直读光谱仪的光学系统构造
光电直读光谱仪的五个组成部分

光电直读光谱仪的五个组成部分
光电直读光谱仪是一种用于分析样品光谱的仪器,它由以下五个组成部分构成:
1. 光源:光源是光电直读光谱仪的一个关键部件,它提供了用于激发样品的光线。
光源通常使用氙灯或钨丝灯等高亮度、高亮度的光源,以保证光线的稳定性和均匀性。
2. 光栅:光栅是光电直读光谱仪的另一个关键部件,它可以将光线分散成不同波长的光谱。
光栅通常由许多等距的刻痕组成,这些刻痕可以将光线反射或折射,从而使不同波长的光在不同的方向上反射或折射,最终形成光谱。
3. 光路:光路是将光线从样品容器中引导到检测器的路径。
光路通常由凸透镜、反射镜等光学元件组成,可以调节光线的聚焦和方向,以使之完整地进入检测器中。
4. 样品容器:样品容器是将待分析的样品置于其中的部件。
样品容器通常由石英玻璃或塑料制成,具有较好的透明性和耐腐蚀性,以承受不同样品的化学性质。
5. 检测器:检测器是光电直读光谱仪的最后一个组成部分,它用于测量样品吸收或发射不同波长的光线。
检测器通常使用光电二极管、光电倍增管或光电子束多道分析器等高灵敏度、高精度的器件,以保证光谱的准确性和可靠性。
直读光谱仪原理及结构简介

直读光谱仪原理及结构简介在上文中小编为大家分享的都是与直读光谱仪相关的知识,想必各位对直读光谱仪也有了一定的了解,下文小编将继续与您分享直读光谱仪的相关知识。
光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。
目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即:1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。
2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。
3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。
控制整个仪器正常运作4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。
二、光电直读光谱仪4个模块的种类和特点:1、激发系统:(1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响(2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定(3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力(4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。
(5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出佳的激发状态进行激发,并仅采集这几个元素。
把各元素的激发状态按照试验情况进行分类讨论)2、光学系统:(1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。
(2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。
直读光谱使用说明

光电直读使用说明一根本原理光电直读光谱仪是利用光电测量方法直接测定光谱线强度的光谱仪〔又称为光量计〕一、直读光谱仪主要由三局部组成:光源、色散系统、检测系统。
1、光源电火花光源:通常气压下两极间加上高电压,到达击穿电压时,在两极尖端迅速放电产生电火花。
2、散系统色散元件用凹面光栅并有一个入射狭缝与多个出射狭缝组成罗兰圆Rouland〔罗兰〕发现在曲率半径为R的凹面反射光栅上存在一个直径为R的圆。
光栅中心点与圆相切,入射狭缝S在圆上,测不同波长的光都成像在这个圆上,即光谱在这个圆上,这个圆叫罗兰圆。
这个凹面光栅既起色散作用,又起聚用。
聚用是由于凹面反射镜的作用,能将色散后的光聚焦。
将出射狭缝安装在罗兰圆上,在出射狭缝后安装光电倍增管,一一进展检测。
凹面光栅不需借助成像系统形成光谱,因此它不存在色差,由于减少了光学部件而使得光的吸收和反射损失大大减小。
1、测系统利用光电方法直接测定谱线强度。
光电直读光谱仪的检测元件主要是光电增管,它既可将光电转换又可将电流放大。
综上,从光原发出的光经透镜聚焦后,在入射狭缝上成像并进入狭缝。
进入狭缝的光投射到凹面光栅上,凹面光栅将光色散、聚焦在焦面上,在焦面上安装了一个出射狭缝,每一狭缝使用任何一条固定波长的光通过,然后投射到到狭缝后的光电倍增管进展检测。
最后经过计算机处理后,打印出数据与显示显示,全部经过除进样外,都是微型计算机程序控制,自动运行。
一、分析原理每一个光电倍增管连接一个积分电容器,由光电倍增管输出的电流向电容器充电,通过测定积分电容器上的电压来测定谱线强度I。
光电流与谱线强度I成正比。
即i=KI。
〔K 为比例常数〕在曝光时间t积分谱线强度,也就是接收到的总能量为:E=∫0t Id t=1/k∫0t id t由光电倍增管输出的光电流向积分电容器充电,在t时间,积累的电荷Q为:Q=∫0t id t,电容器的电压u为:u=Q/C=1/t∫0t id t=KE/C (电容器电容量C固定)K与C之比为常数,则u=KE,在一定的曝光时间t,谱线强度是不变的,则:E=It,u=Kit,说明积分电容器的充电电压与谱线强度成正比。
光电直读光谱仪的结构简介 光电直读光谱仪操作规程

