九年级上册数学试题
人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。
九年级上册数学试卷

九年级上册数学试卷九年级上册数学试卷一、选择题(每小题3分,共30分)在每小题的括号内选出一个能够完成或解答题目要求的正确答案。
1. 下列选项中,哪一个是一个正整数?A. -5B. 0C. 2/3D. √92. 在下列几个数中,不能化成小数的是:A. 1/4B. 2/5C. 1/3D. 1/73. 下列哪个数与-9/7相等?A. -9/7B. 9/7C. 1/7D. 7/94. 对于数a与b来说,下列哪个式子是成立的?A. a + b = b + aB. a - b = b - aC. a × b =b × a D. a ÷ b = b ÷ a5. 根号2与根号3的大小关系是:A. 根号2 < 根号3B. 根号2 > 根号3C. 根号2 = 根号3D. 无法比较6. 一个圆的直径是10厘米,那么它的半径是:A. 10厘米B. 15厘米C. 5厘米D. 20厘米7. 一辆车以每小时80千米的速度行驶,那么这辆车行驶了多少千米,才用时2小时?A. 160千米B. 40千米C. 80千米D. 120千米8. 一块矩形地面的长为8米,宽为5米,那么它的面积是多少平方米?A. 40平方米B. 13平方米C. 45平方米D.64平方米9. 如果一辆车每小时行驶75千米,那么它在3小时内行驶了多少千米?A. 225千米B. 75千米C. 150千米D. 325千米10. 若三角形的三边长分别为7厘米、8厘米和9厘米,那么这个三角形周长为多少厘米?A. 24厘米B. 22厘米C. 21厘米D.25厘米二、填空题(每小题4分,共40分)根据题目的要求,将答案填入括号内。
11. 3 × 4 + 7 ________ ( )12. 半径为5厘米的圆的面积是________平方厘米( )13. 三角形有________个角 ( )14. 在数轴上右移两个单位的点的坐标是________ ( )15. 右边的等式中,x应该取________ ( )三、解答题(每小题10分,共40分)根据题目的要求,写出完整的解答步骤和答案。
人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m<98B.98<m<258C.0<m<258D.m<98或m<2583.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④4.关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是()A.k5<B.k5<且k1≠C.k5≤D.k5≤且k1≠5.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4 6.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定7.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大8.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元9.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)10.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.316B.14C.168D.116二、填空题11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;12.抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是_____.13.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为_______.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.16.如图,PA PB 、切O 于点AB 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点CD 、,则PCD 的周长是________.三、解答题17.解一元二次方程:3x 2﹣1=2x+5.18.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.19.如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.(1)求扇形OAC的面积;(2)求弦CD的长.20.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.21.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.22.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?23.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.25.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.A首先求出点A 和点B 的坐标,然后求出C 2解析式,分别求出直线y=x+m 与抛物线C 1相切时m 的值以及直线y=x+m 过原点时m 的值,结合图形即可得到答案.【详解】令2240y x x =-+=,解得:x =0或x =2,则点A (2,0),B (−2,0),∵C 1与C 2关于y 铀对称,C 1:22242(1)2,y x x x =-+=--+∴C 2解析式为222(1)224(20)y x x x x =-++=---≤≤,当y =x +m 与C 1相切时,如图所示:令224y x m y x x=+==-+,即2230x x m -+=,890m =-+= ,解得98m =,当y =x +m 过原点时,m =0,∴当908m <<时直线y =x +m 与C 1、C 2共有3个不同的交点,故选:A.