最新2018-2019学年人教版数学九年级上册《第24章圆》检测试卷有答案-精编试题
(完整word版)人教版九年级数学上册第二十四章圆单元测试题(含答案解析)

(完整word版)人教版九年级数学上册第二十四章圆单元测试题(含答案解析)亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~人教版九年级数学上册第二十四章圆单元测试题(含答案)一、选择题1、如图,在☉O中,弦的条数是( )A.2B.3C.4D.以上均不正确2、☉O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则☉O的半径为( )A. B.2 C. D.33、一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A.①B.②C.③D.④4、下列语句中,正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个5、如图,☉C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则☉C的半径为( )A.4B.5C.6D.26、在△ABC中,∠ABC=60°,∠ACB=50°,如图所示,I是△ABC的内心,延长AI交△ABC的外接圆于点D,则∠ICD的度数是( )A.50°B.55°C.60°D.65°7、边心距为2的等边三角形的边长是( )A.4B.4C.2D.28、如图,把正六边形各边按同一方向延长,使延长的线段长与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,那么AB∶A'B'的值是( )A.1∶2B.1∶C.∶D.1∶9、已知△ABC中,AC=3,CB=4,以点C为圆心,r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是( )A.r>3B.r≥4C.3<r≤4D.3≤r≤410、正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3二、填空题11、如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.12、如图,为了拧开一个边长为a的正六边形螺帽,扳手张开b=30 mm时正好把螺帽嵌进,则螺帽的边长a为mm.13、如图,点B,O,O',C,D在一条直线上,BC是半圆O的直径,OD是半圆O'的直径,两半圆相交于点A,连接AB,AO',若∠BAO'=67.2°,则∠AO'C=度.14、如图,在Rt△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,∠BCD=40°,则∠A=.15、如图所示,三圆同心于O,AB=4 cm,CD⊥AB于O,则图中阴影部分的面积为cm2.16、下图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.17、如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.18、如图,已知AB是☉O的直径,PA=PB,∠P=60°,则所对的圆心角等于度.19、如图,AB是☉O的一条弦,点C是☉O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与☉O交于G、H两点.若☉O的半径为7,则GE+FH的最大值为.20、如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.三、解答题21、如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA.求证:∠C=∠AOE.22、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.23、如图,AB为☉O的直径,D为的中点,连接OD交弦AC于点F,过点D作DE∥AC,交BA的延长线于点E.(1)求证:DE是☉O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.24、如图,正方形ABCD的外接圆为☉O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若☉O的半径为8,求正方形ABCD的边长.25、如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP 的外接圆☉O的直径.(1)求证:△APE是等腰直角三角形;(2)若☉O的直径为2,求PC2+PB2的值.参考答案一、1.答案 C 在☉O中,有弦AB、弦DB、弦CB、弦CD,共4条弦.故选C.2.答案 C 过A作AD⊥BC于点D,由题意可知AD必过点O,连接OB.∵△ABC是等腰直角三角形,AD⊥BC,BC=6,∴BD=CD=AD=3,∴OD=AD-OA=2.在Rt△OBD中,根据勾股定理,得OB===.故选C.3、答案 B 第②块有一段完整的弧,可在这段弧上任作两条弦,作出这两条弦的垂直平分线,它们的交点即为圆心,进而可得半径.故选B.4、答案 A ①同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;②被平分的弦是直径时不成立,故此选项错误;③能重合的弧是等弧,而长度相等的弧不一定能够重合,故此选项错误;④经过圆心的每一条直线都是圆的对称轴,此选项正确.故正确的有1个,选A.5、答案 A 如图,连接OC.∵∠AOB=90°,∴AB为☉C的直径,∵A(0,4),∴OA=4.∵∠BMO=120°,∴∠BAO=180°-120°=60°.∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴☉C的半径=OA=4.故选A.6、答案 C 在△ABC中,∠BAC=180°-∠ACB-∠ABC=180°-50°-60°=70°,又∵I是△ABC的内心,∴∠BCD=∠BAD=∠BAC=35°,∠BCI=∠ACB=25°,∴∠BCD+∠BCI=35°+25°=60°,即∠ICD=60°,故选C.7、答案 B 如图所示,∵△ABC是等边三角形,边心距OD=2,∴∠OBD=30°,∴OB=4,在Rt△OBD中,由勾股定理可得BD=2.∵OD为边心距,∴BC=2BD=4.故选B.8、答案 D ∵六边形ABCDEF是正六边形,∴∠A'CB'=60°,设AB=BC=a,又延长的线段长与原正六边形的边长相等,所以A'C=2a,易知∠A'B'C=90°,所以B'C=a,由勾股定理可得A'B'==a,∴AB∶A'B'=a∶a=1∶.故选D.9、答案 C 当点A在圆内时,点A到点C的距离小于圆的半径,即r>3;点B在圆上或圆外时,点B到圆心的距离不小于圆的半径,即r≤4,故3<r≤4.故选C.10、答案 A 如图,△ABC是等边三角形,AD是高,点O是其外接圆的圆心,由等边三角形三线合一的性质得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠2=30°,∴BO=2OD,又OA=OB,∴AD=3OD,∴AD∶OA∶OD=3∶2∶1,故选A.二、11、答案解析∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2.∵∠PAB=∠ACP,∠PAC+∠PAB=60°,∴∠PAC+∠ACP=60°,∴∠APC=120°.当PB⊥AC时,PB长度最小,延长BP交AC于点D,如图所示.此时PA=PC,AD=CD=AC=1,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°.由勾股定理得PD=,BD=.∴PB=BD-PD=-=.12、答案10解析设正多边形ABCDEF的中心是O,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∴AC⊥OB,∠BAM=30°,∴AB=2BM,AM=CM=15.在Rt△ABM中,BM2+AM2=AB2,即BM2+152=(2BM)2,解得BM=5(舍负),∴a=AB=2BM=10(mm).13、答案89.6解析连接OA,∵OA=OB,∴∠BAO=∠B,∴∠AOO'=2∠B.∵O'A=O'O,∴∠O'AO=∠AOO'=2∠B.∵∠BAO'=∠BAO+∠O'AO=67.2°,∴∠B=22.4°,∴∠AO'C=∠B+∠BAO'=89.6°.14、答案20°解析∵CB=CD,∴∠B=∠CDB.∵∠B+∠CDB+∠BCD=180°,∠BCD=40°,∴∠B=×(180°-∠BCD)=×(180°-40°)=70°.∵∠ACB=90°,∴∠A=90°-∠B=20°.15、答案π解析S阴影=S大圆=π(4÷2)2=π(cm2).16、答案50解析设符合条件的圆为☉O,由题意知,圆心O在对称轴l上,且点A、B都在☉O上.设OC=x mm,则OD=(70-x)mm,由OA=OB,得OC2+AC2=OD2+BD2,即x2+302=(70-x)2+402,解得x=40,∴OA===50 mm,即能完全覆盖这个平面图形的圆面的最小半径是50 mm.17、答案5解析连接OC,∵AB为☉O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设☉O的半径为x,则OC=x,OE=OB-BE=x-1.在Rt△OCE中,OC2=OE2+CE2,∴x2=(x-1)2+32,解得x=5,∴☉O的半径为5.18、答案60解析连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,∴∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°-∠COA-∠DOB=60°.故所对的圆心角等于60°.19、答案10.5解析连接OA、OB,根据圆周角定理得∠AOB=2∠ACB=60°,所以△AOB为等边三角形.因为☉O的半径为7,所以AB=7.因为点E、F分别为AC、BC的中点,所以EF=AB=3.5.当GH为☉O的直径时,GE+FH取得最大值,最大值为14-3.5=10.5.20、答案解析如图所示,作AB、AC的垂直平分线,交于点O,则点O为△ABC外接圆圆心,连接AO,AO为外接圆半径.在Rt△AOD中,AO===,所以能够完全覆盖这个三角形的最小圆面的半径是.三、21、证明如图,连接OD,∵OD=OA,CD=OA,∴OD=CD,∴∠COD=∠C.∵∠ODE是△OCD的外角,∴∠ODE=∠COD+∠C=2∠C.∵OD=OE,∴∠CEO=∠ODE=2∠C.∵∠AOE是△OCE的外角,∴∠AOE=∠C+∠CEO=3∠C.∴∠C=∠AOE.22、解析设直径CD的长为2x寸,则半径OC=x寸,∵CD为☉O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5(寸),连接OB,则OB=x寸,根据勾股定理得x2=52+(x-1)2,解得x=13,∴CD=2x=2×13=26(寸).答:CD的长为26寸.23、解析(1)证明:∵D为的中点,∴OD⊥AC.∵AC∥DE,∴OD⊥DE,∴DE是☉O的切线.(2)如图,∵D为的中点,∴OD⊥AC,AF=CF.∵AC∥DE,且OA=AE,∴F为OD的中点,即OF=FD.在△AFO和△CFD中,∴△AFO≌△CFD(SAS),∴S△AF O=S△CFD,∴=S△ODE.在Rt△ODE中,OD=OA=AE=4,∴OE=8,∴DE==4,∴=S△ODE=×OD·DE=×4×4=8.24、解析(1)如图,连接OB,OC.∵四边形ABCD为正方形,∴∠BOC=90°,∴∠BPC=∠BOC=45°.(2)如图,过点O作OE⊥BC于点E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∵OE⊥BC,∴OE=BE,∵OE2+BE2=OB2,∴BE===4,∴BC=2BE=2×4=8,即正方形ABCD的边长为8.25、解析(1)证明:∵AB=AC,∠BAC=90°,∴∠C=∠ABC=45°,∴∠AEP=∠ABP=45°,∵PE是☉O的直径,∴∠PAE=90°,∴∠APE=∠AEP=45°,∴AP=AE,∴△APE是等腰直角三角形.(2)∵∠CAB=∠PAE=90°,∴∠CAP=∠BAE,又AC=AB,AP=AE,∴△CAP≌△BAE,∴∠ACP=∠ABE=45°,PC=EB,∴∠PBE=∠ABC+∠ABE=90°,∴PC2+PB2=BE2+PB2=PE2=22=4.结尾处,小编送给大家一段话。
【九年级】九年级数学上第24章圆检测试题(人教版带答案)

