析:苹果树的棵数是单位“1”,已知为200棵,梨树棵数是苹果树的(3)/(4),那么梨树的棵数为200×(3)/(4)=150棵。

3. 求单位“1”- 技巧:已知部分量和它对应的分率,用部分量除以分率得到单位“1”的量。

- 例3:五年级二班女生人数是18人,占全班人数的(3)/(7),全班有多少人?- 解析:这里全班人数是单位“1”,女生人数18人对应的分率是(3)/(7),所以全班人数为18÷(3)/(7)=18×(7)/(3)=42人。

4. 分数的加、减法应用题。

- 技巧:先确定各个量对应的分率,再根据题意进行加、减运算。

- 例4:一根绳子,第一次用去全长的(1)/(4),第二次用去全长的(1)/(3),两次一共用去全长的几分之几?- 解析:把绳子的全长看作单位“1”,第一次用去的分率是(1)/(4),第二次用去的分率是(1)/(3),两次一共用去的分率为(1)/(4)+(1)/(3)=(3 + 4)/(12)=(7)/(12)。

5. 比较两个量的分率关系。

- 技巧:先求出两个量分别对应的分率,然后进行比较。

- 例5:甲仓库有货物120吨,乙仓库有货物150吨,甲仓库货物是乙仓库货物的几分之几?乙仓库货物比甲仓库货物多几分之几?- 解析:- 甲仓库货物是乙仓库货物的:120÷150=(120)/(150)=(4)/(5)。

小学数学分数应用题的解题技巧

小学数学分数应用题的解题技巧

(小学数学分数应用题的解题技巧)分数应用题是小学数学中的一个重要内容,它涉及到分数的概念、运算和应用,对于培养学生的数学思维和解决问题的能力具有重要意义。

本文将介绍一些小学数学分数应用题的解题技巧,帮助同学们更好地理解和解决这类问题。

一、理解分数的概念分数是一个相对的概念,它表示的是部分与整体的关系。

在进行分数应用题解题时,首先要理解分数的概念,知道什么是分子、分母和分数单位,以及分数的加减乘除运算。

只有正确理解分数的概念,才能更好地解决分数应用题。

二、找准单位“1”单位“1”是分数应用题中的一个重要概念,它表示的是一个整体或是一个事物的数量。

在解决分数应用题时,要找准单位“1”,才能更好地分析题意和列式。

一般来说,分数应用题中会出现一个表示数量的词语,这个词语后面的那个量就是单位“1”。

例如,“男生人数的1/3是女生人数”,男生人数就是单位“1”。

三、分析题意,列出正确的式子在找准单位“1”后,需要分析题意,根据题目的描述列出正确的式子。

一般来说,分数应用题的式子包括两个部分:一个是已知量(部分)和未知量(整体)之间的关系;另一个是分数的运算。

在列式时,需要注意题目中的单位是否一致,以免出现错误。

四、运用解题技巧,提高解题效率1.画图法:对于一些比较抽象的分数应用题,可以通过画图来帮助理解。

通过画图,可以直观地看到题目中的数量关系,从而更快地找到答案。

2.假设法:在解题时,有时候会遇到一些比较复杂的问题,可以通过假设某个条件或数值来帮助解题。

这种方法可以帮助我们更好地理解题目中的数量关系,从而更快地找到答案。

3.代数法:对于一些比较复杂的分数应用题,可以通过建立方程来求解。

这种方法需要有一定的数学基础和技巧,但在解决一些复杂问题时非常有效。

五、举一反三,提高解题能力除了掌握解题技巧外,还需要通过练习和思考来提高解题能力。

在做题时,要尝试举一反三,通过相似的题目来巩固和提高自己的解题能力。

同时,也要注意总结解题经验和方法,发现规律和技巧,提高解题效率和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数应用题的解题方法
一找二定三列式
1、找准单位“1”的量。

(“的前” “比后” “是后” “占后”的量为单位“1”)
2、确定单位“1"是已知还是未知?
3、 单位“1”的量×分率=分率对应量
分率对应量(已知数)÷对应分率=单位“1”的量
4、比单位“1”多就用(1+﹍),比单位“1”少就用(1-﹍)。