【点睛】考查抛物线与x 轴的交点,二次函数的性质,二次函数与一次函数的综合,数形结合是解题的关键.3.C根据二次函数的图象与性质即可求出答案.【详解】①由图象可知:2ba->0,∴ab <0,故①正确;②由抛物线与x 轴的图象可知:△>0,∴b 2>4ac ,故②正确;③由图象可知:x =1,y <0,∴a+b+c <0,故③正确;④∵2ba-=1,∴b =﹣2a ,令x =﹣1,y >0,∴2a+b+c =c <0,故④错误.故选C .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.4.D 【分析】根据一元二次方程的根的判别式及一元二次方程的定义,建立关于k 的不等式租,解不等式组,求出k 的取值范围即可.【详解】∵关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,∴244(1)010k k ⎧--≥⎨-≠⎩,解得:k≤5,且k≠1,故选D.【点睛】本题考查了一元二次方程的定义及一元二次方程根的判别式的应用,根据题意列出不等式并注意一元二次方程的二次项系数不为0的隐含条件是解题关键.5.C【解析】【分析】根据圆内接四边形的对角互补得到∠A和∠C的份数和等于∠B和∠D的份数的和,由此分别进行判断即可.【详解】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.6.A【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:根据点到圆心的距离8cm大于圆的半径6cm,则该点在圆外.故选A.【点睛】本题考查了点和圆的位置关系与数量之间的联系:当点到圆心的距离大于圆的半径时,则点在圆外.7.D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A 、∵当x =﹣3时,y =2,∴此函数图象过点(﹣3,2),故本选项正确;B 、∵k =﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C 、∵当x =﹣2时,y =3,∴当x <﹣2时,0<y <3,故本选项正确;D 、∵k =﹣6<0,∴在每个象限内,y 随着x 的增大而增大,故本选项错误;故选:D .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.8.A 【分析】设降价元,根据商家获利金额列出一元二次方程并求解,因为要顾客得实惠,所以要保留较大的值并求出售价.【详解】设降价元,则售价为()60x -元,销量为()30020+x 件.由题意得:()()6040300206080x x --+=,展开得220100800x x -+-=,因式分解得()()20140x x ---=,所以121,4x x ==.因为要顾客得实惠,所以取4x =,此时60456-=(元),即应将售价定为56元.故答案选:A.【点睛】本题主要考查了一元二次方程.9.A 【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 1即为所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.10.B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41 164故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.11.2018【分析】根据一元二次方程根与系数的关系,结合“α,β是方程x2-x-2019=0的两个实数根”,得到α+β的值,再把α代入方程x2-x-2019=0,经过整理变化,即可得到答案.【详解】解:∵α,β是方程x2﹣x﹣2019=0的两个实数根,∴α+β=1,∵α3-2021α-β=α(α2-2020)-(α+β)=α(α2-2020)-1,∵α2-α-2019=0,∴α2-2020=α-1,把α2-2020=α-1代入原式得:原式=α(α-1)-1=α2-α-1=2019-1=2018.故答案为2018.【点睛】本题考查了根与系数的关系以及一元二次方程的解,正确掌握一元二次方程根与系数的关系是解题的关键.12.y=(x﹣1)2﹣1.【分析】先将所给的抛物线解析式写成顶点式,然后再根据“左加右减、上加下减”的原则进行解答即可.【详解】y=x2﹣6x+5=(x-3)2-4,向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是y=(x-3+2)2-4+3,即:y=(x﹣1)2﹣1,故答案为:y=(x﹣1)2﹣1.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【详解】如图:∵△COD 是由△AOB 绕点O 按逆时针方向旋转而得,∴OB=OD ,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.【点睛】此题考查旋转的性质.解题关键是理解△COD 是由△AOB 绕点O 按逆时针方向旋转而得的含义,找到旋转角.14.27【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】设草鱼有x 条,捕捞到草鱼的频率稳定在0.5左右,则0.5,200150x x =++解得:350.x =捞到鲤鱼的概率为20022003501507=++,故答案为27.