福建省南安市侨光中学2020届九年级6月(高中自主招生)考试数学试题及参考答案
2020年福建省中考数学试卷附详细答案解析

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30= .12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的 2个白球,2个黄球,1个红球.现添加同种型号的 1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P 在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的 A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M (1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2020•长春)3的相反数是()A.﹣3 B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2020•福建)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2020•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2020•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2020•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2020•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,故选A.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2020•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2020•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2020•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2020•福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)计算|﹣2|﹣30= 1 .【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2020•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于 6 .【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2020•福建)一个箱子装有除颜色外都相同的 2个白球,2个黄球,1个红球.现添加同种型号的 1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2020•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7 .【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2020•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108 度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2020•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2020•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2020•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2020•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠B AC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2020•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2020•福建)如图,四边形ABCD内接于⊙O,AB是⊙O 的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2020•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2020•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的 A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15 (Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的 100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的 100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的 100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2020•福建)如图,矩形ABCD中,AB=6,AD=8,P,E 分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.25.(14分)(2020•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.【分析】(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用S△QMN=S△QEN+S△QEM可用a表示出△QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,∴S=S△QEN+S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a2+(8S﹣54)a+24=0(*),∵关于a的方程(*)有实数根,∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
福建省南安市侨光中学2020届高三数学上学期第一次阶段考试题理

A.2 B. 2019 C. 2018 D. 0 二、填空题(本大题共 5 小题,共 25 分)
14. 已知函数 f ( x)
x1 ,x
0,1
1,2 则该函数的值域为
;
1x
-2-
15. 当 x (0,
) 时,幂函数 f ( x)
( m2
m
1) x
5m
3
为增函数,则实数
m
;
2x, x 0
16. 已知函数 f ( x)
-1-
A. 1 B.
e2019 1
C. e2019 1
D. e2019
9. 命题“
,
”为假命题,则实数 a 的取值范围是
A.
B.
C.
D.
1
x
10. 已知曲线 T 的参数方程
k
( k 为参数),则其普通方程是(
)
y 1 k2 1
k
A. x2 y2 1 B. x2 y 2 1 x 0
C. y
1 x2 , x 0 1 x2 ,x 0
若 有两个零点 , ,求证:
.
南安侨光中学 2020 届高三年第一次阶段性考试卷 理科数学参考答案
一、选择题 1-5BBCCC 6-10 ABAAC 11-13 BDA 13. 【答案】 A 【分析】本题考查函数的奇偶性和导数的奇偶性,考查运算能力,属于中档题.
设
,判断奇偶性和导数的奇偶性,求和即可得到所求值.【解答】解:
福建省南安市侨光中学 2020 届高三数学上学期第一次阶段考试题 理
考试时间: 120 分钟 满分: 150 分选择题(本大题共 13 小题,共 65 分)
1. 已知集合 A
x x2 1 ,B
福建省南安市侨光中学2020届九年级6月(高中自主招生)考试数学试题

九年级数学科试卷一、选择题:(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,无理数是( )A .0.010010001B .0)3(C .030cos D .31 2.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是( )A .B .C .D .3.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )A. B. C. D.4.下列成语中描述的事件是随机事件的是( )A.守株待兔B.瓮中捉鳖C. 拔苗助长D.水中捞月 5.若,05>+x 则( )A. 03<+xB. 03<-xC.15-<xD. 162<-x6.如图,直线y =ax +b 与x 轴交于A 点(4,0),与直线y =mx 交于B 点(2,n),则关于x 的一元一次方程mx b ax =-的解为( )A. 2=xB. 2-=xC. 4=xD. 4-=x第6题图 第7题图7.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和8.在平面直角坐标系中,已知a ≠b ,设函数y =(x +a )(x +b )的图象与x 轴有M 个交点,函数y =(ax +1)(bx +1)的图象与x 轴有N 个交点,则( )A.M =1-N 或M =1+NB.M =1-N 或M =2+NC.M =N 或M =1-ND.M =N 或M =1+N 二、填空题:(本题共6小题,每小题3分,共18分.) 9.小明用])5()5()5()5[(1012102322212-+-+-+-=x x x x S Λ计算一组数据的方差,则 10321x x x x ++++Λ的值是______.10.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头, 要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC与阻力臂BC 之比为6:1,要使这块石头滚动,至少要将杠杆的A 端向下压______cm . 