【九年级】九年级数学上第24章圆检测试题(人教版带答案)《圆》单元检测题(满分:120分时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.如图241,已知△ABC是等边三角形,则∠BDC=( )A.30° B.60° C.90° D.120°图241图2422.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是( ) A.相切 B.相交C.相离 D.不能确定3.已知:如图242,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是( )A.45° B.60° C.75° D.90°4.如图243,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B,C两点,已知B(8,0),C(0,6),则⊙A的半径为( )A.3 B.4 C.5 D.8图243图2445.如图244,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为( )A.2 B.1 C.1.5 D.0.56.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3∶4∶6,则∠D的度数为( )A.60° B.80° C.100° D.120°7.一个圆锥的冰淇淋纸筒,其底面直径为6 cm,母线长为5 cm,围成这样的冰淇淋纸筒所需纸片的面积为( )A.15π cm2 B.30π cm2 C.18π cm2 D.12π cm28.如图245,以等腰直角三角形ABC两锐角顶点A,B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为( )A.π4B.π2C.2π2D.2π图245图2469.如图246,在△ABC中,AB=6,AC=8,BC=10,D,E分别是AC,AB的中点,则以DE为直径的圆与BC的位置关系是( )A.相交 B.相切C.相离 D.无法确定10.如图247,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )A.2π3-32B.2π3-3C.π-32 D.π-3二、填空题(本大题共6小题,每小题4分,共24分)11.平面内到定点P的距离等于4 cm的所有点构成的图形是一个________.12.圆被弦所分成的两条弧长之比为2∶7,这条弦所对的圆周角的度数为__________.13.如图248,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5 cm,则此光盘的直径是______cm.图248图24914.如图249,某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为________米.15.如图2410,在△ABC中,AB=2,AC=2,以A为圆心,1为半径的圆与边BC相切,则∠BAC的度数是________度.图2410图241116.如图2411,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为(结果保留π)__________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.如图2412,⊙O的半径OB=5 cm,AB是⊙O的弦,点C是AB延长线上一点,且∠OCA=30°,OC=8 cm,求AB的长.18.如图2413,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.19.如图2414,在Rt△ABC中,AB=10 cm,BC=6 cm,AC=8 cm,问以点C为圆心,r为半径的⊙C与直线AB有怎样的位置关系:(1)r=4 cm;(2)r=4.8 cm;(3)r=6 cm.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图2415,是某几何体的平面展开图,求图中小圆的半径.21.如图2416,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于点M(0,2),N(0,8)两点,求点P的坐标.22.如图2417,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图2418,△ABC是⊙O的内接三角形,点C是优弧AB上一点(点C不与A,B 重合),设∠OAB=α,∠C=β.(1)当α=35°时,求β的度数;(2)猜想α与β之间的关系,并给予证明.24.已知:如图2419,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求的长.25.如图2420,已知AB为⊙O的直径,BD为⊙O的切线,过点B的弦BC⊥OD交⊙O 于点C,垂足为点M.(1)求证:CD是⊙O的切线;(2)当BC=BD,且BD=6 cm时,求图中阴影部分的面积(结果不取近似值).参考答案1.B 2.B 3.A 4.C 5.B 6.C 7.A 8.B 9.A 10.B11.圆12.40°或140°13.7 3 14.8 15.105 16.π-2 17.解:过点O作OD⊥AB于点D,则AD=BD.在Rt△DOC中,∠OCA=30°,OC=8 cm,∴OD=12OC=4(cm).在Rt△OBD中,BD=OB2-OD2=52-42=3(cm),∴AB=2BD=6(cm).18.(1)解:△AOC是等边三角形.证明如下:∵ =,∴∠AOC=∠COD=60°.∵OA=OC(⊙O的半径),∴△AOC是等边三角形.(2)证明:∵=,∴OC⊥AD.又∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AD.∴OC∥BD.19.解:过点C作CD⊥AB于点D.则CD=AC•BCAB=4.8(cm).(1)当r=4 cm时,CD>r,∴⊙C与直线AB相离.(2)当r=4.8 cm时,CD=r,∴⊙C与直线AB相切.(3)当r=6 cm时,CD<r,∴⊙C与直线AB相交.20.解:这个几何体是圆锥,假设图中小圆的半径为r,∵扇形弧长等于小圆的周长,∴l=120210•π•8=2•π•r.∴r=83.21.解:作PA⊥MN,交MN于点A,则MA=NA.又M(0,2),N(0,8),∴MN=6.∴MA=NA=3.∴OA=5.连接PQ,则PQ=OA=5.∴MP=5.∴AP=52-32=4.∴点P坐标为(4,5).22.解:(1)连接OB.∵OD⊥AB,∴ = .∴∠AOD=∠BOD=52°.∴∠DEB=12∠BOD=12×52°=26°.(2)∵OD⊥AB,∴AC=CB,△AOC为直角三角形.∵OC=3,OA=5,∴AC=OA2-OC2=52-32=4.∴AB=2AC=8.23.解:(1)连接OB,则OA=OB.∴∠OBA=∠OAB=35°.∴∠AOB=180°-∠OAB-∠OBA=110°.∴β=∠C=12∠AOB=55°.(2)α与β的关系是α+β=90°.证明如下:连接OB,则OA=OB.∴∠OBA=∠OAB=α.∴∠AOB=180°-2α.∴β=∠C=12∠AOB=12(180°-2α)=90°-α.∴α+β=90°.24.(1)证明:如图D93,连接OC,图D93∵EF是过点C的⊙O的切线,∴OC⊥EF.又∵AD⊥EF,∴OC∥AD.∴∠OCA=∠CAD.又∵OA=OC,∴∠OCA=∠BAC.∴∠BAC=∠CAD.(2)解:∵OB=OC,∴∠B=∠OCB=30°.又∵∠AOC是△BOC的外角,∴∠AOC=∠B+∠OCB=60°.∵AB=12,∴半径OA=12AB=6.∴ 的长为l=60π•6180=2π.25.(1)证明:连接OC.∵OD⊥BC,O为圆心,∴OD平分BC.∴DB=DC.∴△OBD≌△OCD(SSS).∴∠OCD=∠OBD.又∵BD为⊙O的切线,∴∠OCD=∠OBD=90°.∴CD是⊙O的切线.(2)解:∵DB,DC为切线,B,C为切点,∴DB=DC.又∵DB=BC=6,∴△BCD为等边三角形.∴∠BOC=360°-90°-90°-60°=120°,∠OBM=90°-60°=30°,BM=3.∴OM=3,OB=2 3.∴S阴影部分=S扇形OBC-S△OBC=120×π× 2 32360-12×6×3=4π-3 3(cm2).感谢您的阅读,祝您生活愉快。
2018-2019学年人教版数学九年级上册第24章圆单元测试含答案

人教版数学九年级上册《第24章圆》单元测试一.选择题(共10小题,满分30分,每小题3分)1.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B.C.D.2.一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.103.在半径为10cm圆中,两条平行弦分别长为12cm,16cm,则这两条平行弦之间的距离为()A.28cm或4cm B.14cm或2cm C.13cm或4cm D.5cm或13cm4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD 交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.56.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000 D.4×1027.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸9.⊙O的半径为10cm,圆心角∠AOB=60°,那么圆心O到弦AB的距离为()A.10cm B.cm C.5cm D.cm10.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°二.填空题(共6小题,满分18分,每小题3分)11.如图,四边形ABCD内接于半圆O,其中点A,D在直径上,点B,C在半圆弧上,AB∥CD,∠B=90°,若AO=3,∠BAD=120°,则BC=.12.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.13.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是.14.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的倍.15.在一个圆中,如果60°的圆心角所对弧长为6πcm,那么这个圆所对的半径为cm.16.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=4,则阴影部分图形的面积为.三.解答题(共8小题,满分72分)17.(8分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?18.(8分)现将一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?19.(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.20.(8分)如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.(10分)如图在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=3,求BD的长.22.(8分)如图,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,点P在l上运动.(1)当点P运动到圆上时,求线段OP的长.(2)当点P的坐标为(4,3)时,试判断直线OP与⊙A的位置关系,并说明理由.23.(10分)已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.(12分)如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC 是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.参考答案一.选择题1.D.2.C.3.B.4.A.5.C.6.D.7.C.8.D.9.C.10.A.二.填空题11.3.12.<r≤3.13.相切.14.243.15.1816..三.解答题17.解:连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为1,∴AO=OC=,则AC==m,弧BC的长l==πm,则2πR=π,解得:R=.故该圆锥的底面圆的半径是m.18.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.19.证明:连接OC,∵OA⊥CE,OB⊥CF,∴EM=CM,NF=CN,∠CMO=∠CNO=90°,∵C为的中点,∴∠AOC=∠BOC,在△CNO与△CNO中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.20.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.21.解:(1)直线BD与⊙O的位置关系是相切.证明:连结OD,DE.∵∠C=90°,∴∠CBD+∠CDB=90°.∵∠A=∠CBD,∴∠A+∠CDB=90°.∵OD=OA,∴∠A=∠ADO.∴∠ADO+∠CDB=90°.∴∠ODB=180°﹣90°=90°.∴OD⊥BD.∵OD为半径,∴BD是⊙O的切线.(2)∵AD:AO=8:5,∴,∴由勾股定理得AD:DE:AE=8:6:10.∵∠C=90°,∠CBD=∠A.∴△BCD∽△ADE.∴DC:BC:BD=DE:AD:AE=6:8:10.∵BC=3,∴BD=22.解:(1)如图,设l与y轴交点为C.当点P运动到圆上时,有P1、P2两个位置,∴;.(2)连接OP,过点A作AM⊥OP,垂足为M.∵P(4,3),∴CP=4,AP=2.在Rt△OCP中.∵∠APM=∠OPC,∠PMA=∠PCO=90°,∴△PAM∽△POC.∴,,∴,∴直线OP与⊙A相离.23.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。