【点睛】考查样本估计总体,解题的关键是根据草鱼出现的频率计算出鱼的数量.15.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r ,∵AC=6,∠ACB=120°,∴1206180l π⨯⨯==2πr ,∴r=2,即:OA=2,在Rt △AOC 中,OA=2,AC=6,根据勾股定理得,故答案为.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA 的长是解本题的关键.16.20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE====所以PCD ∆的周长为101020PC PD CD PC AC DB PD PA PB ++=+++=+=+=【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键.17.x 1=13+,x 2=13.【解析】【分析】先把方程化为一般式,然后利用求根公式法解方程.【详解】3x 2﹣1=2x +5,3x 2﹣2x ﹣6=0∵a =3,b =﹣2,c =﹣6,△=(﹣2)2﹣4×3×(﹣6)=76,∴x =,∴x 1,x 2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法18.(Ⅰ)画树状图见解析;(Ⅱ)两次取出的小球标号相同的概率为14;(Ⅲ)两次取出的小球标号的和大于6的概率为3 16.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【详解】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为3 16.【点睛】此题考查列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)12π;(2)【分析】(1)根据垂径定理得到,根据圆周角定理求出∠CAB,根据三角形内角和定理求出∠AOC,根据扇形面积公式计算;(2)根据正弦的定义求出CE,根据垂径定理计算即可.【详解】(1)∵弦CD⊥AB,∴,∴∠CAB=∠DAB=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=120°,∴扇形OAC的面积==12π;(2)由圆周角定理得,∠COE=2∠CAB=60°,∴CE=OC×sin∠COE=3,∵弦CD⊥AB,∴CD=2CE=6.【点睛】本题考查了扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键.20.(1)94m≥-;(2)1m=【分析】(1)因为方程有实数根,所以根的判别式要大于等于0,即△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=-3、x1x2=﹣m代入x12+x22=(x1+x2)2﹣2x1•x2=11,解关于m的方程即可.【详解】(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,解题的关键是熟练掌握根与系数的关系.21.(1)k=4;(2)a的值为13或﹣1.【解析】【分析】(1)∵图形过A点,∴A点坐标符合函数关系式,代入求解即可.(2)B点可以在C点左边,也可以在C点右边,并通过待定系数法即可求解.【详解】解:(1)∵函数y=(x>0)的图象经过点A(2,2),∴k=2×2=4;(2)∵OB=2AC,AC=2,∴OB=4.分两种情况:①如果B(﹣4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,-4a+b=0,求得a=13,b=43.②如果B(4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,4a+b=0,求得a=-1,b=4.综上,所求a的值为13或﹣1.【点睛】需要注意的是线段长度与点的坐标的关系,注意进行分情况讨论,考虑问题要全面. 22.(1)40%;(2)2616.【分析】(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.23.(1),B 点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB=OA ,故当△BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)∵抛物线2y x bx c =-++对称轴是直线x=1,∴﹣2(1)b ⨯-=1,解得b=2,∵抛物线过A (0,3),∴c=3,∴抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3,∴B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,∵P 在抛物线上,∴P (2t ,2443t t -++),∵四边形OMPN 为矩形,∴ON=PM ,∴3t=2443t t -++,解得t=1或t=﹣34(舍去),∴当t 的值为1时,四边形OMPN 为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得t=64+(舍去)或t=64-;当OQ=BQ=|2t﹣3|,解得t=34;综上可知当t34时,△BOQ为等腰三角形.24.