11.若2021)2019)(2020(=--a a ,则22)2019()2020(-+-a a =_______.12.如图,在□ABCD 中,已知B ∠=70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,则劣弧DE ︵的长为_______.13.如图所示,△ABC 中,已知AD 和BE 分别是边BC ,AC 上的中线,且AD ⊥BE ,垂足为G ,若GD =2,GE =3,则线段CG 为_______.14.如图,在直角坐标系中,点A ,B 分别在x 轴和y 轴,43=OB OA ,∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数xky =的图象过点C ,当以CD 为边的正方形的面积为74时,k 的值为_______.第12题图 第13题图 第14题图二、 解答题:(本题共7小题,共58分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值234(1)11x x x --÷++,其中x 是方程2560x x -+=的根.16.(6分)如图,已知AB//CF ,D 是AB 上一点,DF 交AC 于点E ,若AB =BD +CF ,求证:△ADE ≌△CFE .17.(8分)已知△ABC 中,∠A =22.5°,∠B =45°.(1)求作:⊙O ,使得圆心O 落在AB 边上,且⊙O 经过A 、C 两点.(尺规作图,保留作图痕迹,不必写作法)(2)若⊙O 的半径为2,①求证:BC 是⊙O 的切线;②求A ∠tan 的值. (3)仿照以上求A ∠tan 的过程,可得:015tan =_______.ABCE DO18.(8分)甲乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成3元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元. 假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并记录其100天的送餐单数,得到如下频数表.甲公司送餐员送餐单数频数表 乙公司送餐员送餐单数频数表(1)求(1)求甲公司送餐员的日平均工资;(2)某人拟到甲乙两家公司中的一家应聘送餐员,如果仅从日平均工资的角度考虑,那么他应该选择去哪家公司应聘?请说明理由.19.(8分)为落实“精准扶贫”精神,我市农科院专家指导李大爷利用坡前空地种植优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足⎩⎨⎧≤<+-≤≤+=)3015(75)151(153x x x x m (x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图: 如果李大爷的草莓在上市销售期间每天的维护费用为80元. (1)求销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;送餐单数 38 39 40 41 42 天数1040301010送餐单数 38 39 40 41 42 天数1020204010(日销售利润=日销售额﹣日维护费)(3)求前十天日销售利润y的最大值及相应的x.20.(10分)模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=.③如图4,BO i、CO i分别为∠ABO、∠ACO的2020等分线(i=1,2,3,…,2018,2019).它们的交点从上到下依次为O1、O2、O3、…、O2019.已知∠BOC=m°,∠BAC=n°,则∠BO1000C =度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.21.(12分)已知抛物线C 1:和C 2:y =x 2(1)如何将抛物线C 1平移得到抛物线C 2?(2)如图1,抛物线C 1与x 轴正半轴交于点A ,直线y =34-x +b 经过点A ,交抛物线C 1于另一点B .请你在线段AB 上取点P ,过点P 作直线PQ ∥y 轴交抛物线C 1于点Q ,连接AQ .若AP =AQ ,求点P 的横坐标;(3)如图2,△MNE 的顶点M 、N 在抛物线C 2上,点M 在点N 右边,两条直线ME 、NE 与抛物线C 2均有唯一公共点,ME 、NE 均与y 轴不平行.若△MNE 的面积为2,设M 、N 两点的横坐标分别为m 、n ,求m 与n 的数量关系.4)1(2--=x y九年级数学科试卷 参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题:(本题共8小题,每小题3分,共24分.) 1. C 2. D 3. C 4.A 5. D 6.B 7.C 8.D 三、 填空题:(本题共6小题,每小题3分,共18分.)9.50; 10. 60; 11.4043; 12.23π; 13.2√13; 14. 14.四、 解答题:(本题共7小题,共58分.) 15.解:原式)2(2112-++⋅+-=x x x x x )( 21+=x…………………2分3(20)3)(2(065212===--=+-x x x x x x 舍去),……………………4分当3=x 时,原式51=………………………6分 16.证明:∵AB =BD +CF ,又∵AB =BD +AD ,∴CF =AD∵AB//CF ,∴∠A =∠ACF ,∠ADF =∠F …………………2分在△ADE 与△CFE 中{∠A =∠ACF CF =AD ∠ADF =∠F,∴△ADE≌△CFE(ASA). ………………………6分17.解:(1)作图:如图1即为所求作的图 …………………2分(2)①证明:如图2,连接OC , ∵OA =OC ,∠A =22.5° ∴∠BOC =45°,又∵∠B =45°,∴∠BOC +∠B =90° ∴∠OCB =90° ∴OC ⊥BC ,且点C 在⊙O 上∴BC 是⊙O 的切线. …………………………………4分 ②过C 作CH ⊥AB 于H 点,由①得:∠OCB =90°,∠OCB =90°,∠B =45°, ∴△OBC 是等腰直角三角形, ∵OA =OC =2,CH=BCsin ∠B=2,AH=22+=+OH AO …………………………………6分∴在ACH Rt ∆中,A ∠tan =AH CH=12- …………………7分(3)3215tan 0-= …………………8分 18.解:(1)甲公司送餐员日平均送餐单数为:7.391.0421.0413.0404.0391.038=⨯+⨯+⨯+⨯+⨯ 所以甲公司送餐员日平均工资为:1.1997.39380=⨯+(元) …………………3分 (2)乙公司送餐员日平均工资为:(元)2.2021.0)72540(4.0)71540(2.05402.05391.0538=⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯⨯+⨯⨯…………………6分2.2021.199<ΘH所以这个人应该选择去乙公司应聘. …………………8分 19.解:(1)当1≤x ≤10时,设n =kx +b ,将点A ,B 代入,得⎩⎨⎧+=+=b k b k 103012,解得⎩⎨⎧==102b k ∴n =2x +10同理得,当10<x ≤30时,n =444.1+-x ∴销售量n与第x天之间的函数关系式:⎩⎨⎧≤<+-≤≤+=)3010(444.1)101(102x x x x n ………………………………4分 (2)∵y =mn ﹣80整理得,⎪⎩⎪⎨⎧≤≤+-<<++-≤≤++=)3015(32201494.1)1510(5801112.4)101(70606222x x x x x x x x x y ……………7分(3)当1≤x ≤10时,∵y =6x 2+60x +70的对称轴x =562602-=⨯-=-a b ∴x =10时,y 取最大值,且10y =1270 ………………………8分所以,前十天中,在草莓销售第10天时,日销售利润y 最大,最大值是1270元.20.解:(1)①2α; ………………………1分②85°; ………………………3分 ③)1015110150(n m +; ………………………6分 (2)如图5,连接OC ,∵OA =OB =OD ,∴∠OAB =∠OBA ,∠OAD =∠ODA , ∴∠BOD =∠BAD +∠ABO +∠ADO =2∠BAD , ∵∠BCD =2∠BAD , ∴∠BCD =∠BOD ,∵BC =CD ,OA =OB =OD ,OC 是公共边, ∴△OBC ≌△ODC (SSS ),∴∠BOC =∠DOC ,∠BCO =∠DCO , ………………………8分 ∵∠BOD =∠BOC +∠DOC ,∠BCD =∠BCO +∠DCO , ∴∠BOC =21∠BOD ,∠BCO =21∠BCD , 又∠BOD =∠BCD , ∴∠BOC =∠BCO ,∴BO =BC , ………………………9分 又OB =OD ,BC =CD , ∴OB =BC =CD =DO ,∴四边形OBCD 是菱形. ………………………10分21.解:(1)将抛物线C 1向左平移1个单位长度,再向上平移4个单位长度可得到抛物线C 2;………………………2分(2)与x 轴正半轴的交点A (3,0),∵直线y =34-x +b 经过点A ,∴b =4, ∴y =34-x +4, 4)1(2--=x y⎪⎩⎪⎨⎧--=+-=4)1(4342x y x y 消去y ,得 x =3或x =37-, ∴B (34-,964), ………………………………4分 设P (t ,434+-t ),且337<<-t , ∵PQ ∥y 轴,∴Q (t ,t 2﹣2t ﹣3), ………………………………5分 当AP =AQ 时,=-P y Q y即﹣4+t 34=t 2﹣2t ﹣3, ∴t =31, ∴P 点横坐标为31; ………………………………7分 (3)设直线ME 的解析式为y =k (x ﹣m )+m 2,⎩⎨⎧=+-=22)(x y m m x k y 消去y ,得 x 2﹣kx +km ﹣m 2=0,△=k 2﹣4km +4m 2=(k ﹣2m )2=0,∴k =2m ,∴直线ME 的解析式为y =2mx ﹣m 2,同理, 直线NE 的解析式为y =2nx ﹣n 2,∴E (2n m +,mn ), ………………………………10分 ∴MGE FNE MGFN MNE S S S S ∆∆∆--=梯形 =21[(n 2﹣mn )+(m 2﹣mn )]×(m ﹣n )﹣21(n 2﹣mn )×(2n m +﹣n ) ﹣21(m 2﹣mn )×(m ﹣2n m +)=2, ∴(m ﹣n )3﹣2)(3n m -=4,∴(m ﹣n )3=8,∴m ﹣n =2; ………………………………12分。
