九年级数学月考试卷和答案
湖南长郡教育集团2024年九年级上学期数学9月月考模拟试卷+答案

湖南省长沙市长郡教育集团2024-2025学年九年级上学期数学9月月考模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图各交通标志中,不是中心对称图形的是()A.B.C.D.2.(3分)地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149×106B.1.49×107C.1.49×108D.14.9×1073.(3分)下列计算正确的是()A.x2•x3=x5B.(x3)3=x6C.x(x+1)=x2+1D.(2a﹣1)2=4a2﹣14.(3分)下面是2024年丽江市某周发布的最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关)A.中位数是24B.众数是24C.平均数是20D.方差是95.(3分)下列关于x的一元一次不等式x﹣1>0的解集在数轴上的表示正确的是()A.B.C.D.6.(3分)如图,已知AB是⊙O的直径,D、C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE=()A .40°B .60°C .80°D .120°7.(3分)关于函数y =﹣2x +1,下列结论正确的是()A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .图象与直线y =﹣2x +3平行D .y 随x 的增大而增大8.(3分)如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G ,若∠1=70°,则∠2的度数是()A .60°B .55°C .50°D .45°9.(3分)函数y =ax +b 与y =ax 2+b (a ≠0)在同一平面直角坐标系中的大致图象可能是()A .B .C .D .10.(3分)如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D ,且DC +DA =12,⊙O 的直径为20,则AB 的长等于()A.8B.12C.16D.18二.填空题(共6小题,满分18分,每小题3分)11.(3分)因式分解:﹣a2﹣6a﹣9=.12.(3分)请写出一个经过点(0,﹣2),且y随着x增大而增大的一次函数:.13.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是.14.(3分)石拱桥的主桥拱是圆弧形.如图,一石拱桥的跨度AB=16m,拱高CD=4m,那么桥拱所在圆的半径OA=m.15.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为.16.(3分)如图,四边形ABCD内接于⊙O,点M在AD的延长线上,∠CDM=71°,则∠AOC=.三.解答题(共9小题,满分72分)17.(6分)计算:.18.(6分)先化简,再求值:(y+1)2﹣(y﹣1)(y+5),其中y=﹣.19.(6分)如图所示,每个小正方形的边长为1个单位长度,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)点A关于点O中心对称的点的坐标为;(2)△AOB绕点O顺时针旋转90°后得到△A1OB1,在图中画出△A1OB1,并写出点B1的坐标:.20.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=130°,求∠BED的度数.21.(8分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=45°,∠APD=75°.(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.22.(9分)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.23.(9分)国庆节期间,某品牌月饼经销商销售甲、乙两种不同味道的月饼,已知一个甲种月饼和一个乙种月饼的进价之和为14元,每个甲种月饼的利润是6元,每个乙种月饼的售价比其进价的2倍少1元,小王同学买4个甲种月饼和3个乙种月饼一共用了89元.(1)甲、乙两种月饼的进价分别是多少元?(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种月饼200个和乙种月饼150个.如果将两种月饼的售价各提高1元,则每天将少售出50个甲种月饼和40个乙种月饼.为使每天获取的利润更x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元?24.(10分)如图(1),正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=6,将正方形AEFG绕点A逆时针旋转a(0°≤α≤45°).(1)如图(2),正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点P,在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DP 的长;若不存在,请说明理由.25.(10分)如图1所示,直线与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式:(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB 取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.湖南省长沙市长郡教育集团2024-2025学年九年级上学期数学9月月考模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图各交通标志中,不是中心对称图形的是()A.B.C.D.【解答】解:A.不是中心对称图形,故此选项符合题意;B、C、D是中心对称图形,故B、C、D选项不符合题意.故选:A.2.(3分)地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149×106B.1.49×107C.1.49×108D.14.9×107【解答】解:将149000000用科学记数法表示为:1.49×108.故选:C.3.(3分)下列计算正确的是()A.x2•x3=x5B.(x3)3=x6C.x(x+1)=x2+1D.(2a﹣1)2=4a2﹣1【解答】解:A、x2•x3=x5,本选项符合题意;B、(x3)3=x9≠x6,本选项不符合题意;C、x(x+1)=x2+x,本选项不符合题意;D、(2a﹣1)2=4a2﹣4a+1≠4a2﹣1,本选项不符合题意;故选:A.4.(3分)下面是2024年丽江市某周发布的最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关于这组数据,下列说法正确的是()A.中位数是24B.众数是24C.平均数是20D.方差是9【解答】解:将数据按从小到大排列为:16、19、22、23、24、24、29,故中位数为:23,故A选项错误,不符合题意;众数是24,故B选项正确,符合题意;平均数为,故C错误,不符合题意;方差是:,故D选项错误,不符合题意;故选:B.5.(3分)下列关于x的一元一次不等式x﹣1>0的解集在数轴上的表示正确的是()A.B.C.D.【解答】解:解不等式x﹣1>0得,x>1,在数轴上表示如图,.故选:B.6.