人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)一、选择题(每小题3分,共24分)1.已知⊙O 的半径为5 cm ,点P 在直线l 上,且点P 到圆心O 的距离为5 cm ,则直线l 与⊙O ( )A .相离B .相切C .相交D .相交或相切2.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是( ) A .6 B .3 C. 3 D .123.如图1,四边形ABCD 内接于⊙O ,若∠C =36°,则∠A 的度数为( ) A .36° B .56° C .72° D .144°图1 图24.如图2所示,⊙O 的半径为4 cm ,C 是AB ︵的中点,半径OC 交弦AB 于点D ,OD =2 3 cm ,则弦AB 的长为( )A .2 cmB .3 cmC .2 3 cmD .4 cm5.如图3所示,D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论不一定正确的是( )A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D.AC ︵=BC ︵图3 图46.如图4,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交于⊙O 点D , 点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45° 7.把球放在长方体纸盒内,球的一部分露出盒外,其轴截面如图5所示,已知EF =CD =4 cm ,则球的半径是( )A .2 cmB .2.5 cmC .3 cmD .4 cm图5 图68.如图6,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2 3,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A.15 34-32πB.15 32-32πC.734-π6D.732-π6π二、填空题(每小题4分,共32分)9.如图7,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是________.图7 图810.如图8,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD =54°,则∠BAD =________°. 11.在Rt △ABC 中,∠C =90°,若AC =4,BC =3,则△ABC 的内切圆半径r =________. 12.一个扇形的圆心角是120°,它的半径是3 cm ,则扇形的弧长为________ cm.13.如图9,⊙M 与x 轴相切于原点,平行于y 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的下方.若点P 的坐标是(2,1),则圆心M 的坐标是________.图914.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面,则这个圆锥的底面圆的直径是________.15.如图10所示,AB 是半圆O 的直径,E 是BC ︵的中点,OE 交弦BC 于点D .若BC =8 cm ,DE =2 cm ,则OD =________ cm.图10 图1116.如图11,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B ,E 是半圆弧的三等分点,弧BE 的长为2π3,则图中阴影部分的面积为________.三、解答题(共44分)17.(10分)如图12,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是AC ︵上的一点,AG 与DC 的延长线交于点F .(1)若CD =8,BE =2,求⊙O 的半径; (2)求证:∠FGC =∠AGD .图1218.(10分)如图13,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点M ,N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ;(2)连接MD,求证:MD=NB.图1319.(12分)如图14,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA长为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.图1420.(12分)如图15①所示,OA是⊙O的半径,D为OA上的一个动点,过点D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E. (1)求证:CB=CE;(2)如图②,当点D 运动到OA 的中点时,CD 刚好平分AB ︵,求证:△BCE 是等边三角形;(3)如图③,当点D 运动到与点O 重合时,若⊙O 的半径为2,且∠DCB =45°,求线段EF 的长.图11.D2.[解析] B 设圆锥的母线长为R ,π×R 2÷2=18π,解得R =6,∴圆锥侧面展开图的弧长为6π,∴圆锥的底面圆半径是6π÷2π=3.故选B. 3.D4.[解析] D 由圆的对称性,将圆沿OC 折叠,A ,B 两点重合,所以OC ⊥AB .连接OA ,由勾股定理求得AD =2 cm ,所以AB =4 cm.5.[解析] B ∵D 是弦AB 的中点,CD 经过圆心O , ∴CD ⊥AB ,AC ︵=BC ︵,故A ,D 正确; 连接OB , ∴∠AOD =∠BOD . ∵∠BOD =2∠C ,∴∠AOD =2∠BCD ,故C 正确;B 不一定正确.故选B. 6.D7.[解析] B 过点O 作OM ⊥EF 于点M ,延长MO 交BC 于点N ,连接OF ,如图. ∵四边形ABCD 是矩形, ∴∠C =∠D =90°,∴四边形CDMN 是矩形, ∴MN =CD =4. 设OF =x , 则ON =OF =x ,∴OM =MN -ON =4-x ,MF =2, 在Rt △OMF 中,OM 2+MF 2=OF 2, 即(4-x )2+22=x 2,解得x =2.5. 故选B.8.A9.[答案] 2 7[解析] 连接OC,如图,由题意,得OE=OA-AE=4-1=3,∴CE=ED=OC2-OE2=7,∴CD=2CE=2 7.10.[答案] 36[解析] 连接BD,如图所示.∵∠ACD=54°,∴∠ABD=54°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠ABD=36°.11.[答案] 1[解析] 如图,设△ABC的内切圆与各边分别相切于点D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC.设⊙O的半径为r,∴CD=CE=r.∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3-r,AF=AD=4-r,∴4-r+3-r=5,∴r=1,∴△ABC的内切圆的半径为1.12.[答案] 2π[解析] 根据题意,扇形的弧长为120π×3180=2π.13.[答案] (0,2.5)[解析] 如图,连接MP ,过点P 作P A ⊥y 轴于点A , 设点M 的坐标是(0,b ),且b >0. ∵P A ⊥y 轴,∴∠P AM =90°, ∴AP 2+AM 2=MP 2, ∴22+(b -1)2=b 2,解得b =2.5.故答案是(0,2.5). 14.[答案] 6[解析] 扇形的弧长l =120π×9180=6π,所以圆锥底面圆的周长为6π,则圆锥底面圆的直径为6ππ=6.15.[答案] 3[解析] 因为E 为BC ︵的中点,所以OE ⊥BC ,所以△OBD 为直角三角形. 设OD =x cm ,则OB =OE =OD +DE =(x +2)cm. 在Rt △OBD 中,根据勾股定理,得 (x +2)2=42+x 2, 解得x =3.故OD =3 cm. 16.[答案]3 32-23π[解析] 如图,连接BD ,BE ,BO ,EO . ∵B ,E 是半圆弧的三等分点, ∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =∠BAD =30°,∴BE ∥AD . ∵BE ︵的长为23π,∴60π×R 180=23π,解得R =2,易得AB =2 3,∴BC =12AB =3,∴AC =AB 2-BC 2=(2 3)2-(3)2=3, ∴S △ABC =12BC ·AC =12×3×3=3 32.∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为S △ABC -S 扇形BOE =3 32-60π×22360=3 32-23π.故答案为3 32-23π.17.解:(1)如图,连接OC .设⊙O 的半径为R . ∵CD ⊥AB , ∴DE =EC =4.在Rt △OEC 中, ∵OC 2=OE 2+EC 2, ∴R 2=(R -2)2+42, 解得R =5.(2)证明:连接AD , ∵CD ⊥AB , ∴AD ︵=AC ︵, ∴∠ADC =∠AGD .∵四边形ADCG 是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.18.证明:(1)连接ON,如图.∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B.∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB.∵NE为⊙O的切线,∴ON⊥NE,∴NE⊥AB.(2)连接DN,如图.∵CD为⊙O的直径,∴∠CMD=∠CND=90°.而∠MCB=90°,∴四边形CMDN为矩形,∴MD=CN.∵DN⊥BC,∠1=∠B,∴CN=NB,∴MD=NB.19.解:(1)MN是⊙O的切线.理由:如图,连接OC.∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A.又∵∠BCM =2∠A ,∴∠BCM =∠BOC .∵∠B =90°,∴∠BOC +∠BCO =90°,∴∠BCM +∠BCO =90°,即∠OCM =90°,∴OC ⊥MN ,∴MN 是⊙O 的切线.(2)由(1)可知∠BOC =∠BCM =60°,∴∠AOC =120°.在Rt △BCO 中,OC =OA =4,∠BCO =90°-60°=30°,∴BO =12OC =2,BC =2 3,∴S 阴影=S 扇形OAC -S △OAC =120π×42360-12×4×2 3=16π3-4 3. ∴图中阴影部分的面积为163π-4 3. 20.解:(1)证明:在图①中,连接OB .∵CB 为⊙O 的切线,切点为B ,∴OB ⊥BC ,∴∠OBC =90°.∵OA =OB ,∴∠DAE =∠OBA .∵∠DAE +∠DEA =90°,∠OBA +∠CBE =90°,∴∠DEA =∠CBE .∵∠CEB =∠DEA ,∴∠CEB =∠CBE ,∴CB =CE .(2)证明:在图②中,连接OF ,OB .在Rt △ODF 中,OF =OA =2OD ,∴∠OFD =30°,∴∠DOF =60°.∵CD 平分AB ︵,∴∠AOB =2∠AOF =120°,∴∠C =360°-∠ODC -∠OBC -∠AOB =60°.∵CB =CE ,∴△BCE 是等边三角形.(3)在图③中,连接OB ,∴∠OBC =90°.又∵∠DCB =45°,∴△OBC 为等腰直角三角形,∴BC =OB =2,OC =2 2.又∵CB =CE ,∴OE =OC -CE =OC -BC =2 2-2,∴EF =DF -OE =2-(2 2-2)=4-2 2.人教版九年级数学上册《圆》培优检测试题(含答案)一.选择题1.如图,△ABC内接于⊙O中,AB=AC,=60°,则∠B=()A.30°B.45°C.60°D.75°2.已知圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图的圆心角是()A.216°B.270°C.288°D.300°3.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,则∠ADB的度数为()A.15°B.30°C.45°D.60°4.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A.10 B.8 C.5 D.35.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π6.