南安市中考数学试卷及答案

泉州南安市2020年初中学业质量检查数学试卷(满分:150分;考试时间:120分钟)毕业学校 姓名 考生号友情提示:请在答题卡上相应题目的答题区域内作答,答在本试卷上无效。
一、选择题(单项选择。
每小题3分,共21分)。
1.3-的相反数是( ).A .3-B .13-C .3D .132.要使分式11x +有意义,则x 应满足的条件是( ). A .1x ≠B .1x ≠-C .0x ≠D .1x >3.下列运算正确的是( ).A .23a a a +=B .22(3)6a a =C .623a a a ÷=D .34aa a =· 4.方程组⎩⎨⎧-=-=+13y x y x 的解是( ).A .⎩⎨⎧==2,1y xB .⎩⎨⎧-==2,1y x C .⎩⎨⎧==1,2y x D .⎩⎨⎧-==1,0y x5.一次函数23y x =-的图象不经过...( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.已知四边形ABCD 中,90A B C ===o ∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( ). A .90D =o ∠ B .AB CD = C .AD BC = D .BC CD =7.在抗震救灾某仓库里放着若干个相同的正方体货箱,某摄影记者 将这堆货箱的三视图照了出来(如图),则这堆正方体货箱共有( ). A. 2箱 B. 3箱 C. 4箱 D. 5箱 二、填空题(每小题4分,共40分).(第10题图)主视图 左视图俯视图(第7题图)8.计算:=-0)2010(.9.因式分解:29a -= .10.将一副三角板摆放成如图所示,图中1∠= 度. 11.温家宝总理在2020年3月5日的十一届全国人大第三次会议的政府工作报告中指出,2020年,再解决60 000 000农村人口的安全饮水问题.将60 000 000用科学记数法表示应为 .12.在综合实践课上,五名同学做的作品的数量(单位:件)分别是:5,7,3,6,4.则这组数据的中位数是 件. 13.方程111x =-的解是________. 14.已知一个多边形的内角和等于900o ,则这个多边形的边数是 . 15.已知:⊙A 的半径为2cm ,AB=3cm .以B 为圆心作⊙B,使得 ⊙A 与 ⊙B 外切,则⊙B 的半径是 cm .16.如图,大正方形网格是由25个边长为1的小正方形组成, 把图中阴影部分剪下来,用剪下来的阴影部分拼成一个正方形, 那么新正方形的边长是 . 17.如图,已知点A 在双曲线y=6x上,且OA=4,过A 作 AC⊥x 轴于C ,OA 的垂直平分线交OC 于B .(1)则△AOC 的面积= ,(2)△ABC 的周长为 . 三、解答题(共89分) 18.(9分)计算: 43)85(41)1(12+⨯--÷--. 19.(9分)已知12=+x y ,求代数式)4()1(22x y y --+的值.20.(9分)如图,已知点E C ,在线段BF 上,CF BE =,请在下列四个等式中,①AB=DE ,②∠ACB=∠F,③∠A=∠D,④AC =DF .选出两个..作为条件,推出ABC DEF △≌△.并予以证明.(写出一种即可) C E B FDA(第16题图)已知: , . 求证:ABC DEF △≌△. 证明:21.(9分)2020年上海世博会于5月1日开幕,某商场销售世博会纪念品专柜对这一天销售A 、B 、C 三种品牌的纪念品情况进行了统计,并将数据绘制成如下图1和图2所示的统计图.请你根据图中信息解答下列问题: (1)请将图1补充完整;(2)A 品牌纪念品在图2中所对应的圆心角的度数是 度;(3)根据上述统计信息,从5月1日开幕到10月31日闭幕期间,该商场对A 、B 、C 三种品牌纪念品应如何进货?请你提出一条合理的建议.22.(9分)“六.一”儿童节,小明去商场买书包,商场在搞促销活动,买一只书包可以送2支笔和1本书.(1)若有3支不同笔可供选择,其中黑色2支,红色1支,试用树状图(或列表法)表示小明依次..抽取2支笔的所有可能情况,并求出抽取的2支笔均是黑色的概率;(2)若有6本不同书可供选择,要在其中抽1本,请你帮助小明设计一种用替代物模拟抽书的方法.23.(9分)在一条笔直的公路上有A 、B 两地,它们相距150千米,甲、乙两部巡警车分别从A 、B 两地同时出发,沿公路匀速相向而行,分别驶往B 、A 两地.甲、图1图2乙两车的速度分别为70千米/ 时、80千米/ 时,设行驶时间为x 小时. (1)从出发到两车相遇之前,两车的距离是多少千米?(结果用含x的代数式表示)(2)已知两车都配有对讲机,每部对讲机在15千米之内(含15千米)时能够互相通话,求行驶过程中两部对讲机可以保持通话的时间最长是多少小时?24.(9分)如图,AB 为⊙O的直径,CD AB ⊥于点E ,交⊙O于点D ,OF AC ⊥于点F . (1)试说明△ABC∽△DBE;(2)当∠A=30°,AF=3时,求⊙O中劣弧 的长.25.(13分) 某公园有一个抛物线形状的观景拱桥ABC ,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为c x y +-=2201且过顶点C (0,5)(长度单位:m )(1)直接写出c 的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m 的地毯,地毯的价格为20元 / 2m ,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH (H 、G 分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH 的周长为27.5 m ,求斜面EG 的倾斜角∠GEF 的度数.(精确到0.1°)26.(13分)如图1,在Rt ABC △中,90A ∠=o ,AB AC =,42BC =,另有一等腰梯形DEFG (GF DE ∥)的底边DE 与BC 重合,两腰分别落在AB 、AC 上,且G 、F 分别是AB 、AC 的中点.(1)直接写出△AGF 与△ABC 的面积的比值;C BAO F DE(2)操作:固定ABC △,将等腰梯形DEFG 以每秒1个单位的速度沿BC 方向向右运动,直到点D 与点C 重合时停止.设运动时间为x 秒,运动后的等腰梯形为DEF G ''(如图2).①探究1:在运动过程中,四边形F F CE '能否是菱形?若能,请求出此时x 的值;若不能,请说明理由.②探究2:设在运动过程中ABC △与等腰梯形DEFG 重叠部分的面积为y ,求y 与x 的函数关系式.四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.填空:1.(5分)计算:=-÷)2(4 .2.(5分)请写出一个既是轴对称,又是中心对称的几何图形名称: .泉州南安市2020年初中学业质量检查数学试卷 参考答案及评分标准 说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不AFG(D )BC (E )图1FGAF 'G 'BDCE图2给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.C ; 2.B ; 3.D ; 4.A ; 5.B ; 6.D ; 7.C . 二、填空题(每小题4分,共40分)8.1; 9.)3)(3(-+a a ; 10.120; 11.7106⨯; 12.5; 13.2=x ; 14.7; 15.1; 16.5; 17.(1)3,(2)72. 三、解答题(共89分) 18.(本小题9分)解:原式=231)3(41+⨯--⨯………………5分=214++…………… ……………7分 =7……………………………… … 9分19.(本小题9分)解:原式=x y y y 41222+-++………………………4分=142++x y ……………………………………5分 =1)2(2++x y …………………………………7分 当12=+x y 时,原式=3112=+⨯…………9分20.(本小题9分)解:已知:①④(或②③、或②④)……………3分 证明:若选①④ ∵CF BE =∴EF BC EC CF EC BE =+=+即,.…………………………………………5分 在△ABC 和△DEF 中AB =DE ,BC =EF ,AC =DF .……………………………8分 ∴ABC DEF △≌△.……………………………………9分CEBFDA(选择②③、或②④评分标准类似,证明略) 21.(本小题9分)解:(1)B 品牌的销售量为:300100400%50400=--÷(百个),画在条形统计图略.………………………3分 (2)45度.………………… ……………6分(3)商场对A 、B 、C 三种品牌纪念品数量可按1:3:4的比来进货.(答案不惟一,只要言之有理,大意正确,即可得分…………………9分 22. (本小题9分)解:(1)用12A A ,分别表示2支黑色笔,B 表示红色笔,列举所有等可能结果,用树状图表示如下:第一次抽取第二次抽取3分由上图可知,共有6种等可能结果,其中抽取的2支笔均是黑色有2种, ∴P (2支笔均是黑色)3162==.………………5分 (用列表法类似上述评分标准)(2)方法不唯一,例举一个如下:记6本书分别为12345P P P P P ,,,,,6P .用普通的正方体骰子掷1次,规定:掷得的点数为1,2,3,4,5,6分别代表抽得的书为12345P P P P P ,,,,,6P .…………9分23. (本小题9分)解:(1)(150—150x) 千米.