(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,OA OC AD CD OD OD=⎧⎪=⎨⎪=⎩,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD ∥BC ;(2)设BC =a ,∵AC =2BC ,∴AC =2a ,∴AD =AB ,∵OE ∥BC ,且AO =BO ,∴OE 为△ABC 的中位线,∴OE =12BC =12a ,AE =CE =12AC =a ,在△AED 中,DE 2a ,∴OD=OE+DE=52a ,在△AOD 中,AO 2+AD 2)2+)2=254a 2,OD 2=(52a )2=254a 2,∴AO 2+AD 2=OD 2,∴∠OAD =90°,∵AB 是直径,∴DA 与⊙O 相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.25.(1)223y x x =--+;(2)185;(3)278.【分析】()1将A ,B ,C 点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D 的坐标为()1,4-,作B 点关于直线1x =的对称点'B ,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小;(3)作PE x ⊥轴交AC 于E 点,求得AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,得23PE m m =--,所以,()2113322APC A S PE x m m =⋅=--⨯ ,求函数的最大值即可.【详解】()1将A ,B ,C 点的坐标代入解析式,得方程组:9304233a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得123a b c =-⎧⎪=-⎨⎪=⎩抛物线的解析式为223y x x =--+()2配方,得2(1)4y x =-++,顶点D 的坐标为()1,4-作B 点关于直线1x =的对称点'B ,如图1,则()'4,3B ,由()1得()1,4D -,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小,则119181555m =-⨯+=.()3作PE x ⊥轴交AC 于E 点,如图2,AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,()222333PE m m m m m =--+-+=--()2211332733()22228APC A S PE x m m m =⋅=--⨯=-++ ,当32m =-时,APC 的面积的最大值是278;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.。
人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。
人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。
九年级上册50道数学题

九年级上册50道数学题一、代数部分(共25题)(一)一元二次方程(10题)题1:解方程x^2-5x + 6=0。
解析:对于一元二次方程ax^2+bx + c = 0(a≠0),这里a = 1,b=- 5,c = 6。
我们可以使用因式分解法,将方程化为(x - 2)(x - 3)=0。
则x-2 = 0或者x - 3=0,解得x_1=2,x_2=3。
题2:已知一元二次方程x^2+3x - 4 = 0,求它的根。
解析:同样对于方程x^2+3x - 4 = 0,我们使用因式分解法,化为(x + 4)(x - 1)=0。
所以x+4 = 0或者x - 1 = 0,解得x_1=-4,x_2=1。
题3:方程2x^2-3x - 1 = 0,求其判别式Δ的值。
解析:对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。
在方程2x^2-3x - 1 = 0中,a = 2,b=-3,c=-1。
Δ=(-3)^2-4×2×(- 1)=9 + 8=17。
题4:若关于x的一元二次方程mx^2-2x + 1 = 0有两个相等的实数根,求m的值。
解析:因为方程mx^2-2x + 1 = 0有两个相等的实数根,所以Δ = 0。
其中a = m,b=-2,c = 1,Δ=(-2)^2-4m×1=4 - 4m。
由4-4m = 0,解得m = 1。
题5:用配方法解方程x^2+4x - 1 = 0。
解析:首先在方程两边加上一次项系数一半的平方,即x^2+4x+4 - 4 - 1=0。
(x + 2)^2-5 = 0,(x + 2)^2=5。
则x+2=±√(5),解得x_1=-2+√(5),x_2=-2-√(5)。
题6:一元二次方程3x^2-x - 2 = 0的二次项系数、一次项系数和常数项分别是什么?解析:对于一元二次方程3x^2-x - 2 = 0,二次项系数a = 3,一次项系数b=-1,常数项c=-2。
数学九年级上册试卷人教版【含答案】

数学九年级上册试卷人教版【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > 0, b < 0,则下列哪个选项是正确的?A. a b > 0B. a b < 0C. a + b > 0D. a + b < 02. 已知一组数据:2, 3, 5, 7, 11,其平均数是多少?A. 4B. 5C. 6D. 73. 二次方程 x^2 5x + 6 = 0 的解是:A. x = 2 或 x = 3B. x = 1 或 x = 6C. x = -2 或 x = -3D. x = -1 或 x = -64. 下列哪个图形是中心对称的?A. 矩形B. 正方形C. 圆D. 三角形5. 如果sinθ = 1/2,那么θ 的度数是多少?A. 30°B. 45°C. 60°D. 90°二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 对角线互相垂直的四边形是菱形。
()3. 一元二次方程的解一定是两个实数根。
()4. 相似三角形的对应边长成比例。