光电直读光谱仪的结构简介光电直读光谱仪操作规程作为一款光谱分析仪器,光电直读光谱仪是通过利用光电转换接收方法作多元素同时分析的发射光谱仪器。
常见光电直读光谱仪是由光源部分、聚光部分、分光部分和测光部分所构成。
其中光源部分使试样激发发光,然后通过聚光部分将发出的光聚集起来导入分光部分,然后分光部分再将光色散成各元素的谱线,而测光部分再用光电法测量各元素的谱线强度,将其测光读数换算成为元素养量分数表示出来,然后记录进行分析记录。
由于目前电感耦合高频等离子体光源在业内的使用较为广泛,因而光电直读光谱仪也愈发突出其使用价值。
以下依据网上资料,对常见光电直读光谱仪的结构进行简单介绍:1.光源发生器:用于光电光谱分析的光源发生器有火花发生器、电弧发生器和低压电容器放电发生器等。
2.光源的电极座:为了搭载块状试料、棒状试料和对极。
块状的电极座一般可以放入直径20 mm以上的平面试料,使用各种各样的样品夹具可以同时放入棒状试料、小型试料和薄板试料。
在真空光电光谱仪中,光源的电极座具有使用氩气气氛的结构,氩气流量可以由流量计和自动阀掌控。
3.聚光装置:由聚光透镜系统构成,其作用是收集光源的光,使其入射到分光系统。
在这个系统中,一般要求充分利用来自光源的光辐射,得到大的光强度的同时,充分发挥机器的功能,达到必要的辨别率。
通常,使用单透镜成像法、三透镜中心成像法、圆筒透镜成像法,使来自光源的光在准直透镜上成像。
4.分光器:由入射狭缝、分光元件和出射狭缝系统构成,进入入射系统的光用分光元件进行分光,用出射狭缝系统选择各元素的光谱。
由于铁的光谱线很多,所以推举使用大分散的分光元件。
分光器依据其内部是在真空下还是在非真空下,分为真空型和非真空型两种。
5.测光装置:由光电子倍增管、积分单元、记录器或指示器等构成。
内标线和分析线的光电子倍增管,将来自各自受光的出射狭缝的光变为电流,分别充电至积分电容。
6.真空型分光计的真空系统:硫、磷、碳、氮等元素的灵敏度线在200 nm以下的波段,由于这些波段的辐射被空气汲取,因此需要将分光光度计的光学系统真空,进行这些元素的分析。
直读光谱仪工作原理

直读光谱仪工作原理
直读光谱仪是一种用于分析物质的仪器,它的工作原理基于光的色散性质和光谱的特征。
当白光通过光谱仪时,它会被分散成不同波长的光束。
这个过程是通过光栅或晶体等光学元件来实现的。
光栅是光谱仪中常用的光学元件之一。
它由许多平行间隔的凹槽构成,当入射光线通过光栅时,不同波长的光线会以不同的角度被衍射出来。
这样,光谱仪就可以将入射光分解成不同波长的光束,在光栅后面的检测器上形成一个光谱。
检测器是光谱仪中另一个重要的组成部分。
它通常是一个光敏元件,例如光电二极管或光电倍增管。
当光束通过样品后,检测器会测量光的强度,并将其转换成电信号。
这个电信号可以被处理和记录,从而得到样品的光谱信息。
光谱仪的工作原理可以用以下步骤来总结:
1. 白光通过光栅或其他光学元件分散成不同波长的光束。
2. 光束通过样品后,被检测器转换成电信号。
3. 电信号可以通过处理和记录,得到样品的光谱信息。
通过以上工作原理,直读光谱仪可以用于分析样品的化学成分、物理性质等。
利用光谱信息,可以确定样品的成分、浓度、纯度等重要参数,广泛应用于科学研究、工业生产、环境监测等领域。
直读光谱仪原理