………………………………………3分(2)相遇之后,两车的距离是(150 x —150)千米,…………………4分依题意可得不等式组:⎩⎨⎧≤-≤-.15150150,15150150x x ……………………………………………6分 解得1.19.0≤≤x ,…………………………………………8分2.09.01.1=-.答:两部对讲机可以保持通话的时间最长是0.2小时.. ……………9分 (本小题若用其他解法,也可酌情给分) 24.(本小题9分)(1)证明:∵AB 为⊙O 的直径,∴090=∠ACB . (1)∵CD AB ⊥, ∴090=∠DEB ,∴∠ACB=∠DEB .. ……………………………2分又∵∠A=∠D ,∴△ACB ∽△DEB .…………………………3分 (2)连结OC ,则OA OC =,………………4分 ∴∠ACO=∠A=30°,∴∠AOC=120° .……………………5分OF AC ⊥Q ,∴∠AFO=90°..…………………6分 在Rt △AFO 中,AOAO AF Cos 3300==,∴2=AO ………7分 ∴AC 弧的长为180120 π342=⋅π.…………………9分 25.(本小题13分)解(1)c=5.……………………………3分(2)由(1)知,OC=5,…………………………4分BA令0=y ,即052012=+-x ,解得10,1021-==x x .…………5分 ∴地毯的总长度为:3052202=⨯+=+OC AB ,………………6分 ∴900205.130=⨯⨯(元).答:购买地毯需要900元.……………………7分 (3)可设G 的坐标为)5201,(2+-m m ,其中0>m , 则5201,22+-==m GF m EF . ………………………………………8分 由已知得:5.27)(2=+GF EF , 即5.27)52012(22=+-m m ,………………………………………9分 解得:35,521==m m (不合题意,舍去).………………………10分 把51=m 代入52012+-m 75.3552012=+⨯-=. ∴点G 的坐标是(5,3.75).…………………………………… ……11分 ∴75.3,10==GF EF . 在Rt △EFG 中,375.01075.3tan ===∠EF GF GEF ,……………12分 ∴06.20≈∠GEF .…………………13分 26.(本小题13分)解:(1)△AGF 与△ABC 的面积比是1:4.………………………3分 (2)①能为菱形.……………………4分 由于FC ∥F E ',CE ∥F F ',∴四边形F F CE '是平行四边形.…………………………5分当221===AC CF CE 时,四边形F F CE '为菱形,………………… 6分 此时可求得2x =.∴当2x =秒时,四边形F F CE '为………… 7分②分两种情况:AFG(D )BC (E )图3M①当0x <≤如图3过点G 作GM BC ⊥于M .AB AC =Q ,90BAC ∠=o,BC =G 为AB 中点,GM ∴=.又G F Q ,分别为AB AC ,的中点,12GF BC ∴== 8分 方法一:162DEFG S ∴==梯形∴等腰梯形DEFG 的面积为6.GM =Q,BDG G S '∴=Y .…………… …………… 9分 ∴重叠部分的面积为:6y =-.∴当0x <≤y 与x的函数关系式为6y =.………………10分方法二:FG x '=Q,DC x =,GM =………… ……… 9分 ∴重叠部分的面积为:))62x x y +==.∴当0x <≤y 与x的函数关系式为6y =.………………10分②当x ≤ 设FC 与DG '交于点P , 则45PDC PCD ∠=∠=o . 90CPD ∴∠=o ,PC PD =,F GAF 'G ' BCE图4Q D P作PQ DC ⊥于Q ,则.1)2PQ DQ QC x ===……………11分 ∴重叠部分的面积为:221111)))82244y x x x x =⨯==-+.综上,当0x <≤y 与x 的函数关系式为6y =;当x ≤ 822412+-=x x y …………………13分 四、附加题(10分)1.(5分) 2-;2.(5分)如:矩形(答案不惟一).。
福建省泉州南安市2020年九年级6月初中学业质量检查数学试题

南安市2020年初中学业质量检查数学试题(满分:150分;考试时间:120分钟)学校班级姓名考号________友情提示:所有答案必须填写在答题卡相应的位置上.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答. 1.下列各数中,为负数的是( )A .(3)--B .|3|-C .13D .3- 2.李克强总理日前在政府工作报告中披露,2019年“粮食产量保持在1.3万亿斤以上”,可以说给全国人民吃了一颗“定心丸”。
有一种粮仓(圆锥和圆柱组成)如下左图所示的几何体,它的主视图是( )3.2020年1月27日,财政部、国家卫生健康委下达2020年基本公共卫生服务和基层疫情防控补助资金99.5亿元,加上已经提前下达的503.8亿元,今年中央财政安排基本公共卫生服务和基层疫情防控补助资金603.3亿元.其中603.3亿用科学记数法表示为( ) A .106.03310⨯ B .96.03310⨯ C .8603.310⨯ D .7603.310⨯ 4.有一个正多边形,它的内角和等于外角和,那么这个正多边形的边数是( ) A .8 B .6 C .4 D .3 5.下列艺术字中,可以看作是轴对称图形的是( )6.下列事件中,是不可能事件的是( )A .打开电视机,正在播放新闻B .任意画一个三角形,其内角和为180°C .买一张彩票,中奖D .从一副没有大小王的扑克牌中抽出两张,数字之和为277.下列计算正确的是( )A .623a a a ÷=B .236()a a = C .248a a a ⨯= D .532a a a -= 8.《九章算术》里有一道题:今有甲乙二人,不知道其钱包里有多少钱?若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50.问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则可列方程组( )A .25031502x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .25031502x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩9.如图,ABC ∆是O 的内接三角形,70C ∠=︒,过点A 的圆的切线交射线BO 于点P ,则P ∠的度数是( )A .60︒B .50︒C .45︒D .40︒ 10.若二次函数2y ax bx c =++的顶点在第二象限,且经过 点(0,1),(1,0),则S a b c =-+的变化范围是( ) A .11S -<< B .1S >C .12S <<D .02S <<第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分. 11.计算:23(2020)--= . 12.不等式组30219x x ->⎧⎨+<⎩的解集是 .13.返校复学前,小张进行了14天体温测量,结果统计如下:体温 36.3 36.4 36.5 36.6 36.7 36.8 天数123431则小张这14天体温的众数是 .14.若关于x 的一元二次方程210kx kx -+=有两个相等的实数根,则k 的值是 .15.在ABC ∆中,D 、E 分别是AB 、AC 的中点,BE 与CD 相交于点O ,若2DOE S ∆=,则BOC ∆的面积是 .16.如图,在平面直角坐标系中,正方形OABC 的顶点A 在x轴的正半轴上,ADE ∆的顶点D 在x 轴的正半轴上(点D 在点A 的右侧),点F 、G 分别是BC 、DE 的中点,反比例函数(0,0)kyk x x=≠>的图象过点F 、G ,若25AE DE ==,4AD =,则k 的值为 .三、解答题.:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组:331x y x y -=⎧⎨-=⎩.18.(本小题满分8分)如图,在菱形ABCD 中,点E 、F 分别为AB 、BC 边上的点,ADE CDF ∠=∠, 求证:AE CF =.19.(本小题满分8分)先化简,后求值:229(1)369x x x x x --÷+++,其中23x =+.20.(本小题满分8分)已知:如图,在ABC ∆中,90C ∠=︒.(1)尺规作图:在AC 边上,找一个点D ,使点D 到AB 的距离等于DC ;(不写作法,保留作图痕迹) (2)已知3BC =,4AC =,求CD 的长.CB21.(本小题满分8分)如图,已知Rt ABC ∆,90ACB ∠=︒,30B ∠=︒,2AB =,将Rt ABC ∆绕点C 顺时针旋转,得到Rt DEC ∆,使点A 的对应点D 恰好落在AB 边上. (1)求点A 旋转到点D 所经过的路线的长;(2)若点F 为AD 的中点,作射线CF ,将射线CF 绕点C顺时针方向旋转90︒,交DE 于点G ,求CG 的长.22.(本小题满分10分)在“新型冠状肺炎病毒”流行期间,日常抑菌刻不容缓,某商场积极响应国家号召,帮助广大客户抗击疫情,为此重磅推出75%酒精.根据市场调查:这种酒精销售单价定为25元时,每天可售出20瓶,若销售单价每瓶降低1元,每天可多售10瓶,已知每瓶75%酒精进价为15元.(1)若商场把75%酒精的销售单价定为21元,则商场每天的销量是多少瓶?(2)如果商场卖这种酒精一天的利润要达到350元,又要把更多的优惠给顾客,那么这种酒精的销售单价应该定为多少元?23.(本小题满分10分)某商场计划招聘A 、B 两种岗位的人员,A 岗位人员的工资方案:基本工资+抽成,其中基本工资为120元/天,每卖出一件商品得抽成2元;B 岗位人员的工资方案:无基本工资,仅以卖商品抽成计算工资,若当天卖出不超过60件商品,每件得抽成4元,超过60件的部分每件抽成6元.以下表格是对这两种岗位的现有人员进行调查10天后的数据:A 岗位(件)58 59 60 61 62 天数24211B 岗位(件)58 59 60 61 62 天数12241( (2)小王拟从A 、B 两个岗位中选择一个参加应聘,如果仅从日平均工资的角度考虑,请利用所学的统计知识为小王作出选择,并说明理由.24.(本小题满分12分)如图,点A 在线段EB 上,且12EA AB =,以AB 直径作O ,过点E 作射线EM 交O 于D 、C 两点,且AD CD =.过点B 作BF EM ⊥,垂足为点F . (1)求证:2CD CB CF EA ⋅=⋅; (2)求tan CBF ∠的值.25.(本小题满分14分)如图,点A 在x 轴正半轴上,点B 在y 轴正半轴上,OA OB =,点C 的坐标为(1,0)-,:3:1OA OC =,抛物线2y ax bx c =++经过点A B C 、、,顶点为D .(1)求a b c 、、的值; (2)若直线13y x n =+与x 轴交于点E ,与y 轴交于点F . ①当1n =-时,求BAF BAD ∠-∠的值;②若直线EF 上有点H ,使90AHC ∠=︒,求n 的取值范围.B(本页可作为草稿纸使用)。