如图,AB是⊙O的直径,点C在⊙O上,半径OD∥AC,如果∠BOD=130°,那么∠B的度数为()A.30°B.40°C.50°D.60°7.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π8.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm9.下列说法正确的个数()①近似数32.6×102精确到十分位:②在,,﹣||中,最小的数是③如图所示,在数轴上点P所表示的数为﹣1+④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个纯角”⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点A.1 B.2 C.3D.410.如图,△ABC中,∠C=90°,AC与圆O相切于点D,AB经过圆心O,且与圆交于点E,连接BD,若AC=3CD=3,则BD的长为()A.3 B.2C.D.2二.填空题11.如图,⊙O的半径为5,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,CD=8,则弦AC的长为.12.如图,直尺三角尺都和⊙O相切,∠A=60°,点B是切点,且AB=8c m,则⊙O的半径为cm.13.如图,正五边形ABCDE内接于半径为1的⊙O,则的长为.14.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部面积是.15.如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.16.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连结BM交AC 于点E,AD平分∠CAB交BM于点D.(1)∠ADB=°;(2)当点D恰好为BM的中点时,BC的长为.17.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为.三.解答题18.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.19.如图,点A在⊙O上,点P是⊙O外一点.PA切⊙O于点A.连接OP交⊙O于点D,作AB上OP于点C,交⊙O于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,求图中阴影部分的面积.20.如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.21.如图,AB是⊙O的直径,点C、D是⊙O上的点,且OD∥BC,AC分别与BD、OD相交于点E、F.(1)求证:点D为的中点;(2)若CB=6,AB=10,求DF的长;(3)若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,试求出PC+PD的最小值.22.如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.23.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,在CD上有点N满足CN=CA,AN交圆O于点F,过点F的AC的平行线交CD的延长线于点M,交AB的延长线于点E (1)求证:EM是圆O的切线;(2)若AC:CD=5:8,AN=3,求圆O的直径长度;(3)在(2)的条件下,直接写出FN的长度.24.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.参考答案一.选择题1.解:∵AB=AC,=60°,∴∠B=∠C,∠A=30°,∴∠B=(180°﹣30°)=75°;故选:D.2.解:设该圆锥侧面展开图的圆心角为n°,圆锥的底面圆的半径==3,根据题意得2π×3=,解得n=216.即该圆锥侧面展开图的圆心角为216°.故选:A.3.解:∵AB=BC,∠ABC=120°,∴∠C=∠BAC=30°,∴∠ADB=∠C=30°,故选:B.4.解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP﹣OA=8﹣x,∴OC2=PC2+OP2,即x2=42+(8﹣x)2,解得x=5,∴⊙O的直径为10.故选:A.5.解:连接AC ,∵四边形ABCD 是菱形, ∴AB =BC =6,∵∠B =60°,E 为BC 的中点,∴CE =BE =3=CF ,△ABC 是等边三角形,AB ∥CD , ∵∠B =60°,∴∠BCD =180°﹣∠B =120°,由勾股定理得:AE ==3,∴S △AEB =S △AEC =×6×3×=4.5=S △AFC ,∴阴影部分的面积S =S △AEC +S △AFC ﹣S 扇形CEF =4.5+4.5﹣=9﹣3π,故选:A .6.解:∵∠BOD =130°, ∴∠AOD =50°, 又∵AC ∥OD , ∴∠A =∠AOD =50°, ∵AB 是⊙O 的直径, ∴∠C =90°,∴∠B =90°﹣50°=40°. 故选:B .7.解:∵在▱ABCD 中,∠A =2∠B ,∠A +∠B =180°, ∴∠A =120°,∵∠C =∠A =120°,⊙C 的半径为3,∴图中阴影部分的面积是:=3π,故选:C.8.解:∵PA为⊙O的切线,A为切点,∴∠PAO=90°,在直角△APO中,OA==2,∵AB⊥OP,∴AD=BD,∠ADO=90°,∴∠ADO=∠PAO=90°,∵∠AOP=∠DOA,∴△APO∽△DAO,∴=,即=,解得:AD=3(cm),∴BD=3cm.故选:B.9.解:①近似数32.6×102精确到十位,故本说法错误;②在,,﹣||中,最小的数是﹣(﹣2)2,故本说法错误;③如图所示,在数轴上点P所表示的数为﹣1+,故本说法错误;④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中至少有两个纯角”,故本说法错误;⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点,故本说法正确;故选:A.10.解:连接OD,如图,∵AC与圆O相切于点D,∴OD⊥AC,∴∠ODA=90°,∵∠C=90°,∴OD∥BC,∵==3,∴AO=2OB,∴AO=2OD,∴sin A==,∴∠A=30°,在Rt△ABC中,BC=AC=×3=3,在Rt△BCD中,BD===2.故选:B.二.填空题11.解:如图,连接OA,并反向延长OA交CD于点E,∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,即∠CEO=90°,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC=.故答案为:4.12.解:设圆O与直尺相切于B点,连接OE、OA、OB,设三角尺与⊙O的切点为E,∵AC、AB都是⊙O的切线,切点分别是E、B,∴∠OBA=90°,∠OAE=∠OAB=∠BAC,∵∠CAD=60°,∴∠BAC=120°,∴∠OAB=×120°=60°,∴∠BOA=30°,∴OA=2AB=16cm,由勾股定理得:OB===8(cm),即⊙O的半径是8cm.故答案是:8.13.解:如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴的长==,故答案为.14.解:作OD⊥AB于D,∵△ABC为等边三角形,∴∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,OD⊥AB,∴∠AOD=∠AOB=60°,BD=AD,则OD=OA×cos∠AOD=3×=,AD=OA×sin∠AOD,∴AB=2AD=3,∴图中阴影部面积=﹣×3×=3π﹣,故答案为:3π﹣.15.解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴BC===4.故答案为:4.16.解:(1)∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵=,∴∠CBM=∠ABM,∵∠CAD=∠BAD,∴∠DAB+∠DBA=(∠CAB+∠CBA)=45°,∴∠ADB=180°﹣(∠DAB+∠DBA)=135°,故答为135.(2)如图作MH⊥AB于M,连接AM,OM,OM交AC于F.∵AB是直径,∴∠AMB=90°∵∠ADM=180°﹣∠ADB=45°,∴MA=MD,∵DM=DB,∴BM=2AM,设AM=x,则BM=2x,∵AB=2,∴x2+4x2=40,∴x=2(负根已经舍弃),∴AM=2,BM=4,∵•AM•BM=•AB•MH,∴MH==,∴OH===,∴OM ⊥AC , ∴AF =FC , ∵OA =OB , ∴BC =2OF ,∵∠OHM =∠OFA =90°,∠AOF =∠MOH ,OA =OM , ∴△OAF ≌△OMH (AAS ),∴OF =OH =,∴BC =2OF =故答案为.17.解:过A 1作A 1C ⊥x 轴于C , ∵四边形OAA 1B 是菱形,∴OA =AA 1=1,∠A 1AC =∠AOB =60°,∴A 1C =,AC =,∴OC =OA +AC =,在Rt △OA 1C 中,OA 1==,∵∠OA 2C =∠B 1A 2O =30°,∠A 3A 2O =120°, ∴∠A 3A 2B 1=90°, ∴∠A 2B 1A 3=60°,∴B 1A 3=2,A 2A 3=3,∴OA 3=OB 1+B 1A 3=3=()3∴菱形OA 2A 3B 2的边长=3=()2,设B 1A 3的中点为O 1,连接O 1A 2,O 1B 2,于是求得,O 1A 2=O 1B 2=O 1B 1==()1,∴过点B 1,B 2,A 2的圆的圆心坐标为O 1(0,2),∵菱形OA 3A 4B 3的边长为3=()3,∴OA 4=9=()4,设B 2A 4的中点为O 2, 连接O 2A 3,O 2B 3,同理可得,O 2A 3=O 2B 3=O 2B 2=3=()2,∴过点B 2,B 3,A 3的圆的圆心坐标为O 2(﹣3,3),…以此类推,菱形菱形OA 2019A 2020B 2019的边长为()2019,OA 2020=()2020,设B 2018A 2020的中点为O 2018,连接O 2018A 2019,O 2018B 2019,求得,O 2018A 2019=O 2018B 2019=O 2018B 2018=()2018,∴点O 2018是过点B 2018,B 2019,A 2019的圆的圆心,∵2018÷12=168…2, ∴点O 2018在射线OB 2上,则点O 2018的坐标为(﹣()2018,()2019),即过点B 2018,B 2019,A 2019的圆的圆心坐标为(﹣()2018,()2019),故答案为:(﹣()2018,()2019).三.解答题18.(1)证明:如图1,连接OD ,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:如图2,连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴A B=3AE,CE=4AE,∴=2,∴,∵∠DFC=∠AEB=90°,∴DF∥BE,∴△DFC∽△BEC,∴,∵CF=6,∴DF=3,∵AB是直径,∴AD⊥BC,∵DF⊥AC,∴∠DFC=∠ADC=90°,∠DAF=∠FDC,∴△ADF∽△DCF,∴,∴DF2=AF•FC,∴,∴AF=3.19.(1)证明:连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,∵OA=OB,OP=OP,∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O上,∴PB是⊙O的切线;(2)解:∵OP⊥AB,OP经过圆心O,∴BC =AB =3,∵∠PBO =∠BCO =90°,∴∠PBC +∠OBC =∠OBC +∠BOC =90°,∴∠PBC =∠BOC ,∴△PBC ∽△BOC ,∴=∴OC ===3,∴在Rt △OCB 中,OB ===6,tan ∠COB ===,∴∠COB =60°,∴S △OPB =×OP ×BC =×(9+3)×3=18,S 扇DOB ==6π,∴S 阴影=S △OPB ﹣S 扇DOB =18﹣6π.20.解:(1)证明:∵AB 、CD 是⊙O 的两条直径,∴OA =OC =OB =OD ,∴∠OAC =∠OCA ,∠ODB =∠OBD ,∵∠AOC =∠BOD ,∴∠OAC =∠OCA =∠ODB =∠OBD ,即∠ABD =∠CAB ;(2)连接BC .∵AB 是⊙O 的两条直径,∴∠ACB =90°,∵CE 为⊙O 的切线,∴∠OCE =90°,∵B 是OE 的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=AC=4,∴OB=4,即⊙O的半径为4.21.