()5. 平行线的斜率相等。
()三、填空题(每题1分,共5分)1. 平方差公式是:a^2 b^2 = _______。
2. 一元二次方程 ax^2 + bx + c = 0 的判别式是 _______。
3. 如果一个三角形的两边长分别是 3 和 4,那么第三边的长度可能是 _______。
4. 二项式定理是: (a + b)^n = _______。
5. 圆的标准方程是: (x h)^2 + (y k)^2 = _______。
四、简答题(每题2分,共10分)1. 解释什么是二次函数的顶点。
2. 简述勾股定理。
3. 什么是相似三角形?4. 解释什么是函数的单调性。
5. 什么是坐标轴?五、应用题(每题2分,共10分)1. 一个长方形的周长是 24cm,长是宽的两倍,求长和宽。
九年级上册数学试卷附答案

九年级上册数学试卷附答案题目一:选择题1. 设集合A={x | 5 ≤ x ≤ 10},则A中元素的个数等于()A. 4B. 5C. 6D. 7答案:C. 62. 下列等价变形是()A. 1.6千克=1600克B. 5千米=500米C. 9百=900D. 1/2小时=30分钟答案:D. 1/2小时=30分钟3. 平方根的定义域一定是()A. 自然数B. 整数C. 有理数D. 实数答案:D. 实数4. 设AB的长度为15厘米,AC的长度是AB长度的3倍,BD的长度是AB长度的2倍,则BD的长度是()厘米。
A. 15B. 30C. 45D. 60答案:B. 305. 已知a,b,c都是非零实数,且abc=1,则下列说法正确的是()A. a+b+c>0B. a+b+c<0C. a+b+c=1D. a+b+c=-1答案:B. a+b+c<0题目二:填空题1. 在 x + 3=7 的两边同时减去3,可得x=______。
答案:42. 如果直线l垂直于直线m,则直线m与直线l相交时的夹角为______度。
答案:903. 下列各数中,是整数,但不是自然数的是______。
答案:04. 如果二次方程 x^2+bx+12=0 的根为2和-3,则b的值为______。
答案:15. 设集合A={x | x为偶数},则A的元素个数是______。
答案:无穷多个题目三:计算题1. 计算:2.3 * (4.5 + 6.7)答案:33.042. 计算:(7 - 4) *3.8答案:11.43. 计算:(2^3 ÷ 4) + (√16 - 2)答案:54. 计算:18 ÷ (9 - 3) + 4 × 2答案:125. 计算:(2^3 + 4 × 5) ÷ 3答案:10题目四:解答题1. 某商品原价为150元,现进行8折优惠,请计算打完折后的价格是多少元?答案:120元2. 在一组数据中,平均数为45,如果将其中一个数减少10,则平均数变为43,请计算原来的那个数是多少?答案:553. 如图所示,矩形ABCD中,AB=15cm,BC=3cm,通过顶点C和边AB做垂线CE,垂足为E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九 年 级 期 末 数 学 试 题 一.选择题(共10小题,每小题3分)1.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM=MN ;②MP=0.5BD ;③BN+DQ=NQ ;④(AB +BN)/BM 为定值.其中一定成立的是( )A .①②③ B .①②④ C .②③④ D .①②③④2.已知关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k <-2B .k <2C .k >2D .k <2且k≠13.已知M (a,b )是平面直角坐标系xOy 中的点,其中a 是从l,2,3,4三个数中任取的一个数,b 是从l,2,3,4,5五个数中任取的一个数.定义“点M (a ,b )在直线x+y=n 上”为事件Q n (2≤n ≤9,n 为整数),则当Q n 的概率最大时,n 的所有可能的值为( )A .5 B .4或5 C .5或6 D .6或74.如图在△ABC 中,D 是BC 中点,DE ⊥BC 交AC 与E,已知AD=AB ,连接BE 交AD 于F,下列结论:①BE=CE ;②∠CAD=∠ABE ;③AF=DF ;④S △ABF =3S △DEF ;⑤△DEF ∽△DAE ,其中正确有( )个A .5 B.4 C.3 D .25.当你站在博物馆的展览厅中时,你知道站在何处观赏最理想吗?如图,设墙壁上的展品最高点P 距地面2.5米,最低点Q 距地面2米,观赏者的眼睛E 距地面1.6米,当视角∠PEQ 最大时,站在此处观赏最理想,则此时E 到墙壁的距离为( )米 A .1 B .0.6 C .0.5 D .0.4 1题图4题图5题图7题图 6.函数y=x 4和y=x 1在第一象限内的图象如图,点P 是y=x 4的图象上一动点,PC ⊥x 轴于点C ,交y=x 1图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④3CA=AP .其中所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④7.在同一平面直角坐标系中,函数y=mx+m 与y=xm (m ≠0)的图象可能是( ) A . B . C . D .8.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A .55B .552C .5D .32 9.如图,▱ABCD 中,E 为AD 的中点.已知△DEF 的面积为1,则▱ABCD 的面积为( )A .9B .12C .15D .188题图9题图10.关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A .1 B .-1 C .1或-1 D .2二.填空题(共8小题,每小题3分) 11.