2020年福建省泉州市南安市中考数学模拟试卷

中考数学模拟试卷一、选择题(本大题共10小题,共40.0分)1.下列实数中,介于与之间的是()A. B. C. D. π2.下列计算正确的是()A. B. a+2a=3a C. (2a)3=2a3 D. a6÷a3=a23.为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从市文旅局获悉,“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为()A. 1.7118×102B. 0.17118×107C. 1.7118×106D. 171.18×104.图①是由五个完全相同的小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A. 主视图B. 俯视图C. 左视图D. 主视图、俯视图和左视图都改变5.不透明袋子中装有若干个红球和6个蓝球,这些球除了颜色外,没有其他差别,从袋子中随机摸出一个球,摸出蓝球的概率是0.6,则袋子中有红球()A. 4个B. 6个C. 8个D. 10个6.如图,将直尺与含30°角的三角尺放在一起,若∠1=25°,则∠2的度数是()A. 30°B. 45°C. 55°D. 60°7.如果一个正多边形的内角和为720°,那么这个正多边形的每一个外角是()A. 60°B. 120°C. 135°D. 45°8.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A. 12B. 15C. 20D. 329.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A. 6(m-n)B. 3(m+n)C. 4nD. 4m10.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A. B.C. D.二、填空题(本大题共6小题,共24.0分)11.计算:|-3|-sin30°=______.12.已知一组数据:12,10,8,15,6,8.则这组数据的中位数是______.13.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是______.14.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为______.15.等腰Rt△ABC中,斜边AB=12,则该三角形的重心与外心之间的距离是______.16.动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是______.三、计算题(本大题共2小题,共18.0分)17.用列代数式或列方程(组)的方法,解决网络上流行的一个问题:法国新总统比法国第一夫人小24岁,美国新总统比美国第一夫人大24岁,法国新总统比美国新总统小32岁.求:美国第一夫人比法国第一夫人小多少岁?18.阅读下列材料,关于x的方程:x+=c+的解是x1=c,x2=;x-=c-的解是x1=c,x2=-;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……(1)请观察上述方程与解的特征,比较关于x的方程x+=c+(a≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+=a+.四、解答题(本大题共7小题,共68.0分)19.解不等式组,并把解集在数轴上表示出来:20.如图:△ABC与△DEF中,边BC,EF在同一条直线上,AB∥DE,AC∥DF,且BF=CE,求证:AC=DF.21.先化简,再求值:,其中x=1-.22.在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:根据以上信息,解答下列问题:(1)该调查的样本容量为______,a=______;(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是______;(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.23.如图,在Rt△ABC中,∠ACB=90°.(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)(2)在(1)的条件下,以点P为圆心,PC长为半径的⊙P中,⊙P与边BC相交于点D,若AC=6,PC=3,求BD的长.24.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.25.已知:抛物线y=2ax2-ax-3(a+1)与x轴交于点AB(点A在点B的左侧).(1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;(2)如图,当AC⊥BC时,求a的值和AB的长;(3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点P作PH⊥x轴于点H,交BC于点D,作PE∥AC交BC于点E,设△ADE 的面积为S,请求出S与h的函数关系式,并求出S取得最大值时点P的坐标.答案和解析1.【答案】A【解析】解:∵<<<<π<,∴介于与之间的是.故选:A.依据开方数越大对应的算术平方根越大求解即可.本题主要考查的是估算无理数的大小,掌握估算无理数大小的方法是解题的关键.2.【答案】B【解析】解:A、+,无法计算,故此选项错误;B、a+2a=3a,正确;C、(2a)3=8a3,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:B.直接利用二次根式的加减运算法则以及合并同类项法则、积的乘方运算法则和同底数幂的除法运算分别计算得出答案.此题主要考查了二次根式的加减运算以及合并同类项、积的乘方运算和同底数幂的除法运算等知识,正确掌握运算法则是解题关键.3.【答案】C【解析】解:将171.18万用科学记数法表示为:1.7118×106.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:①的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;②的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;所以将图①中的一个小正方体改变位置后,俯视图和左视图均没有发生改变,只有主视图发生改变,故选:A.根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图对两个组合体进行判断,可得答案.本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.5.【答案】A【解析】解:设袋子中有红球x个,根据题意得=0.6,解得x=4.经检验x=4是原方程的解.答:袋子中有红球有4个.故选:A.设袋子中有红球x个,利用概率公式得到=0.6,然后解方程即可.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.【答案】C【解析】解:∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,∴∠BEF=∠1+∠F=55°,∵AB∥CD,∴∠2=∠BEF=55°,故选:C.首先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质,此题难度不大.7.【答案】A【解析】解:设这个正多边形的边数为n,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故选A.首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.8.【答案】D【解析】解:如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD==5,∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入y=,得,k=8×4=32,故选:D.分别过点D,C作x轴的垂线,垂足为M,N,由点D的坐标推出OM,DM的长度,在△ODM中利用勾股定理求出菱形的边长OD的长,证Rt△ODM≌Rt△BCN,可证明BN=OM=3,求出ON的长,因为DM=CN=4,所以可写出点C坐标,将点C的坐标代入y=,即可求出k的值.本题考查了菱形的性质,勾股定理,全等三角形的判定,反比例函数的性质及图象上点的坐标的特征等,解题关键是熟练掌握反比例函数的性质.9.【答案】D【解析】解:设小长方形的长为a,宽为b(a>b),则a+3b=n,阴影部分的周长为2n+2(m-a)+2(m-3b)=2n+2m-2a+2m-6b=4m+2n-2n=4m,故选:D.设小长方形的长为a,宽为b(a>b),根据矩形周长公式计算可得结论.本题考查整式的加减、列代数式、矩形的周长,解答本题的关键是明确整式的加减运算的计算方法和整体代入的思想.10.