(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴=,即点D为的中点;(2)解:∵OF⊥AC,∴AF=CF,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3,∴DF=OD﹣OF=5﹣3=2;(3)解:作C点关于AB的对称点C′,C′D交AB于P,连接OC,如图,∵PC=PC′,∴PD+PC=PD+PC′=DC′,∴此时PC+PD的值最小,∵=,∴∠BOD=∠AOD=80°,∴∠BOC=20°,∵点C和点C′关于AB对称,∴∠C′OB=20°,∴∠DOC′=120°,作OH⊥DC′于H,如图,则C′H=DH,在Rt△OHD中,OH=OD=,∴DH=OH=,∴DC′=2DH=5,∴PC+PD的最小值为5.22.解:(1)∵∠ACB=90°,点B,D在⊙O上,∴BD是⊙O的直径,∠BCE=∠BDE,∵∠FDE=∠DCE,∠BCE+∠DCE=∠ACB=90°,∴∠BDE+∠FDE=90°,即∠BDF=90°,∴DF⊥BD,又∵BD是⊙O的直径,∴DF是⊙O的切线.(2)如图,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=2×4=8,∴=4,∵点D是AC的中点,∴,∵BD是⊙O的直径,∴∠DEB=90°,∴∠DEA=180°﹣∠DEB=90°,∴,在Rt△BCD中,==2,在Rt△BED中,BE===5,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE,∵∠DEF=∠BED=90°,∴△FDE∽△DBE,∴,即,∴.23.(1)证明:连接FO,∵CN=AC,∴∠CAN=∠CNA,∵AC∥ME,∴∠CAN=∠MFN,∵∠CAN=∠FNM,∴∠MFN=∠FNM=∠CAN,∵CD⊥AB,∴∠HAN+∠HNA=90°,∵AO=FO,∴∠OAF=∠OFA,∴∠OFA+∠MFN=90°,即∠MFO=90°,∴EM是圆O的切线;(2)解:连接OC,∵AC:CD=5:8,设AC=5a,则CD=8a,∵CD⊥AB,∴CH=DH=4a,AH=3a,∵CA=CN,∴NH=a,∴AN===a=3,∴a=3,AH=3a=9,CH=4a=12,设圆的半径为r,则OH=r﹣9,在Rt△OCH中,OC=r,CH=12,OH=r﹣9,由OC2=CH2+OH2得r2=122+(r﹣9)2,解得:r=,∴圆O的直径为25;(3)∵CH=DH=12,∴CD=24,∵AC:CD=5:8,∴CN=AC=15,∴DN=24﹣15=9,∵∠AFD=∠ACD,∠FND=∠CNA,∴△FND∽△CNA,∴,∵AN=3,∴,∴FN=.24.证明(1)∵AB=AC,AC=CD∴∠ABC=∠ACB,∠CAD=∠D∵∠ACB=∠CAD+∠D=2∠CAD∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,且∠ABC=∠ABE+∠EBC∴∠ABE=∠EBC=∠CAD,∵∠ABE=∠ACE∴∠CAD=∠ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD ∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:人教版九年级上册第二十四章《圆》培优练习卷(含答案)一.选择题1.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π2.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°6.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C.7D.127.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.4π﹣16 B.8π﹣16 C.16π﹣32 D.32π﹣168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H.若AE =3,则EG的长为()A.B.C.D.9.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm,弧长是8πcm,那么这个圆锥的高是()A.8cm B.6cm C.3cm D.4cm10.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.11.在△ABC中,∠C=90°,∠A=30°,AB=12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A.24πB.20πC.18πD.6π12.如图,矩形ABCD中,BC=2,CD=1,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.16.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.17.半径为6的扇形的面积为12π,则该扇形的圆心角为°.18.在平面直角坐标系中,点A(a,a),以点B(0,4)为圆心,半径为1的圆上有一点C,直线AC与⊙B相切,切点为C,则线段AC的最小值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.22.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.如图,已知AB是⊙O的直径,点C是弧AB的中点,点D在弧BC上,BD、AC的延长线交于点K,连接AD,交BC于点E,连接CD(1)求证:∠AKB﹣∠BCD=45°;(2)若DC=DB,求证:BC=2CK.参考答案一.选择题1.解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.2.解:连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∴OF=DF,∴BF∥DE,∴OB=BE=6∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.故选:B.3.解:∵ABCDEF为正六边形,∴∠COB=360°×=60°,∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为=2π.故选:A.4.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.6.解:连接DO,EO,∵⊙O 是△ABC 的内切圆,切点分别为D ,E ,F ,∴OE ⊥AC ,OD ⊥BC ,CD =CE ,BD =BF =3,AF =AE =4 又∵∠C =90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =×3×4=6,故选:A .7.解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB =90°,∠O AB =45°,∴OA =AB cos45°=4×=2,所以阴影部分的面积=S ⊙O ﹣S 正方形ABCD =π×(2)2﹣4×4=8π﹣16. 故选:B .8.解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.9.解:设圆锥底面圆的半径为r,根据题意得2πr=8π,解得r=4,所以这个的圆锥的高==3(cm).故选:C.10.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,AB=12,∴BC=AB=6,∠ABC=60°,∴S=﹣=﹣=18π.阴影故选:C.12.解:连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,OA=OD=1,而CD=1,∴四边形ODCE和四边形ABEO都是正方形,∴BE=1,∠DOE=∠BEO=90°∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF =S△EBF,∴阴影部分的面积=S扇形EOD==.故选:C.二.填空题13.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.14.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,。
人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)一、选择题(每小题3分,共24分)1.已知⊙O 的半径为5 cm ,点P 在直线l 上,且点P 到圆心O 的距离为5 cm ,则直线l 与⊙O ( )A .相离B .相切C .相交D .相交或相切2.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是( ) A .6 B .3 C. 3 D .123.如图1,四边形ABCD 内接于⊙O ,若∠C =36°,则∠A 的度数为( ) A .36° B .56° C .72° D .144°图1 图24.如图2所示,⊙O 的半径为4 cm ,C 是AB ︵的中点,半径OC 交弦AB 于点D ,OD =2 3 cm ,则弦AB 的长为( )A .2 cmB .3 cmC .2 3 cmD .4 cm5.如图3所示,D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论不一定正确的是( )A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D.AC ︵=BC ︵图3 图46.如图4,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交于⊙O 点D , 点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45° 7.把球放在长方体纸盒内,球的一部分露出盒外,其轴截面如图5所示,已知EF =CD =4 cm ,则球的半径是( )A .2 cmB .2.5 cmC .3 cmD .4 cm图5 图68.如图6,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2 3,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A.15 34-32πB.15 32-32πC.734-π6D.732-π6π二、填空题(每小题4分,共32分)9.如图7,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是________.图7 图810.如图8,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD =54°,则∠BAD =________°. 11.在Rt △ABC 中,∠C =90°,若AC =4,BC =3,则△ABC 的内切圆半径r =________. 12.一个扇形的圆心角是120°,它的半径是3 cm ,则扇形的弧长为________ cm.13.如图9,⊙M 与x 轴相切于原点,平行于y 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的下方.若点P 的坐标是(2,1),则圆心M 的坐标是________.图914.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面,则这个圆锥的底面圆的直径是________.15.如图10所示,AB 是半圆O 的直径,E 是BC ︵的中点,OE 交弦BC 于点D .若BC =8 cm ,DE =2 cm ,则OD =________ cm.图10 图1116.如图11,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B ,E 是半圆弧的三等分点,弧BE 的长为2π3,则图中阴影部分的面积为________.三、解答题(共44分)17.(10分)如图12,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是AC ︵上的一点,AG 与DC 的延长线交于点F .(1)若CD =8,BE =2,求⊙O 的半径; (2)求证:∠FGC =∠AGD .图1218.(10分)如图13,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点M ,N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ;(2)连接MD,求证:MD=NB.图1319.(12分)如图14,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA长为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.图1420.(12分)如图15①所示,OA是⊙O的半径,D为OA上的一个动点,过点D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E. (1)求证:CB=CE;(2)如图②,当点D 运动到OA 的中点时,CD 刚好平分AB ︵,求证:△BCE 是等边三角形;(3)如图③,当点D 运动到与点O 重合时,若⊙O 的半径为2,且∠DCB =45°,求线段EF 的长.