如图坡面CD 的坡比为1:3,坡顶的平地BC 上有一棵小树AB ,当太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC=3米,斜坡上的树影CD=3米,则小树AB 的高是____________12.如图,直线y=-x+b 与双曲线y=-x1(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=_______________13.如图是某几何体的三视图及相关数据,请写出一个a ,b ,c ,关系的等式__________11题图12题图13题图 14.如图,点A 在反比例函数y =x 4(x >0)的图象上,点B 在反比例函数y =−x 9(x <0)的图象上,且∠AOB=90°,则tan ∠OAB 的值为________.15.如图在△ABC 中,P 为AB 上一点,在下列四个条件中:①∠ACP=∠B ;②∠APC=∠ACB ;③AC 2=AP •AB ;④AB •CP=AP •CB ,能满足△APC 与△ACB 相似的条件是___________(只填序号).16.已知a 、b 可以取-2,-1,1,2中任意一个值(a ≠b),则直线y=ax+b 的图象不经过第四象限的概率是_____17.对于实数a,b,定义运算“﹡”:a ﹡b=⎪⎩⎪⎨⎧<-≥-)(,)(,22b a b ab b a ab a .例如4﹡2,因为4>2,所以4﹡2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x+6=0的两个根,则x 1﹡x 2=____18.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,∠CAB 的平分线交BD 于点E ,交BC 于点F .若OE=1,则CF=_________14题图15题图18题图三.解答题(共9小题)19.解方程(1)x(x-3)=-x+3 (2) 0.5x 2-2x+1=020.已知关于x 的方程x 2+2(k-3)x+k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若|x 1+x 2-9|=x 1x 2,求k 的值.21. 点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.(1)当α=60°时(如图1),①判断△ABC的形状,并说明理由;②求证:BD=3AE;(2)当α=90°时(如图2),求BD/AE的值.22.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.23.如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?k(x>0)的图象上,24.如图,点A(1,6)和点M(m,n)都在反比例函数y=x(1)k的值为_____;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.8的图象交于A,B两点,且点A的横坐标和25.如图,已知一次函数y=kx+b的图象与反比例函数y=−x点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.26.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.27.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据2=1.414,3=1.732,6=2.449)答案1.【解答】解:如图:作AU⊥NQ于U,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴由等角对等边知,AM=MN,故①正确.由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN∴MP=AH=0.5AC=0.5BD,故②正确,∵∠BAN+∠QAD=∠NAQ=45°,∴三角形ADQ绕点A顺时针旋转90度至ABR,使AD和AB重合,在连接AN,证明三角形AQN≌ANR,得NR=NQ则BN=NU,DQ=UQ,∴点U在NQ上,有BN+DQ=QU+UN=NQ,故③正确.如图,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,∴四边形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW,∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:2,∴(AB+BN)/BM=2: 2=2,故④正确.故选D.2.【解答】解:根据题意得:△=b2-4ac=4-4(k-1)=8-4k>0,且k-1≠0,解得:k<2,且k≠1.故选:D.3.【解答】解:∵a是从l,2,3,4四个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.又∵点M(a,b)在直线x+y=n上,2≤n≤9,n为整数,∴n=5或6的概率是1/4,n=4的概率是3/16,∴当Q n的概率最大时是n=5或6的概率是1/4最大.故选C.4.【解答】解:∵D是BC的中点,且DE⊥BC,∴DE是BC的垂直平分线,CD=BD,∴CE=BE,故本答案正确;∴∠C=∠7,∵AD=AB,∴∠8=∠ABC=∠6+∠7,∵∠8=∠C+∠4,∴∠C+∠4=∠6+∠7,∴∠4=∠6,即∠CAD=∠ABE,故本答案正确;作AG⊥BD于点G,交BE于点H,∵AD=AB,DE⊥BC,∴∠2=∠3,DG=BG=0.5BD,DE∥AG,∴△CDE∽△CGA,△BGH∽△BDE,EH=BH,∠EDA=∠3,∠5=∠1,∴CD:CG=DE:AG,HG=0.5DE,设DG=x,DE=2y,则GB=x,CD=2x,CG=3x,∴2x:3x=2y:AG,解得:AG=3y,HG=y,∴AH=2y,∴DE=AH,且∠EDA=∠3,∠5=∠1∴△DEF≌△AHF∴AF=DF,故本答案正确;EF=HF=0.5EH,且EH=BH,∴EF:BF=1:3,∴S△ABF=3S△AEF,∵S△DEF=S△AEF,∴S△ABF=3S△DEF,故本答案正确;∵∠1=∠2+∠6,且∠4=∠6,∠2=∠3,∴∠5=∠3+∠4,∴∠5≠∠4,∴△DEF∽△DAE,不成立,故本答案错误.