【答案】D【解析】解:设AB=x,则AE=EB=由折叠,FE=EB=则∠AFB=90°由tan∠DCE=∴BC=,EC=∵F、B关于EC对称∴∠FBA=∠BCE∴△AFB∽△EBC∴∴y=故选:D.根据折叠,可证明∠AFB=90°,进而可证明△AFB∽△EBC,由tan∠DCE=,分别表示EB、BC、CE,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.本题为代数几何综合题,考查了解直角三角形、轴对称图形性质、相似三角形的性质等知识.解答关键是做到数形结合.11.【答案】【解析】解:原式=3-=.故答案为:.直接利用特殊角的三角函数值以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.【答案】9【解析】解:将数据从小到大重新排列为:6、8、8、10、12、15,所以这组数据的中位数为=9,故答案为:9.根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.13.【答案】4【解析】【分析】此题主要考查了扇形的弧长公式,勾股定理,求出OA是解本题的关键.先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴==2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.14.【答案】15°【解析】解:由图可知,∠AOB=75°-45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°.根据圆周角和圆心角的关系解答即可.本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.15.【答案】2【解析】解:∵直角三角形的外心是斜边的中点,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=2,故答案为:2.根据直角三角形的性质得到CD=3,根据重心的性质求出ID的长即可.本题考查的是三角形的重心的性质、直角三角形的外心的特点,掌握直角三角形斜边上中线是斜边的一半和三角形的重心到顶点的距离与重心到对边中点的距离之比为2:1是解决问题的关键.16.【答案】【解析】解:∵动点A(m+2,3m+4)在直线l上,∴直线l解析式为y=3x-2如图,直线l与x轴交于点C(,0),交y轴于点A(0,-2)∴OA=2,OC=∴AC==若以B为圆心,半径为1的圆与直线l相切于点D,连接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴BC=∴以B为圆心,半径为1的圆与直线l相切时,B点坐标为(-,0)或(+,0)∴以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是故答案为:先求直线l的解析式为y=3x-2,即可求点A,点C坐标,可得AC的长度,利用三角函数可求以B为圆心,半径为1的圆与直线l相切时点B的坐标,即可求解.本题考查了直线与圆的位置关系,一次函数的应用,勾股定理等知识,熟练运用判断直线和圆的位置关系的方法:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r,②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.17.【答案】解:设法国新总统x岁,则法国第一夫人:(x+24)岁,美国新总统:(x+32)岁,美国第一夫人:(x+32-24)=(x+8)岁,故美国第一夫人比法国第一夫人小:(x+24)-(x+8)=16(岁).故美国第一夫人比法国第一夫人小16岁.【解析】根据题意设法国新总统x岁,则法国第一夫人:(x+24)岁,美国新总统:(x+32)岁,美国第一夫人:(x+8)岁,进而列出代数式(x+24)-(x+8)计算得出答案.此题主要考查了列代数式,正确表示出每个人的年龄是解题关键.18.【答案】解:(1)方程的解为x1=c,x2=,验证:当x=c时,∵左边=c+,右边=c+,∴左边=右边,∴x=c是x+=c+的解,同理可得:x=是x+=c+的解;(2)方程整理得:(x-3)+=(a-3)+,解得:x-3=a-3或x-3=,即x=a或x=,经检验x=a与x=都为分式方程的解.【解析】(1)猜想得到方程的解,验证即可;(2)利用(1)的结论确定出方程的解即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.【答案】解:∵解不等式①得:x>4,解不等式②得:x>2,∴不等式组的解集是x>4,在数轴上表示为:.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.20.【答案】证明:∵AB∥DE,∵AC∥DF∴∠ACB=∠EFD,∵BF=CE∴BC=EF,且∠B=∠E,∠ACB=∠EFD,∴△ABC≌△DEF(ASA)∴AC=DF【解析】由“ASA”可证△ABC≌△DEF,即可得AC=DF本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定和性质是本题的关键.21.【答案】解:原式=÷=•=1-x,当x=1-时,∴原式=1-(1-)=;【解析】根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【答案】200 64 0.1【解析】解:(1)调查的样本容量为50÷25%=200(人),a=200-20-50-66=64(人),故答案为200,64;(2)刚好抽到A类学生的概率是20÷200=0.1,故答案为 0.1;(3)全校学生中家庭藏书不少于76本的人数:2000×=660(人).答:全校学生中家庭藏书不少于76本的人数为660人.(1)调查的样本容量为50÷25%=200(人),a=200-20-50-66=64(人);(2)刚好抽到A类学生的概率是20÷200=0.1;(3)全校学生中家庭藏书不少于76本的人数:2000×=660(人).本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.23.【答案】解:如图所示:(1)作∠A的平分线交BC于点P,点P即为所求作的点.(2)作PE⊥AB于点E,则PE=PC=3,∴AB与圆相切,∵AC与圆相切,∴AC=AE,设BD=x,BE=y,则BC=6+x,BP=3+x,∵∠B=∠B,∠PEB=∠ACB,∴△PEB∽△ACB∴==∴==解得x=2,答:BD的长为2.【解析】(1)根据角平分线的性质利用尺规作图作∠A的平分线交BC于点P即可;(2)根据三角形相似判定和性质证明△PEB∽△ACB对应边成比例即可求解.本题考查了相似三角形的判定和性质、切线的性质、角平分线的性质,解决本题的关键是利用尺规作点P.24.【答案】解:(1)①如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,②设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=.(2)由旋转可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“匀称三角形”.由②知:AC:AD:CD=:2:,设AC=,则AD=2a,CD=a,如图②,过点C作CH⊥AB,垂足为H,则∠AHC=90°,∵∠BAC=45°,∴,∵=,解得a=2,a=-2(舍去),∴,判断:CM不是△ACD的“匀称中线”.理由:假设CM是△ACD的“匀称中线”.则CM=AD=2AM=4,AM=2,∴tan,又在Rt△CBH中,∠CHB=90°,CH=,BH=4-,∴tan B=,即∠AMC≠∠B,这与∠AMC=∠B相矛盾,∴假设不成立,∴CM不是△ACD的“匀称中线”.【解析】(1)①作Rt△ABC的三条中线AD、BE、CF,由“匀称中线”的定义可判断“匀称中线”是BE,它是AC边上的中线;②设AC=2a,则CE=a,BE=2a,在Rt△BCE 中∠BCE=90°,可求出BC、AB,则BC:AC:AB的值可求出;(2)由②知:AC:AD:CD=:2:,设AC=,则AD=2a,CD=a,过点C 作CH⊥AB,垂足为H,则∠AHC=90°,由三角形ABC的面积可解出a的值,判断:CM 不是△ACD的“匀称中线”.本题是圆的综合题,考查了新定义、旋转的性质、圆周角定理、勾股定理、三角形的面积、三角函数的定义、反证法等知识,解题的关键是理解“匀称中线”的定义,灵活运用所学知识解决问题,学会用方程的思想思考问题.25.【答案】解:(1)y=2ax2-ax-3(a+1)=a(2x2-x-3)-3,令2x2-x-3=0,解得:x=或-1,故第三象限内的一个定点C为(-1,-3);(2)函数的对称轴为:x=-=,设函数对称轴与x轴交点为M,则其坐标为:(,0),则CM==,则AB=2CM=,则点A、B的坐标分别为:(-3,0)、(,0);将点A的坐标代入函数表达式得:18a+3a-3a-3=0,解得:a=,函数的表达式为:y=(x+3)(x-)=x2-x-;(3)过点E作EF⊥PH,设:∠ACB=α,则∠ACB=∠HPE=∠DEF=α,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=x-,设点P(h,h2-h-),则点D(h,h-),故tan∠ACB=tanα=,则sinα=,y D-y E=DE sinα=PD sinα•sinα,S=S△ABE-S△ABD=×AB×(y D-y E)=××(h--h2+h+=-h2+h-,∵-<0,∴S有最大值,当h=时,S的最大值为:,此时点P(,-).【解析】(1)y=2ax2-ax-3(a+1)=a(2x2-x-3)-3,令2x2-x-3=0,即可求解;(2)M的坐标为(,0),CM==,则AB=2CM=,即可求解;(3)y D-y E=DE sinα=PD sinα•sinα,S=S△ABE-S△ABD,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
南安市2020年中考数学总复习过关卷(6)参考答案及评分标准