图11.D2.[解析] B 设圆锥的母线长为R ,π×R 2÷2=18π,解得R =6,∴圆锥侧面展开图的弧长为6π,∴圆锥的底面圆半径是6π÷2π=3.故选B. 3.D4.[解析] D 由圆的对称性,将圆沿OC 折叠,A ,B 两点重合,所以OC ⊥AB .连接OA ,由勾股定理求得AD =2 cm ,所以AB =4 cm.5.[解析] B ∵D 是弦AB 的中点,CD 经过圆心O , ∴CD ⊥AB ,AC ︵=BC ︵,故A ,D 正确; 连接OB , ∴∠AOD =∠BOD . ∵∠BOD =2∠C ,∴∠AOD =2∠BCD ,故C 正确;B 不一定正确.故选B. 6.D7.[解析] B 过点O 作OM ⊥EF 于点M ,延长MO 交BC 于点N ,连接OF ,如图. ∵四边形ABCD 是矩形, ∴∠C =∠D =90°,∴四边形CDMN 是矩形, ∴MN =CD =4. 设OF =x , 则ON =OF =x ,∴OM =MN -ON =4-x ,MF =2, 在Rt △OMF 中,OM 2+MF 2=OF 2, 即(4-x )2+22=x 2,解得x =2.5. 故选B.8.A9.[答案] 2 7[解析] 连接OC,如图,由题意,得OE=OA-AE=4-1=3,∴CE=ED=OC2-OE2=7,∴CD=2CE=2 7.10.[答案] 36[解析] 连接BD,如图所示.∵∠ACD=54°,∴∠ABD=54°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠ABD=36°.11.[答案] 1[解析] 如图,设△ABC的内切圆与各边分别相切于点D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC.设⊙O的半径为r,∴CD=CE=r.∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3-r,AF=AD=4-r,∴4-r+3-r=5,∴r=1,∴△ABC的内切圆的半径为1.12.[答案] 2π[解析] 根据题意,扇形的弧长为120π×3180=2π.13.[答案] (0,2.5)[解析] 如图,连接MP ,过点P 作P A ⊥y 轴于点A , 设点M 的坐标是(0,b ),且b >0. ∵P A ⊥y 轴,∴∠P AM =90°, ∴AP 2+AM 2=MP 2, ∴22+(b -1)2=b 2,解得b =2.5.故答案是(0,2.5). 14.[答案] 6[解析] 扇形的弧长l =120π×9180=6π,所以圆锥底面圆的周长为6π,则圆锥底面圆的直径为6ππ=6.15.[答案] 3[解析] 因为E 为BC ︵的中点,所以OE ⊥BC ,所以△OBD 为直角三角形. 设OD =x cm ,则OB =OE =OD +DE =(x +2)cm. 在Rt △OBD 中,根据勾股定理,得 (x +2)2=42+x 2, 解得x =3.故OD =3 cm. 16.[答案]3 32-23π[解析] 如图,连接BD ,BE ,BO ,EO . ∵B ,E 是半圆弧的三等分点, ∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =∠BAD =30°,∴BE ∥AD . ∵BE ︵的长为23π,∴60π×R 180=23π,解得R =2,易得AB =2 3,∴BC =12AB =3,∴AC =AB 2-BC 2=(2 3)2-(3)2=3, ∴S △ABC =12BC ·AC =12×3×3=3 32.∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为S △ABC -S 扇形BOE =3 32-60π×22360=3 32-23π.故答案为3 32-23π.17.解:(1)如图,连接OC .设⊙O 的半径为R . ∵CD ⊥AB , ∴DE =EC =4.在Rt △OEC 中, ∵OC 2=OE 2+EC 2, ∴R 2=(R -2)2+42, 解得R =5.(2)证明:连接AD , ∵CD ⊥AB , ∴AD ︵=AC ︵, ∴∠ADC =∠AGD .∵四边形ADCG 是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.18.证明:(1)连接ON,如图.∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B.∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB.∵NE为⊙O的切线,∴ON⊥NE,∴NE⊥AB.(2)连接DN,如图.∵CD为⊙O的直径,∴∠CMD=∠CND=90°.而∠MCB=90°,∴四边形CMDN为矩形,∴MD=CN.∵DN⊥BC,∠1=∠B,∴CN=NB,∴MD=NB.19.解:(1)MN是⊙O的切线.理由:如图,连接OC.∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A.又∵∠BCM =2∠A ,∴∠BCM =∠BOC . ∵∠B =90°,∴∠BOC +∠BCO =90°, ∴∠BCM +∠BCO =90°,即∠OCM =90°, ∴OC ⊥MN ,∴MN 是⊙O 的切线. (2)由(1)可知∠BOC =∠BCM =60°, ∴∠AOC =120°.在Rt △BCO 中,OC =OA =4,∠BCO =90°-60°=30°,∴BO =12OC =2,BC =23,∴S 阴影=S 扇形OAC -S △OAC =120π×42360-12×4×2 3=16π3-4 3.∴图中阴影部分的面积为163π-4 3.20.解:(1)证明:在图①中,连接OB . ∵CB 为⊙O 的切线,切点为B ,∴OB ⊥BC ,∴∠OBC =90°. ∵OA =OB , ∴∠DAE =∠OBA .∵∠DAE +∠DEA =90°,∠OBA +∠CBE =90°, ∴∠DEA =∠CBE . ∵∠CEB =∠DEA ,∴∠CEB =∠CBE ,∴CB =CE . (2)证明:在图②中,连接OF ,OB . 在Rt △ODF 中,OF =OA =2OD ,∴∠OFD =30°,∴∠DOF =60°. ∵CD 平分AB ︵,∴∠AOB =2∠AOF =120°,∴∠C =360°-∠ODC -∠OBC -∠AOB =60°. ∵CB =CE ,∴△BCE 是等边三角形. (3)在图③中,连接OB ,∴∠OBC =90°. 又∵∠DCB =45°,∴△OBC 为等腰直角三角形, ∴BC =OB =2,OC =2 2. 又∵CB =CE ,∴OE =OC -CE =OC -BC =2 2-2, ∴EF =DF -OE =2-(2 2-2)=4-2 2.人教版九年级上册第24章数学圆单元测试卷(含答案)(1)一、知识梳理(一)点、直线与圆的位置关系:(可用什么方法判断?) 1.2.已知圆O 的半径为8cm ,若圆心O 到直线l 的距离为8cm ,那么直线l 和圆O 的位置关系是( )A .相离B .相切C .相交D .相交或相离(二)圆心角、弧、弦之间的关系 1.下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等 2.(三)圆周角定理及其推理1.如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= cm 。
新人教版数学九年级数学上册《第24章圆》单元测试(有答案)

新人教版数学九年级数学上册《第24章圆》单元测试(有答案)新人教版数学九年级数学上册《第24章圆》单元测试考试分值:120分;考试时间:100分钟一.选择题(共10小题,满分30分)1.(3分)现有两个圆,⊙O1的半径等于篮球的半径,⊙O2的半径等于一个乒乓球的半径,现将两个圆的周长都增添1米,则面积增添许多的圆是()A.⊙O1B.⊙O2C.两圆增添的面积是同样的D.没法确立2.(3分)如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A .C1>C.<C..不可以确立2BC12CC1=C2D3.(3分)如图,⊙O的半径是5,弦AB=6,OE⊥AB于E,则OE的长是()A.2B.3C.4D.54.(3分)如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A.12cm B.6cm C.8cm D.3cm5.(3分)如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB双侧,连结CD交AB于点E.点P从点A出发沿AO向终点O运动,在整个运动过程中,△CEP 与△DEQ的面积和的变化状况是()A.向来减小B.向来不变C.先变大后变小D.先变小后变大1/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)6.(3分)《九章算术》是我国古代有名数学经典,此中对勾股定理的阐述比西方早一千多年,此中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该资料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸7.(3分)图中的五个半圆,周边的两半圆相切,两只小虫同时出发,以同样的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则以下结论正确的选项是()A.甲先到B点B.乙先到B点C.甲、乙同时到 B D.没法确立8.(3分)如图,A城气象台测得台风中心在城正西方向300千米的B处,并以每小时10千米的速度沿北偏东60°的BF方向挪动,距台风中心200千米的范围是受台风影响的地区.若A城遇到此次台风的影响,则A城遭到此次台风影响的时间为()A.小时B.10小时C.5小时D.20小时9.(3分)若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A.30°B.60°C.90°D.120°10.(3分)如图,已知C、D在以AB为直径的⊙O上,若∠CAB=30°,则∠D的度数是()A.30°B.70°C.75°D.60°2/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)二.填空题(共6小题,满分18分)11.(3分)如图,⊙O的弦AB与半径OC订交于点P,BC∥OA,∠C=50°,那么∠APC的度数为.12.(3分)⊙O的半径为10cm,圆心到直线l的距离OM=8cm,在直线l上有一点P且PM=6cm,则点P与⊙O的地点关系是.13.(3分)如图,已知∠BOA=30°,M为OB边上一点,以为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的地点关系是.14.(3分)如图,正六边形ABCDEF的极点B,C分别在正方形AMNP的边AM,MN上.若AB=4,则CN=.15.(3分)如图,图1是由若干个同样的图形(图2)构成的漂亮图案的一部分,图2中,图形的有关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保存π).16.(3分)如图,将一块实心三角板和实心半圆形量角器按图中方式叠放,三角板向来角边与量角器的零刻度线所在直线重合,斜边与半圆相切,重叠部分的量角器弧对应的圆心角(∠AOB)为120°,BC的长为2,则三角板和量角器重叠部分的面积为.三.解答题(共8小题,满分72分)17.(8分)假如从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的3/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)扇形围成一个圆锥(接缝处不重叠),求这个圆锥的高.18.(8分)在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,可否完整装下?若未能装满,求杯内水面离杯口的距离.19.(8分)如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.(8分)如图1,某住所社区在相邻两楼之间修筑一个上方是一个半圆,下方是长方形的仿古通道.1)现有一辆卡车装满家具后,高为3.6米,宽为3.2米,请问这辆送家具的卡车能经过这个通道吗?为何?2)如图2,若通道正中间有一个0.4米宽的隔绝带,问一辆宽1.5米高3.8米的车能经过这个通道吗?为何?21.(10分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O,⊙O与AC的公共点为E,连结DE并延伸交BC的延伸线于点F,BD=BF.(1)试判断AC与⊙O的地点关系并说明原因;4/14(新人教版数学九年级数学上册《第24章圆》单元测试(有答案)((((2)若AB=12,BC=6,求⊙O的面积.(((22.(10分)如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段(AB上.