综上所述:正确的答案有4个.故选B.5.【解答】解:由题意可知:据PR=2.5m,QR=2m,HR=1.6m,HE=x,∴HQ=QR-HR=0.4m,PH=PR-HR=0.9m,∵HE是圆O的切线,∴HE2=HQ•HP,∴x2=0.4×0.9解得:x=0.6.故选:B.1上的点,∴6.【解答】解:∵A、B是反比函数y=xS△OBD=S△OAC=1/2,故①正确;当P的横纵坐标相等时PA=PB,故②错误;4的图象上一动点,∵P是y=x∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC-S△ODB--S△OAC=4-0.5-0.5=3,故③正确;连接OP,S△PO C/S△OAC=PC/AC=4,∴AC=1/4PC,PA=3/4PC,∴PA/AC=3,∴AC=1/3AP;故④正确;综上所述,正确的结论有①③④.故选C.m的图象可知m>0,故A选项正7.【解答】A、由函数y=mx+m的图象可知m>0,由函数y=xm的图象可知m>0,相矛盾,故B选项确;B、由函数y=mx+m的图象可知m<0,由函数y=x错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故C选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m <0,相矛盾,故D选项错误;故选:A.8.【解答】解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=25.∴cos∠ABC=552.故选B.9.【解答】解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴S△DEF:S△BCF=(DE/BC)2,又∵E是AD中点,∴DE=0.5AD=0.5BC,∴DE:BC=DF:BF=1:2,∴S△DEF:S△BCF=1:4,∴S△BCF=4,又∵DF:BF=1:2,∴S△DCF=2,∴S▱ABCD=2(S△DCF+S△BCF)=12.故选B.10.【解答】解:依题意△>0,即(3a+1)2-8a(a+1)>0,即a2-2a+1>0,(a-1)2>0,a≠1,∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴(3a+1)/a-(2a+2)/a=1-a,解得:a=±1,又a≠1,∴a=-1.故选:B.11、43【解答】解:由已知得Rt△AFD,Rt△CED,如图,且得:∠ADF=60°,FE=BC,BF=CE,在Rt△CED中,设CE=x,由坡面CD的坡比为1:3,得:DE=3x,则根据勾股定理得:x2+(3x)2=(3)2,得x=±3/2,-3/2不合题意舍去,所以,CE=3/2米,则,ED=3/2米,那么,FD=FE+ED=BC+ED=3+3/2=9/2米,在Rt△AFD中,由三角函数得:AF/FD=tan∠ADF,∴AF=FD•tan60°=9/2×3=93/2米,∴AB=AF-BF=AF-CE=93/2-3/2=43米,故答案为:43米.12、2【解答】解:∵直线y=-x+b与双曲线y=-x1(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=-1,而直线y=-x+b与x轴交于B点,∴OB=b∴又OA2=x2+y2,OB2=b2,∴OA2-OB2=x2+y2-b2=(x+y)2-2xy-b2=b2+2-b2=2.故答案为:2.13、a2+b2=c2【解答】解:∵圆锥的母线长为c,圆锥的高为b,圆锥的底面半径为a,且圆锥的母线、圆锥的底面半径及圆锥的高组成直角三角形,∴根据勾股定理得:a2+b2=c2故答案为:a2+b2=c214、【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,∴S △OB D /S △A OC =(OB/OA)2,∵点A 在反比例函数y =x 4(x >0)的图象上,点B 在反比例函数y =−x9(x <0)的图象上,∴S △OBD =4.5,S △AOC =2,∴OB/OA=3/2,∴tan ∠OAB=OB/OA=3/2.故答案为:1.5.15、【解答】解:前三项正确,因为他们分别符合有两组角对应相等的两个三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似.故相似的条件是①,②,③. 16、1/6.【解答】解:列表如下:-2 -1 1 2 -2(-1,-2) (1,-2) (2,-2) -1(-2,-1) (1,-1) (2,-1) 1(-2,1) (-1,1) (2,1) 2 (-2,2) (-1,2) (1,2)所有等可能的情况数有12种,其中直线y=ax+b 不经过第四象限情况数有2种, 则P=2/12=1/6.故答案为:1/6.17、【解答】解:∵x 1,x 2是一元二次方程x 2-5x+6=0的两个根,∴(x-3)(x-2)=0,解得:x=3或2,①当x 1=3,x 2=2时,x 1﹡x 2=32-3×2=3; ②当x 1=2,x 2=3时,x 1﹡x 2=3×2-32=-3.