南安市2019年中考数学总复习单元过关卷(三角形知识)参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.答案:一、选择题1、C2、 D3、 C4、B5、A6、C7、A8、A9、 B 10、B二、填空题11、100° 12、2 13、2.414、3 15、7 16、2019217.解:如图(1)所示:如图(2)所示:如图(3)所示:如图(4)所示:(每个图2分)18.解:∵∠A=70°,∠B=50°,………………………2分∴∠ACB=180°-70°-50°=60°(三角形内角和定义).4分∵CD平分∠ACB,…………………… 6分∴∠ACD=21∠ACB=21×60°=30°.…………………… 8分19.解:∵∠C=∠ABC=2∠A,…………………… 2分\∴∠C+∠ABC+∠A=5∠A=180°,……………………4分∴∠A=36°.则∠C=∠ABC=2∠A=72°.…………………… 6分又BD是AC边上的高,则∠DBC=90°-∠C=18°.…………………… 8分20证明:∵AD∥BC,∴∠ADB=∠DBC.…………………………2分∵BD平分∠ABC.∴∠ABD=∠DBC.…………………………4分南安市初中数学“磨题坊”共享卷∴∠ADB=∠ABD . …………………………6分∴△ABD 为等腰三角形. …………………………8分21.证明:在Rt △ABC 中,∵E 为斜边AB 的中点, …………………………2分∴CE=21AB . …………………………4分 在Rt △ABD 中, ∵E 为斜边AB 的中点, ………………………… 6分 ∴DE=21AB ∴CE=DE . …………………………8分22.(1)解:∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,即∠C=30°. …………………………2分(2)证明:∵∠B=∠C=30°,AD ⊥AC ,AE ⊥AB . …………………4分∴∠ADC=∠AEB=60°, …………………6分∴∠ADC=∠AEB=∠EAD=60°, ……………………8分∴△ADE 是等边三角形. …………………………10分23.解:(1)∵△AOC 绕直角顶点C 按顺时针方向旋转90°得△BDC ,∴∠OCD=90°,CO=CD , …………………………2分 ∴△COD 是等腰直角三角形; …………………………4分(2)△BOD 为等腰三角形.理由如下:∵△COD 是等腰直角三角形,∴∠COD=∠CDO=45°, …………………………6分 而∠AOB=140°,α=95°,∠BDC=95°,∴∠BOD=360°-140°-95°-45°=80°,∠BDO=95°-45°=50°, …………………………8分 ∴∠OBD=180°-80°-50°=50°.∴△BOD 为等腰三角形. …………………………10分24.解:(1)∠BAD=180°-∠ABD-∠BDA=180°-40°-115°=25°;从图中可以得知,点D 从B 向C 运动时,∠BDA 逐渐变小;故答案为:25°;小. ………………2分(2)∵∠EDC+∠EDA+∠ADB=180°,∠DAB+∠B+∠ADB=180°,∠B=∠EDA=40°,∴∠EDC=∠DAB .∵∠B=∠C , …………………………4分∴△ABD ≌△DCE .∴当DC=AB=2时,△ABD ≌△DCE . …………………………7分(3)∵AB=AC ,∴∠B=∠C=40°,①当AD=AE 时,∠ADE=∠AED=40°, …………………………9分 ∵∠AED >∠C ,∴此时不符合;②当DA=DE 时,即∠DAE=∠DEA=21(180°-40°)=70°, ∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;∴∠BDA=180°-30°-40°=110°; …………………………11分 ③当EA=ED 时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴∠BDA=180°-60°-40°=80°;∴当∠ADB=110°或80°时,△ADE 是等腰三角形. ……………13分25.解:(1)当t=2时,PC=2,∵BC=2,∴PC=BC ,∴∠PBC=45°,∴∠BAE=90°,∴∠AEB=45°,∴AB=AE=3,…………………………2分 ∴OE=5,∴点E 的坐标是(5,0);……………………3分 (2)当AB 平分∠EBP 时,∠PBF=45°,则∠CBP=∠CPB=45°,CP=CB=2,∴t=2;…………………5分(3)存在,∵∠ABE+∠ABP=90°,∠PBC+∠ABP=90°,∴∠ABE=∠PBC ,∵∠BAE=∠BCP=90°,∴△BCP ∽△BAE ,AE PCAB BC=,∴32=AE t, ………………7分∴AE=23t ,当点P 在点O 上方时,若AB OEAE OP=时,△POE ∽△EAB ,……………………9分∵OP=3-t ,OE=2+23t ,∴3232233t t t +=-, ∴t 1=31324+-, t 2=31324--(舍去), ∴OP=3-31324+-=313213-, ……………………10分 ∴P 的坐标为(0,313213-), ……………………11分 当点P 在点O 下方时,①若AEOE AB OP =,则△OPE ∽△ABE , ∴t t t 2323233+=-, 解得:t 1=3+13, t 2=3-13(舍去),OP=t-3=3+13-3=13,P 的坐标为(0,-13),②若ABOE AE OP =, 则△OEP ∽△ABE ,3232233t t t +=-, 解得:49t 2=-9, ∴这种情况不成立,∴P 的坐标为:(0,313213-),(0,-13). …………13分。
(2020南安质检)初三年数学科答案

过 D 作 DE AB 于点 E , 由(1)知, DE DC , BD 是 ABC 的平分线, ∴ CBD EBD 又 DEB C 90, BD BD , ∴ BCD ≌ BED ∴ BE BC 3, ∴ AE AB BE 5 3 2, ………………………………………6 分
∵点 I 的坐标为 1,0 , ∴ -31 m=0,
∴ m 3 ,即直线 IH 1 的解析式为 y -3x 3 …………………………………9 分
∴点 B 0,3 在直线 IH 1 的解析式为 y -3x 3 上.
过点 H1 作则 H1K⊥ x 轴于 K,则 BOI ∽ H1KI ,
∴ OI OB IB KI KH1 IH1
18.(8 分)
证明:∵四边形 ABCD 是菱形,
∴ A C , ……………………………………………………………………2 分
DA DC
……………………………………………………………………4 分
在 ADE 和 CDF 中,
A C
DA DC
,
ADE CDF
∴ ADE ≌ CDF
……………………………………………………………6 分
…………………………………………………………10 分
∵ OI 1, OB 3 , IB
12 32
10 ,
IH1
1 2
AC
2.
∴ 1 3 10 KI KH1 2
即 KI
10
3 10
5 , KH1 5
∴点 H1 的坐标为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学科试卷一、选择题:(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,无理数是( )A .0.010010001B .0)3(C .030cos D .31 2.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是( )A .B .C .D .3.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )A .B .C .D .4.下列成语中描述的事件是随机事件的是( )A .守株待兔B .瓮中捉鳖C .拔苗助长D .水中捞月 5.若,05>+x 则( )A .03<+xB . 03<-xC .15-<xD .162<-x 6.如图,直线y =ax +b 与x 轴交于A 点(4,0),与直线y =mx 交于B 点(2,n),则关于x 的一元一次方程mx b ax =-的解为( )A .2=xB .2-=xC .4=xD .4-=x第6题图 第7题图7.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和8.在平面直角坐标系中,已知a ≠b ,设函数y =(x +a )(x +b )的图象与x 轴有M 个交点,函数y =(ax +1)(bx +1)的图象与x 轴有N 个交点,则( )A .M =1-N 或M =1+NB .M =1-N 或M =2+NC .M =N 或M =1-ND .M =N 或M =1+N 二、填空题:(本题共6小题,每小题3分,共18分.) 9.小明用])5()5()5()5[(1012102322212-+-+-+-=x x x x S 计算一组数据的方差,则 10321x x x x ++++ 的值是______.10.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头, 要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC与阻力臂BC 之比为6:1,要使这块石头滚动,至少要将杠杆的A 端向下压______cm . 11.若2021)2019)(2020(=--a a ,则22)2019()2020(-+-a a =_______.12.如图,在□ABCD 中,已知B ∠=70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,则劣弧DE ︵的长为_______.13.如图所示,△ABC 中,已知AD 和BE 分别是边BC ,AC 上的中线,且AD ⊥BE ,垂足为G ,若GD =2,GE =3,则线段CG 为_______.14.如图,在直角坐标系中,点A ,B 分别在x 轴和y 轴,43=OB OA ,∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数x k y =的图象过点C ,当以CD 为边的正方形的面积为74时,k 的值为_______.