分数应用题解题技巧·转化单位“1”
方法一:将一个数的几分之几的几分之几转化为这个数的几分之几。

例:读了一本故事书,第一天读了全书的15 ,第二天读了余下的34。

第二天读了全书的几分之几?全书还剩几分之几?
方法二:甲数是乙数的几分之几,转化为乙数是甲数的几分之几。

例:甲数是乙数的49。

求乙数是甲数的几分之几?
方法三:甲数比乙数多(少)几分之几转化为乙数比甲数少(多)几分之几。

例:四年级人数比五年级人数少14。

五年级人数比四年级人数多几分之几?
方法四:甲数的几分之几等于乙数的几分之几转化为甲数是乙数的几分之几(或乙数是甲数的几分之几)。

例:甲数的23 等于乙数的34。

甲数是乙数的几分之几?乙数是甲数的几分之几?
方法五:假设在解题中的妙用:有些应用题数量关系比较复杂隐蔽,按一般的方法,难以找到数量间的关系及内在联系。

但是通过假定某个条件或现象成立,往往可以找到解答的途径。

例:有两筐苹果共重220千克,从甲筐取出15 ,从乙筐取出14
共重50千克。

两筐苹果原来各有多少千克?
方法六:找已知量对应的分率,用已知量除以它所对应的分率就可以得到单位“1”的量。

例:“一批煤用去了23 ,正好是24吨。

这批煤共有多少吨?”在这个问题中,“23
”与 “24吨”表示的同一个数量,都是用去的煤的数量。

一个是具体的量,一个是分数量,这们把“23
”叫做“24吨”所对应的分率,解题时用“24÷23
”得到的就是单位“1”的量,在本题中也就是煤的总量。

工程问题:基本数量关系式:工作总量是单位“1”;
工作效率=工作总量÷工作时间;工作量÷工作效率=工作时间
分数应用题(一)
1、 某校有学生702人,女生人数比男生人数的
54少18人。

男、女生各有多少人?
2、 一根电线,用去全长的
31还多4米,这时剩下的比用去的多10米。

这根电线原来长多少米?
3、 甲、乙两人原来各有若干元,甲的钱数是乙的
85。

如果甲用去20元,乙用去50元,这时两人剩下的钱数相等。

甲、乙两人原来各有多少元?
4、 第一车间有四个生产小组,第一、二两个小组共19人,第二、三、四小组共35人,已知第二小组人数占四个生产小组总人数的
51。

第一车间共有多少人?
5、 小华从家去车站,行到全程的
98处是邮局。

他从车站回家,行到全程的31处时,已超过邮局420米。

小华家到邮局有多少米?
6、 甲、乙两个工程队,甲队人数比乙队人数少30人。

如果从甲队抽调5人到乙队,那么甲队人数就是乙队人数的
83。

两队原来各有多少人?
7、 商场运来西服和皮装共900件,已知西服的
74与皮装的32共560件。

商场运来西服和皮装各多少件?
8、 新华书店新进一批图书,其中科技书占
53,后来又购进400本科技书,这时科技书的本数占图书总数的32。

新华书店原来购进多少本科技书?
9、 一个油桶里装满了油,连桶共重16千克。

倒出
53的油后,连桶还重8.5千克。

这桶油原来有多少千克?
10、甲、乙两班共有115人,乙、丙两班共有110人,已知丙班人数是甲班的
11
10。

三个班各有多少人?
分数应用题(二)
1、 一项工程,甲队单独做要20天完成,如果甲、乙两队合作12天可以完成。

如果由乙队单独做,多少天可以
完成?
2、 一份稿件,甲、乙两个打字员合打12小时可以完成。

现在两人合打,由于中途甲因故停工5小时,因此用了
15小时才完成。

如果由甲单独打,多少小时完成?
3、 一项工程,由甲、乙两队合做12天可以完成。

现在由甲队先做了8天,乙队接着做18天,恰好完成。

这项
工程如果由乙队单独做,需要多少天完成?
4、 一件工作,甲单独做要8天完成,乙单独做要10天完成。

现在两人合做,中途甲因事请假一天,完成这件工
作共需用多少天?
5、 一件工作,甲、乙合做10天可以完成,乙、丙合做12天可以完成,甲、丙合做15天可以完成。

现在三人合
做,需要多少天才能完成?
6、 客、货两车分别从甲、乙两地同时出发,相向而行,经过6小时两车相遇后,客车继续行驶4小时到达乙地。

货车还需再行驶几小时才能到达甲地?
7、 一个游泳池装有一个进水管和一个排水管,单开进水管5小时可将空池注满。

由于管理员的疏忽,将两个水
管同时打开,结果用了8小时才将空池注满。

如果单独打开排水管,多少小时才能将满池水放完?
8、 一位登山爱好者攀登紫金山,上山时每小时行3千米,沿原路下山时,每小时行5千米。

求这位登山爱好者
上、下山的平均速度。

9、 修一条水渠,单独修,甲队要10天,乙队要15天。

现在两队合修2天后,还剩下240米没有修。

这条水渠
长多少米?
10、 两列火车同时从甲、乙两地出发,相向而行,相遇时快车行了全程的9
5。

已知慢车每小时行72千米,快车行完全程要10小时。

甲、乙两地相距多少千米?。

相关文档
最新文档