((1)如图1,假如点M是线段AB的中点,且⊙M的半径为4,试判断直线OB(与⊙M的地点关系,并说明原因;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.(((((((((((23.(10分)如图,已知等边△ABC以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点E作EF⊥AB,垂足为点F.(1)请判断EF与⊙O的地点关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为8,求FH的长.(结果保存根号)(((((((((((24.(10分)如图,△ABC是边长为4cm的等边三角形,AD为BC边上的高,点P沿BC向终点C运动,速度为1cm/s,点Q沿CA、AB向终点B运动,速度为2cm/s,若点P、Q两点同时出发,设它们的运动时间为x(s).(l)求x为何值时,PQ⊥AC;x为何值时,PQ⊥AB?2)当O<x<2时,AD能否能均分△PQD的面积?若能,5/14(新人教版数学九年级数学上册《第24章圆》单元测试(有答案)((((说出原因;3)探究以PQ为直径的圆与AC的地点关系,请写出相应地点关系的x的取值范围(不要求写出过程).6/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)参照答案一.选择题1.A.2.B.3.C.4.B.5.C.6.C.7.C.8.B.9.B.10.D.二.填空题11.75°.12.点P在⊙O上.13.相离.14.6﹣2.15..16.+2.三.解答题17.解:∵从半径为5cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==8π,依据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==4cm,7/1418.解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,依据题意得π?()2?x=π?()2?18,解得x=12.5,12.5>10,∴不可以完整装下.19.证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,ON⊥CD,∴CD=2CN=2,OM⊥AB,∴AM=AB=x,在△AOM中,OM==,OM=CD.20.解:(1)如图,设半圆O的半径为R,则R=2,作弦EF∥AD,且EF=3.2,OH⊥EF于H,连结OF,由OH⊥EF,得HF=1.6m,8/14OH+AB=1.2+2.6=3.8>3.6,∴这辆卡车能经过此地道;2)如图2,当车高3.8米时,OH=3.8﹣2.6=1.2米,此时HF==1.6米,∵通道正中间有一个0.4米宽的隔绝带,HM=0.2米,MF=HF﹣HM<1.5米,∴不可以经过.21.解:(1)AC与⊙O相切.连结OE,OD=OE,∴∠ODE=∠OED.BD=BF,∴∠ODE=∠F.∴∠OED=∠F.∴OE∥BF.∴∠AEO=∠ACB=90°.OE⊥AC.∵点E为⊙O上一点,9/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)∴AC与⊙O相切.2)由(1)知∠AEO=∠ACB,又∵∠A=∠A,∴△AOE∽△ABC.∴=.设⊙O的半径为r,则=,解得r=4,∴⊙O的面积为π×42=16π.22.解:(1)直线OB与⊙M相切,原因:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,因此MD∥AO,MD=4.∴∠AOB=∠MDB=90°,MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连结ME,MF,如图2,10/14A(﹣8,0),B(0,6),∴设直线AB的分析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是 y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a6,得a=﹣,+∴点M的坐标为(﹣,).∴23.解:(1)EF是⊙O的切线,∴原因:连结EO,∴∵△ABC是等边三角形,∴∴∠B=∠C=∠A=60°,∴EO=CO,∴∴△OCE是等边三角形,∴∴∠EOC=∠B=60°,∴EO∥AB,∵EF⊥AB,∴EF⊥EO,∴EF是⊙O的切线;∴∴∴2)∵EO∥AB,EO是△ACB的中位线,∵AC=8,11/14AE=CE=4,∵∠A=60°,EF⊥AB,∴∠AEF=30°,AF=2,BF=6,FH⊥BC,∠B=60°.∴∠BFH=30°,BH=3,FH2=BF2﹣BH2,FH=3.24.解:(1)当Q在AB上时,明显PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;如图:①当PQ⊥AB时,BP=x,BQ=x,AC+AQ=2x;∵AC=4,12/14AQ=2x﹣4,2x﹣4+x=4,x=,故x=时PQ⊥AB;(2)过点QN⊥BC于点N,当0<x<2时,在Rt△QNC中,QC=2x,∠C=60°;∴NC=x,∴BP=NC,∵BD=CD,∴DP=DN;∵AD⊥BC,QN⊥BC,∴DP=DN;∵AD⊥BC,QN⊥BC,∴AD∥QN,∴OP=OQ,S△PDO=S△DQO,AD均分△PQD的面积;3)明显,不存在x的值,使得以PQ为直径的圆与AC相离,当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC订交.13/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)14/14。
2018-2019学年度第一学期人教版九年级数学上册_第24章_圆_单元评估检测试题【有答案】

2018-2019学年度第一学期人教版九年级数学上册第24章圆单元评估检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.如图:是所对的弦,的中垂线分别交于,交于,的中垂线分别交于,交于,的中垂线分别交于,交于,下列结论中不正确的是()A. B.C. D.2.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条直径翻折,可以看到直径两侧的两个半圆互相重合”.由此说明()A.圆的直径互相平分B.垂直弦的直径平分弦及弦所对的弧C.圆是中心对称图形,圆心是它的对称中心D.圆是轴对称图形,任意一条直径所在的直线都是它的对称轴3.如图,已知,,,是上的点,,,,则等于()A. B. C. D.4.如图,为等边三角形,,动点在的边上从点出发沿的路线匀速运动一周,速度为个单位长度/秒,以为圆心、为半径的圆在运动过程中与的边第三次相切时是出发后()A.第秒B.第秒C.第秒D.第秒5.已知点到圆上的最远距离是,最近距离是,则此圆的半径是()A. B.C.或D.或6.如图,是半圆的直径,点是的中点,,则等于()A. B. C. D.7.如图,,为上一点,且,以点为圆心,半径为的圆与的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能8.如图,将边长为的正方形铁丝框,变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得的扇形的面积为()A. B. C. D.9.如图,以原点为圆心的圆交轴于点、两点,交轴的正半轴于点,为第一象限内上的一点,若,则的度数是()A. B. C. D.10.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是的最大扇形,用该扇形铁皮围成一个圆锥,则所得圆锥的底面圆的半径为()A.米B.米C.米D.米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.扇形的弧长等于半径为的圆的周长,面积等于半径为的圆的面积,则此扇形的圆心角为________.12.如图,在中,是的中点,,则的度数为________. 13.已知的直径等于,圆心到直线的距离为,则直线与的交点个数为________.14.一条弦把圆周分成两部分,则这条弦所对圆心角为________,所分得的优弧所对的圆周角为________.15.如图,正方形内接于,是直径上的一个动点,连接并延长交于.若,则的值为________.16.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是的最大扇形,则:的长为________米;用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.17.已知圆柱体的底面圆周长是,母线长为,则该圆柱体的全面积为________.18.如图,的圆心坐标为,若的半径为,则直线与的位置关系是________.19.如图,已知,,,半径为的从点出发,沿方向滚动点时停止,则在此运动过程中,圆心运动的总路程为________.20.如图,在中,,,,把以点为中心按逆时针方向旋转,使点旋转到边的延长线上的处,那么边扫过的图形(图中阴影部分)的面积是________(结果保留).三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在矩形铁片上剪下以为圆心,为半径的扇形,再在余下的部分剪下一个尽可能大的圆形铁片,如果要使这个圆形铁片恰好是扇形铁片所做成的圆锥的底面,那么矩形铁片的长和宽应满足什么条件?22.如图,为的直径,,交于点,交于点,,求的度数.23.如图,是半圆的直径,、是的三等分点,点的半径为.求的长.求图中阴影部分的面积.24.一跨河桥,桥拱是圆弧形,跨度为米,拱高为米,求:桥拱半径若大雨过后,桥下河面宽度为米,求水面涨高了多少?25.如图所示,已知为的直径,是弦,且于点,连接、、.求证:;若,,求弦的长.26.如图,已知是的弦,,,是弦上任意一点(不与点、重合),连接并延长交于点,连接.弦________(结果保留根号);当时,求的度数.答案1.C2.D3.C4.D5.C6.A7.A8.B9.C10.B11.12.13.14.15.或16.,.17.18.相交19.20.21.解:∵ ,,∴ ,设与、分别相切于、,连接并延长交于,则垂直于,垂直于,可得矩形、矩形、矩形和正方形,∴ ,设,则,解得:,∴ ,整理得:.22.解:∵ 为的直径,∴ ,∴ ,∵ ,∴,∴ .23.解: ∵ 、是的三等分点,∴ 是等边三角形,∴ ;阴影部分的面积为.24.解: ∵拱桥的跨度,拱高,∴ ,利用勾股定理可得:,解得.设河水上涨到位置(如上图所示),这时,,有(垂足为),∴,连接,则有,,.25.证明:∵ 为的直径,,∴,∴ ,∵ ,∴ ,∴ ;解:∵ ,,∴ ,∴ ,∴ ,∴,∴ .26.解:如图,过作于,∴ 是的中点,在中,,,∴ ,∴,∴;解法一:∵ ,.∴ .…又∵ ,,,∴ ,,…∴ .…解法二:如图,连接.∵ ,,∴ ,,∴ .…又∵ ,,∴ ,…∴ (同弧所对的圆周角等于它所对圆心角的一半).…。
2018年秋人教版九年级数学上《第24章圆》单元检测题含答案

九年级数学(上)第24章《圆》单元检测题一、选择题(每小题3分,共30分)1.若⊙O的半径为8cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是(A)A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定2.如图在⊙O中,圆心角∠BOC=60°,则圆周角∠BAC等于(D)A.60°B.50°C.40°D.30°3.如图,AB为⊙O的直径,∠BED=40°,则∠ACD的度数是(B)A.90°B.50°C.45°D.30°4.已知⊙O的半径为5,圆心到直线l的距离为4,则直线l与⊙O的位置关系是(A)A.相交B.相离C.相切D.相交或相切5.在Rt△ABC中,两直角边AC=6cm,BC=8cm,则它的外接圆的面积为(C)A.100πcm²B.15πcm²C.25πcm²D.50πcm²6.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是(C)A.10πB.15πC.20πD.25π7.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为(C)A.10πB CπD.π8.半径为R的圆内接正三角形的面积是(D)A .22RB .2R πC .22RD .24R 9.(2015临沂改)如图,AB 为⊙O 的直径,CD 切⊙O 于点D ,AC ⊥CD 交⊙O 于点E ,若∠BAC=60°,AB =4,则阴影部分的面积是(A )A .23πB . 3πC . 4πD .25π10.如图,点C 在以AB 为半径的半圆上,AB =8,∠CBA =30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线与点F .下列结论:①CE =CF ;②线段EF的最小值为AD =2时,EF 与半圆相切;④当点D 从点A 运动到点B 时,线段EF 扫过的面积是C )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共18分)11.