第12题图 第13题图 第14题图二、 解答题:(本题共7小题,共58分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值234(1)11x x x --÷++,其中x 是方程2560x x -+=的根.16.(6分)如图,已知AB//CF ,D 是AB 上一点,DF 交AC 于点E ,若AB =BD +CF ,求证:△ADE ≌△CFE .17.(8分)已知△ABC 中,∠A =22.5°,∠B =45°.(1)求作:⊙O ,使得圆心O 落在AB 边上,且⊙O 经过A 、C 两点.(尺规作图,保留作图痕迹,不必写作法)(2)若⊙O 的半径为2,⊙求证:BC 是⊙O 的切线;⊙求A ∠tan 的值. (3)仿照以上求A ∠tan 的过程,可得:015tan =_______.ABCEDOGAECBD18.(8分)甲乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成3元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元. 假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并记录其100天的送餐单数,得到如下频数表.甲公司送餐员送餐单数频数表 乙公司送餐员送餐单数频数表(2)(1)求甲公司送餐员的日平均工资;(3)某人拟到甲乙两家公司中的一家应聘送餐员,如果仅从日平均工资的角度考虑,那么他应该选择去哪家公司应聘?请说明理由.19.(8分)为落实“精准扶贫”精神,我市农科院专家指导李大爷利用坡前空地种植优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足⎩⎨⎧≤<+-≤≤+=)3015(75)151(153x x x x m (x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图: 如果李大爷的草莓在上市销售期间每天的维护费用为80元. (1)求销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求前十天日销售利润y的最大值及相应的x.20.(10分)模型规律如图1,延长CO交AB于点D,则⊙BOC=⊙1+⊙B=⊙A+⊙C+⊙B.因为凹四边形ABOC形似箭头,其四角具有“⊙BOC=⊙A+⊙B+⊙C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:⊙如图2,⊙A+⊙B+⊙C+⊙D+⊙E+⊙F=.⊙如图3,⊙ABE、⊙ACE的2等分线(即角平分线)BF、CF交于点F,已知⊙BEC=120°,⊙BAC=50°,则⊙BFC=.⊙如图4,BO i、CO i分别为⊙ABO、⊙ACO的2020等分线(i=1,2,3,…,2018,2019).它们的交点从上到下依次为O1、O2、O3、…、O2019.已知⊙BOC=m°,⊙BAC=n°,则⊙BO1000C=度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,⊙BCD=2⊙BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.21.(12分)已知抛物线C 1:和C 2:y =x 2 (1)如何将抛物线C 1平移得到抛物线C 2?(2)如图1,抛物线C 1与x 轴正半轴交于点A ,直线y =34-x +b 经过点A ,交抛物线C 1于另一点B .请你在线段AB 上取点P ,过点P 作直线PQ ⊙y 轴交抛物线C 1于点Q ,连接AQ .若AP =AQ ,求点P 的横坐标;(3)如图2,⊙MNE 的顶点M 、N 在抛物线C 2上,点M 在点N 右边,两条直线ME 、NE 与抛物线C 2均有唯一公共点,ME 、NE 均与y 轴不平行.若⊙MNE 的面积为2,设M 、N 两点的横坐标分别为m 、n ,求m 与n 的数量关系.4)1(2--=x y九年级数学科试卷 参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题:(本题共8小题,每小题3分,共24分.) 1. C 2. D 3. C 4.A 5. D 6.B 7.C 8.D 三、 填空题:(本题共6小题,每小题3分,共18分.) 9.50; 10. 60; 11.4043; 12.23π; 13.2√13; 14. 14.四、 解答题:(本题共7小题,共58分.) 15.解:原式)2(2112-++⋅+-=x x x x x )( 21+=x…………………2分3(20)3)(2(065212===--=+-x x x x x x 舍去),……………………4分当3=x 时,原式51=………………………6分 16.证明:∵AB =BD +CF ,又∵AB =BD +AD ,∴CF =AD∵AB//CF ,∴∠A =∠ACF ,∠ADF =∠F …………………2分在△ADE 与△CFE 中{∠A =∠ACFCF =AD ∠ADF =∠F,∴△ADE ≌△CFE(ASA). ………………………6分17.解:(1)作图:如图1即为所求作的图 …………………2分(2)①证明:如图2,连接OC , ∵OA =OC ,∠A =22.5° ∴∠BOC =45°,又∵∠B =45°,∴∠BOC +∠B =90° ∴∠OCB =90° ∴OC ⊥BC ,且点C 在⊙O 上∴BC 是⊙O 的切线. …………………………………4分 ⊙过C 作CH ⊥AB 于H 点,由①得:∠OCB =90°,∠OCB =90°,∠B =45°, ∴△OBC 是等腰直角三角形,∵OA =OC =2,CH=BCsin ∠B=2,AH=22+=+OH AO …………………………………6分∴在ACH Rt ∆中,A ∠tan =AH CH=12- …………………7分(3)3215tan 0-= …………………8分 18.解:(1)甲公司送餐员日平均送餐单数为:7.391.0421.0413.0404.0391.038=⨯+⨯+⨯+⨯+⨯ 所以甲公司送餐员日平均工资为:1.1997.39380=⨯+(元) …………………3分 (2)乙公司送餐员日平均工资为:(元)2.2021.0)72540(4.0)71540(2.05402.05391.0538=⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯⨯+⨯⨯…………………6分2.2021.199<所以这个人应该选择去乙公司应聘. …………………8分H19.解:(1)当1≤x ≤10时,设n =kx +b ,将点A ,B 代入,得⎩⎨⎧+=+=b k b k 103012,解得⎩⎨⎧==102b k ⊙n =2x +10同理得,当10<x ≤30时,n =444.1+-x ⊙销售量n与第x天之间的函数关系式:⎩⎨⎧≤<+-≤≤+=)3010(444.1)101(102x x x x n ………………………………4分 (2)⊙y =mn ﹣80整理得,⎪⎩⎪⎨⎧≤≤+-<<++-≤≤++=)3015(32201494.1)1510(5801112.4)101(70606222x x x x x x x x x y ……………7分(3)当1≤x ≤10时,⊙y =6x 2+60x +70的对称轴x =562602-=⨯-=-a b ⊙x =10时,y 取最大值,且10y =1270 ………………………8分所以,前十天中,在草莓销售第10天时,日销售利润y 最大,最大值是1270元.20.解:(1)⊙2α; ………………………1分⊙85°; ………………………3分 ⊙)1015110150(n m +; ………………………6分 (2)如图5,连接OC ,⊙OA =OB =OD ,⊙⊙OAB =⊙OBA ,⊙OAD =⊙ODA ,⊙⊙BOD =⊙BAD +⊙ABO +⊙ADO =2⊙BAD , ⊙⊙BCD =2⊙BAD , ⊙⊙BCD =⊙BOD ,⊙BC =CD ,OA =OB =OD ,OC 是公共边, ⊙⊙OBC ⊙⊙ODC (SSS ),⊙⊙BOC =⊙DOC ,⊙BCO =⊙DCO , ………………………8分 ⊙⊙BOD =⊙BOC +⊙DOC ,⊙BCD =⊙BCO +⊙DCO , ⊙⊙BOC =21⊙BOD ,⊙BCO =21⊙BCD , 又⊙BOD =⊙BCD , ⊙⊙BOC =⊙BCO ,⊙BO =BC , ………………………9分 又OB =OD ,BC =CD , ⊙OB =BC =CD =DO ,⊙四边形OBCD 是菱形. ………………………10分21.解:(1)将抛物线C 1向左平移1个单位长度,再向上平移4个单位长度可得到抛物线C 2;………………………2分(2)与x 轴正半轴的交点A (3,0),⊙直线y =34-x +b 经过点A ,⊙b =4, ⊙y =34-x +4, 4)1(2--=x y⎪⎩⎪⎨⎧--=+-=4)1(4342x y x y 消去y ,得 x =3或x =37-, ⊙B (34-,964), ………………………………4分 设P (t ,434+-t ),且337<<-t , ⊙PQ ⊙y 轴,⊙Q (t ,t 2﹣2t ﹣3), ………………………………5分 当AP =AQ 时,=-P y Q y即﹣4+t 34=t 2﹣2t ﹣3, ⊙t =31, ⊙P 点横坐标为31; ………………………………7分 (3)设直线ME 的解析式为y =k (x ﹣m )+m 2,⎩⎨⎧=+-=22)(x y m m x k y 消去y ,得 x 2﹣kx +km ﹣m 2=0,⊙=k 2﹣4km +4m 2=(k ﹣2m )2=0,⊙k =2m ,⊙直线ME 的解析式为y =2mx ﹣m 2,同理, 直线NE 的解析式为y =2nx ﹣n 2,⊙E (2n m +,mn ), ………………………………10分 ⊙MGE FNE MGFN MNE S S S S ∆∆∆--=梯形 =21[(n 2﹣mn )+(m 2﹣mn )]×(m ﹣n )﹣21(n 2﹣mn )×(2n m +﹣n ) ﹣21(m 2﹣mn )×(m ﹣2n m +)=2, ⊙(m ﹣n )3﹣2)(3n m -=4, ⊙(m ﹣n )3=8,⊙m ﹣n =2; ………………………………12分。