直读光谱仪原理直读光谱仪是一种用于分析物质光谱特性的仪器,它能够对物质的光谱进行快速、准确的测量,被广泛应用于化学、生物、环境等领域。
其原理主要基于光的衍射和干涉现象,下面将详细介绍直读光谱仪的原理。
首先,直读光谱仪通过入射光线照射样品,样品会对入射光线进行散射和吸收。
散射光和吸收光的波长和强度会发生变化,这种变化就是样品的光谱特性。
直读光谱仪利用光栅、棱镜或干涉仪等光学元件,将散射和吸收光线进行分散和分离,然后通过光电探测器对各个波长的光线进行检测和记录。
其次,光栅是直读光谱仪中常用的光学元件之一,它能够将入射光线分散成不同波长的光线。
光栅的原理是利用光的衍射现象,当入射光线照射到光栅上时,会发生衍射,不同波长的光线会以不同的角度被衍射出来,形成光谱。
光栅的衍射角度和波长之间存在一定的关系,通过调节光栅的角度和间距,可以实现对不同波长的光线进行分散和分离。
另外,直读光谱仪中的光电探测器起着至关重要的作用,它能够将光信号转换成电信号,并对不同波长的光线进行精确的检测和记录。
常见的光电探测器有光电二极管(PMT)、光电倍增管(PMT)等,它们能够实现对光信号的快速、高灵敏度的检测,从而得到样品的光谱特性。
最后,直读光谱仪的原理还包括数据处理和分析。
通过对光电探测器采集到的光谱数据进行处理和分析,可以得到样品的吸收光谱、散射光谱等信息,进而实现对样品的成分、浓度、结构等特性的分析和判定。
总之,直读光谱仪是一种基于光的衍射和干涉原理,利用光栅、光电探测器等光学元件对样品的光谱特性进行测量和分析的仪器。
它具有快速、准确、高灵敏度的特点,被广泛应用于化学、生物、环境等领域,并在科研、生产等方面发挥着重要作用。
直读光谱仪工作原理

直读光谱仪工作原理
直读光谱仪是一种用于分析物质成分和结构的仪器,它通过测量样品对不同波
长的光的吸收或发射来获取样品的光谱信息。
直读光谱仪的工作原理主要包括光源、样品、光路和检测器四个部分。
首先,光源发出一束宽谱光,经过准直和分光装置后,被分成不同波长的光线。
这些光线经过样品后,会根据样品的成分和结构发生吸收或发射现象,形成特定的光谱图案。
然后,这些光线通过光路系统聚焦到检测器上,检测器会将不同波长的光信号转换成电信号,再经过信号处理系统处理后,得到样品的光谱信息。
直读光谱仪的工作原理可以简单总结为,光源发出光线,样品与光线相互作用,检测器接收光信号并转换成电信号,最终得到样品的光谱信息。
在实际应用中,直读光谱仪可以用于分析化学物质的成分、测定样品的浓度、检测样品的纯度等。
除了上述基本原理外,直读光谱仪的工作还受到一些因素的影响,如光源的稳
定性、样品的制备和处理、光路的精度和检测器的灵敏度等。
因此,在使用直读光谱仪进行样品分析时,需要对这些因素进行严格控制,以确保获得准确和可靠的分析结果。
总的来说,直读光谱仪作为一种重要的分析仪器,其工作原理简单清晰,通过
测量样品对不同波长光的吸收或发射来获取样品的光谱信息。
在实际应用中,它可以广泛用于化学、生物、环境等领域的样品分析,为科研和生产提供了重要的技术支持。
直读光谱仪原理

直读光谱仪原理
直读光谱仪是一种能够将光分解为不同波长的光谱组分并测量其强度的仪器。
其工作原理可以简要描述如下:
1. 光源发出连续的宽频谱光,比如白炽灯或者氘灯等。
2. 进入光谱仪之前,通过入口狭缝将光束限制为一个特定的角度和宽度。
3. 光束进入色散系统,通常是一个棱镜或光栅。
色散系统会将不同波长的光分散开来,使各个波长的光能够分别聚焦到不同位置。
4. 不同波长的光经过聚焦透镜后落在光敏元件上。
5. 光敏元件可以是光电二极管或者光电倍增管等,它们能够将光信号转化为电信号。
6. 通过分析和处理电信号,可以得到不同波长光的强度信息。
直读光谱仪的主要优点是高分辨率、反应快速、灵敏度高,适用于多种光谱分析领域,比如化学分析、材料研究、生物科学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直读光谱仪光学系统构造是什么?直读光谱仪常见的凹面光
栅光谱仪有三种装置,即罗兰装置,帕邢装置和依格尔装置。
接下来金义博小编与您具体说一说这三种装置。
罗兰装置,光栅中心和感光板中心固定在可动的连杆两端,连杆的长度为光栅的曲率半径,其两端可沿互相垂直的导轨自由滑动,狭缝装有导轨的交点上。
在连杆移动过程中,狭缝、光栅和感光板始终在一罗兰圆上。
这种装置的缺点为:只能用移动连杆来读取不同波段的光谱。
帕邢装置的罗兰圆为一圆形钢轨,狭缝和光栅都固定在钢轨上,感光板环绕钢轨安装有一排底板架因而可同时拍摄几组光谱,其优点是稳定性高。
依格尔装置,其入射角等于衍射角,其中缝光源安装在底板架的正上方,要改变波段可将光栅和底板沿相反的方向转动同一角度,改变二者间的距离,使之始终位于罗兰圆上。
该装置优点为体积紧凑,通常用于真空紫外光谱仪。