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数等于 .(50°)12.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于 .(5)13.正六边形的半径为2,则该正六边形的边长是.(2)14.如图所示,⊙C过原点,且与两坐标轴分别交于点A,B两点,点A的坐标为(0,3),M是第三象限内 OB上一点,∠BMO=120°,则⊙C的半径为.(3)15.如图,由7个形状、大小完全相同的正六边形组成的网络,正六变形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是________.(解:过O做OM⊥AB于M,利用垂径定理.18.(本题8分)如图,直线AB经过⊙O上的一点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线.解:连OC,利用等腰三角形的三线合一性质证OC⊥AB.19.(本题8分)如图,在△ABC中,∠C=90°,∠A,∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.⑴求证:四边形CFDE是正方形;⑵若AC=3,BC=4,求△ABC的内切圆半径.解:⑴过D作DG⊥AB交AB于G点,∵AD是∠BAC的角平分线,∴DF=DG,同理可证DE=DG,∴DE=DF,∵∠C=∠CFD=∠CED=90°,∴四边形CFDE是正方形;⑵∵AC=3,BC=4,∴AB=5,由⑴知AF=AG,BE=BG,∴AF+BE=AB,∵四边CFDE是正方形,∴2CE=AC+CB-AB=2,即CE=1,△ABC的内切圆半径为1.20.(本题8分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后的到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;⑶如果网格中小正方形的边长为1,求点B经过⑴、⑵变换的路径总长.解:⑴25°⑵设OC交AD于M,证OC⊥AD,AM=DM,△ACM≌△BAD,∴BD=AM=DM,设2x=24,∴,∴AD.BD=x,则AD=2x,在△ABD中,2x+()2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.⊙O 的半径为3cm ,点A 到圆心O 的距离OA =4cm ,则点A 与⊙O 的位置关系是( ) A .点A 在⊙O 上 B .点A 在⊙O 内 C .点A 在⊙O 外 D .无法确定2.如图,⊙O 是△ABC 的外接圆,若∠ACB=40°,则∠AOB 的度数为( ) A .20° B .40° C.60° D.80°第2题图第3题图3.如图,弦AB⊥OC,垂足为点C ,连接OA ,若OC =2,AB =4,则OA 等于( ) A .2 2 B .2 3 C .3 2 D .2 54.如图,在⊙O 中,AB ︵=AC ︵,∠AOB=40°,则∠ADC 的度数是( ) A .40° B.30° C.20° D.15°第4题图第5题图5.如图,四边形ABCD 是⊙O 的内接四边形,若∠B=75°,∠C=85°,则∠D-∠A=( ) A .10° B.15° C.20° D.25°6.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB =c ,一条直角边BC =a ,小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是( )A .勾股定理B .勾股定理的逆定理C .直径所对的圆周角是直角D .90°的圆周角所对的弦是直径第6题图第7题图7.如图,AB 是⊙O 的弦,AO 的延长线与过点B 的⊙O 的切线交于点C ,如果∠ABO=20°,则∠C 的度数是( )A .70° B.50° C.45° D.20°8.一元钱硬币的直径约为24mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12mmB .123mmC .6mmD .63mm9.如图,若△ABC 的三边长分别为AB =9,BC =5,CA =6,△ABC 的内切圆⊙O 切AB ,BC ,AC 于点D ,E ,F ,则AF 的长为( )A .5B .10C .7.5D .4第9题图第10题图第11题图10.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ) A .△ACD 的外心 B .△ABC 的外心 C .△ACD 的内心 D .△ABC 的内心11.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为( )A .175πcm 2B .350πcm 2 C.8003πcm 2 D .150πcm 212.如图,直线AB 、CD 相交于点O ,∠AOD=30°,半径为1cm 的⊙P 的圆心在射线OA 上,且与点O 的距离为6cm.如果⊙P 以1cm/s 的速度沿由A 向B 的方向移动,那么多少s 后⊙P 与直线CD 相切( )A .4sB .8sC .4s 或6sD .4s 或8s二、填空题(本大题共6小题,每小题4分,共24分)13.已知弦AB 把圆周分成1∶5的两部分,则弦AB 所对的圆心角的度数为 . 14.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB=120°,则∠ACB = °.第14题图第15题图15.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,∠BDC=110°.连接AC ,则∠A 的度数是 °.16.已知一条圆弧所在圆的半径为9,弧长为52π,则这条弧所对的圆心角是 .17.如图,半圆O 的直径AE =4,点B ,C ,D 均在半圆上.若AB =BC ,CD =DE ,连接OB ,OD ,则图中阴影部分的面积为 .第17题图第18题图18.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD ;③点P 是△ACQ 的外心.其中正确的结论是 (只需填写序号).三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如图,已知CD 是⊙O 的直径,弦AB⊥CD,垂足为点M ,点P 是AB ︵上一点,且∠BPC=60°.试判断△ABC 的形状,并说明你的理由.20.(10分)如图,AB 是⊙O 的直径,半径OC⊥AB,过OC 的中点D 作弦EF∥AB,求∠ABE 的度数.21.(10分)如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB 的延长线于点D,OD=30cm.求直径AB的长.22.(10分)如图,由正方形ABCD的顶点A引一直线分别交BD、CD及BC的延长线于E、F、G,连接EC.求证:CE是△CGF的外接圆⊙O的切线.23.(12分)已知等边△ABC和⊙M.(1)如图①,若⊙M与BA的延长线AK及边AC均相切,求证:AM∥BC;(2)如图②,若⊙M与BA的延长线AK、BC的延长线CF及边AC均相切,求证:四边形ABCM是平行四边形.24.(12分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD.求证:△ABE是等边三角形.25.(12分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.26.(14分)如图,⊙O是△ABC的外接圆,圆心O在AB上,且∠B=2∠A,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,EF=FC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为2,且AC=CE,求AM的长.答案1.C 2.D 3.A 4.C 5.A 6.C 7.B 8.A 9.A10.B 11.B12.D 解析:①由题意CD与⊙P1相切于点E,∴P1E⊥CD,又∵∠AOD=30°,r=1cm,∴在△OEP1中,OP1=2cm.又∵OP=6cm,∴P1P=4cm,∴⊙P到达⊙P1需要时间为4÷1=4(秒);②当圆心P在直线CD的右侧时,PP2=6+2=8(cm),∴⊙P到达⊙P2需要时间为8÷1=8(秒),综上可知,⊙P与直线CD相切时,时间为4秒或8秒,故选D.13.60° 14.60 15.35 16.50° 17.π18.②③ 解析:如图,连接OD.∵DG 是⊙O 的切线,∴∠GDO=90°.∴∠GDP+∠ADO =90°.在Rt△APE 中,∠OAD+∠APE=90°,∵AO=DO ,∴∠OAD=∠ADO.∴∠GPD=∠APE =∠GDP,∴GP=GD.∴结论②正确.∵AB 是⊙O 的直径,∴∠ACB=90°.∴∠CAQ+∠AQC=90°.∵点C 是AD ︵的中点,∴∠CAQ=∠ABC.又∵∠ABC+∠BCE=90°.∴∠AQC=∠BCE,∴PC =PQ.∵∠ACP+∠BCE=90°,∠AQC+∠CAP=90°,∴∠CAP=∠ACP,∴AP=CP ,∴AP=CP =PQ ,∴点P 是△ACQ 的外心.∴结论③正确.∵不能确定BD ︵与CD ︵的大小关系,∴不能确定∠BAD 与∠ABC 的大小关系.∴结论①不一定正确.故答案是②③.19.解:△ABC 是等边三角形.(2分)理由如下:∵CD 是⊙O 的直径,AB⊥CD,∴AC ︵=BC ︵,∴AC=BC.(6分)又∵∠A=∠P=60°,∴△ABC 是等边三角形.(10分)20.解:如图,连接OE.(1分)∵EF∥AB,OC⊥AB,∴EF⊥OC.(3分)∵点D 是OC 的中点,∴OD=12OC =12OE ,∴∠OED=30°.(7分)∵EF∥AB,∴∠EOA=30°,∴∠ABE=12∠EOA=15°.(10分)21.解:∵∠A =30°,OC =OA ,∴∠ACO=∠A=30°,∴∠COD=60°.(3分)∵DC 切⊙O 于C ,∴∠OCD=90°,∴∠D=30°.(6分)∵OD=30cm ,∴OC=12OD =15cm ,∴AB=2OC =30cm.(10分)22.证明:如图,连接OC ,则OG =OC ,∴∠G=∠OCG.(2分)∵四边形ABCD 是正方形,∴AB=CB ,∠ABE=∠CBE=45°.(4分)又∵BE =BE ,∴△ABE ≌△CBE(SAS),∴∠BAE=∠BCE.(6分)∵∠BAE+∠G=90°,∴∠BCE+∠OCG=90°,(8分)∴∠ECO=90°,∴EC 是△CGF 的外接圆⊙O 的切线.(10分)23.证明:(1)∵⊙M 与AK 、AC 相切,∴AM 平分∠KAC.(2分)又∵△AB C 是等边三角形,∴∠KAC=120°,(4分)∴∠KAM=∠B=60°,∴AM∥BC;(6分)(2)由(1)得AM∥BC,同理CM∥AB,(10分)∴四边形ABCM 是平行四边形.(12分) 24.证明:(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠BCD=180°.(2分)∵∠DCE +∠BCD=180°,∴∠A=∠DCE.∵DC=DE ,∴∠DCE=∠AEB.(4分)∴∠A=∠AEB;(6分)(2)∵OE⊥CD,∴CF=DF ,∴OE 是CD 的垂直平分线,∴ED=EC.(8分)又∵DC=DE ,∴DC =DE =EC ,∴△DCE 是等边三角形.∴∠AEB=60°.(10分)∵∠A=∠AEB,∴△ABE 是等腰三角形.∴△ABE 是等边三角形.(12分)25.(1)证明:∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(4分) (2)解:如图,连接OC 、OD.(5分)∵AB 是⊙O 的直径,弦CD⊥AB 于点E ,∴BC ︵=BD ︵.(7分)∵∠PBC=∠BCD=22.5°,∴∠BOC=∠BOD=2∠BCD=45°,∴∠AOC =180°-∠BOC=135°,(10分)∴劣弧AC 的长为135×π×2180=3π2.(12分)26.(1)证明:如图,连接OC.(1分)∵⊙O 是△ABC 的外接圆,圆心O 在AB 上,∴AB 是⊙O 的直径,∴∠ACB=90°.又∵∠B=2∠A,∴∠B=60°,∠A=30°.(3分)∵EM⊥AB,∴∠EMB=90°.在Rt△EMB 中,∠B=60°,∴∠E=30°.又∵EF=FC ,∴∠ECF=∠E=30°.又∵∠ECA=90°,∴∠FCA=60°.(5分)∵OA=OC ,∴∠OCA=∠A=30°,∴∠FCO=∠FCA+∠ACO=90°,∴OC⊥CF,∴FC 是⊙O 的切线;(7分)(2)解:在Rt△ABC 中,∵∠ACB=90°,∠A=30°,AB =4,∴BC=12AB =2,AC =AB 2-BC 2=3BC =2 3.(9分)∵AC=CE ,∴CE=23,∴BE=BC +CE =2+2 3.(11分)在Rt△BEM 中,∠BME=90°,∠E=30°,∴BM=12BE =1+3,∴AM=AB -BM =4-1-3=3- 3.(14分)。