故答案为:3或-3.18、【解答】解:作EG ⊥AB 于G ,根据角平分线的性质可得,EG=OE=1,又BD 平分∠ABC ,则∠ABE=45°∴△EBG 是等腰直角三角形,可得BE=2,则OB=1+2,可得BC=2+2又∠AFB=90°-∠FAB ,∠FEB=∠OEA=90°-∠FAC ,∴∠AFB=∠FEB∴BF=BE=2则CF=BC-BF=2+2-2=2.19、【解答】(1)x=3或x=1 (2)x=2+3或x=2-320、【解答】(1)根据题意,得△≥0,即[2(k-3)]2-4k 2≥0,解得,k ≤1.5;(2)根据韦达定理,得x 1+x 2=-2(k-3),x 1x 2=k 2,∴由|x 1+x 2-9|=x 1x 2,得|-2(k-3)-9|=k 2,即|2k+3|=k 2,以下分两种情况讨论:①当2k+3≥0,即k ≥-1.5时,2k+3=k 2,即k 2-2k-3=0,解得,k 1=-1,k 2=3;又由(1)知,k ≤1.5,∴-1.5≤k ≤1.5,∴k 2=3不合题意,舍去,即k 1=-1;②当2k+3<0,即k <-1.5时,-2k-3=k 2,即k 2+2k+3=0,此方程无实数解.综合①②可知,k=-1.21、【解答】解:(1)①判断:△ABC是等边三角形.理由:∵∠ABC=∠ACB=60°∴∠BAC=180°-∠ABC-∠ACB=60°=∠ABC=∠ACB∴△ABC是等边三角形②证明:同理△EBD也是等边三角形.连接DC,则AB=BC,BE=BD,∠ABE=60°-∠EBC=∠CBD∴△ABE≌△CBD,∴AE=CD,∠AEB=∠CDB=150°∴∠EDC=150°-∠BDE=90°∠CED=∠BEC-∠BED=90°-60°=30°在Rt△EDC中CD/ED=tan30°=3/3,∴AE/BD=3/3,即BD=3AE.(2)连接DC,∵∠ABC=∠EBD=90°,∠ACB=∠EDB=60°,∴△ABC∽△EBD∴AB/EB=BC/BD,即AB/BC=EB/BD又∵∠ABE=90°-∠EBC=∠CBD∴△ABE∽△CBD,∠AEB=∠CDB=150°,AE/CD=BE/BD∴∠EDC=150°-∠BDE=90°∠CED=∠BEC-∠BED=90°-(90°-∠BDE)=60°设BD=x在Rt△EBD中DE=2x,BE=3x,在Rt△EDC中CD=DE•tan60°=23x∴AE=DC•BE/BD=23x•3x/X=6x=6BD,即BD/AE=1/6.22、【解答】(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,AB=AC,∠BAE=∠ACF, AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°-∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴AP/AC=AE/AP,即AP/6=2/AP,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=23,点P的路径是l=120π•23/180=43/3π.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:33.所以,点P经过的路径长为43/3π或33.23、【解答】解:设FG=x米.那么FH=x+GH=x+AC=x+4(米),∵AB=6m,CD=8m,小强的眼睛与地面的距离为1.6m,∴BG=4.4m,DH=6.4m,∵BA⊥PC,CD⊥PC,∴AB∥CD,∴FG:FH=BG:DH,即FG•DH=FH•BG,∴x ×6.4=(x+4)×4.4,解得x=8.8(米),因此小于8.8米时就看不到树CD 的树顶D .24、【解答】解:(1)将A (1,6)代入反比例解析式得:k=6;故答案为:6;(2)将x=3代入反比例解析式y=x6得:y=2,即M (3,2), 设直线AM 解析式为y=ax+b ,把A 与M 代入得:a +b =6, 3a +b =2,解得:a=-2,b=8,∴直线AM 解析式为y=-2x+8;(3)直线BP 与直线AM 的位置关系为平行,理由为:当m >1时,过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,∵A (1,6),M (m ,n ),且mn=6,即n=m 6,∴B (0,6),P (m ,0), ∴k 直线AM =n n --16=)1(66---m m m =-m 6,k 直线BP =-m 6,即k 直线AM =k 直线BP ,则BP ∥AM . 25、【解答】(1)由题意A (-2,4),B (4,-2),∵一次函数过A 、B 两点,∴4=−2k +b,−2=4k +b ,解得k =−1, b =2,∴一次函数的解析式为y=-x+2;(2)设直线AB 与y 轴交于C ,则C (0,2),∵S △AOC =0.5×OC ×x A ,S △BOC =0.5×OC ×x B ,∴S △AOB =S △AOC +S △BOC =0.5OC • |x A |+0.5OC • |x B |=0.5×2×2+0.5×2×4=6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x 的取值范围是x <-2或0<x <4.26、【解答】(1)设平均每次下调的百分率为x .由题意,得5(1-x )2=3.2. 解这个方程,得x 1=0.2,x 2=1.8(不符合题意),符合题目要求的是x 1=0.2=20%. 答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.27、【解答】解:在Rt △ABC 中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×2/2=52/2,在Rt △ADC 中,∠ADC=30°,∴AD=AC/ sin30°=52=5×1.414=7.07,AD-AB=7.07-5=2.07(米).答:改善后滑滑板约会加长2.07米.。