(3分)如图,已知AB是⊙O的直径,D、C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE=()A.40°B.60°C.80°D.120°【解答】解:∵D、C是劣弧EB的三等分点,∠BOC=40°∴∠EOD=∠COD=∠BOC=40°∴∠AOE=60°.故选:B.7.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.图象与直线y=﹣2x+3平行D.y随x的增大而增大【解答】解:A、当x=﹣2,y=﹣2x+1=﹣2×(﹣2)+1=5,则点(﹣2,1)不在函数y=﹣2x+1图象上,故本选项错误;B、由于k=﹣2<0,则函数y=﹣2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;C、由于直线y=﹣2x+1与直线y=﹣2x+3的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;D、由于k=﹣2<0,则y随x增大而减小,故本选项错误;故选:C.8.(3分)如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=70°,则∠2的度数是()A.60°B.55°C.50°D.45°【解答】解:∵EG平分∠BEF,∴∠BEG=∠GEF,∵AB∥CD,∴∠BEG=∠2,∴∠2=∠GEF,∵AB∥CD,∴∠1+∠2+∠GEF=180°,∴∠2=(180°﹣70°)=55°.故选:B .9.(3分)函数y =ax +b 与y =ax 2+b (a ≠0)在同一平面直角坐标系中的大致图象可能是()A .B .C .D .【解答】解:选项A 中,函数y =ax +b 中的a >0,b >0,二次函数y =ax 2+b 中a >0,b >0,故选项A 符合题意;选项B 中,函数y =ax +b 中的a >0,b <0,二次函数y =ax 2+b 中a >0,b >0,故选项B 不符合题意;选项C 中,函数y =ax +b 中的a >0,b <0,二次函数y =ax 2+b 中a <0,b >0,故选项C 不符合题意;选项D 中,函数y =ax +b 中的a >0,b >0,二次函数y =ax 2+b 中a <0,b >0,故选项D 不符合题意;故选:A .10.(3分)如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D ,且DC +DA =12,⊙O 的直径为20,则AB 的长等于()A .8B .12C .16D .18【解答】解:连接OC ,过O 作OF ⊥AB ,垂足为F ,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=12,设AD=x,则OF=CD=12﹣x,∵⊙O的直径为20,∴DF=OC=10,∴AF=10﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(10﹣x)2+(12﹣x)2=102,解得x1=4,x2=18.∵CD=12﹣x大于0,故x=18舍去,∴x=4,∴AD=4,AF=10﹣4=6,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=12.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)因式分解:﹣a2﹣6a﹣9=﹣(a+3)2.【解答】解:﹣a2﹣6a﹣9=﹣(a2﹣+6a+9)=﹣(a+3)2.故答案为:﹣(a+3)2.12.(3分)请写出一个经过点(0,﹣2),且y随着x增大而增大的一次函数:y=x﹣2(答案不唯一).【解答】解:设一次函数解析式为y=kx+b(k≠0).∵y随着x增大而增大,∴k>0,∵一次函数y=kx+b的图象经过点(0,﹣2),取k=1,∴﹣2=1×0+b,∴b=﹣2,∴一次函数的解析式可以为y=x﹣2.故答案为:y=x﹣2(答案不唯一).13.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是﹣1<x<3.【解答】解:∵由函数图象可知,当﹣1<x<3时,函数图象在x轴的下方,∴不等式ax2+bx+c>0的解集是﹣1<x<3.故答案为:﹣1<x<3.14.(3分)石拱桥的主桥拱是圆弧形.如图,一石拱桥的跨度AB=16m,拱高CD=4m,那么桥拱所在圆的半径OA=10m.【解答】解:∵OC⊥AB,AB=16m,∴AD=BD=8m,设BO=x m,则DO=(x﹣4)m,在Rt△OBD中,得:BD2+DO2=BO2,即82+(x﹣4)2=x2,解得:x=10,即桥拱所在圆的半径是10m.故答案为:10.15.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为1.【解答】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32﹣3k﹣6=0,解此方程得到k =1.16.(3分)如图,四边形ABCD内接于⊙O,点M在AD的延长线上,∠CDM=71°,则∠AOC=142°.【解答】解:∵四边形ABCD内接于⊙O,∴∠B=∠CDM=71°,∴∠AOC=2∠B=2×71°=142°,故答案为:142°.三.解答题(共9小题,满分72分)17.(6分)计算:.【解答】解:原式=2﹣+4﹣1+=2﹣+4﹣1+﹣1=4.18.(6分)先化简,再求值:(y+1)2﹣(y﹣1)(y+5),其中y=﹣.【解答】解:(y+1)2﹣(y﹣1)(y+5)=y2+2y+1﹣(y2+4y﹣5)=y2+2y+1﹣y2﹣4y+5=﹣2y+6,当时,原式=.19.(6分)如图所示,每个小正方形的边长为1个单位长度,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)△AOB绕点O顺时针旋转90°后得到△A1OB1,在图中画出△A1OB1,并写出点B1的坐标:(3,﹣1).【解答】解:(1)如图,点A′即为所求作.A′(﹣3,﹣2).故答案为:(﹣3,﹣2).(2)如图,△A1OB1即为所求作,点B1的坐标(3,﹣1).故答案为:(3,﹣1).20.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=130°,求∠BED的度数.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD,∴∠BAD+∠EAB=∠BAD+∠DAC,∴∠EAB=∠DAC,在△EAB和△DAC中,,∴△EAB≌△DAC(SAS),∴∠AEB=∠ADC;(2)解:如图,连接DE,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形,∴∠AED=60°,又∵∠AEB=∠ADC=130°,∴∠BED=130°﹣60°=70°.21.(8分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=45°,∠APD=75°.(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.【解答】解:(1)∵∠CAB=45°,∠APD=75°.∴∠C=∠APD﹣∠CAB=30°,∵由圆周角定理得:∠C=∠B,∴∠B=30°;(2)过O作OE⊥BD于E,∵OE过O,∴BE=DE,∵圆心O到BD的距离为3,∴OE=3,∵AO=BO,DE=BE,∴AD=2OE=6.22.(9分)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.【解答】解:(1)将M(﹣2,﹣2)代入抛物线解析式得:﹣2=(﹣2﹣2)(﹣2+a),解得:a=4;(2)①由(1)抛物线解析式y=(x﹣2)(x+4),当y=0时,得:0=(x﹣2)(x+4),解得:x1=2,x2=﹣4,∵点B在点C的左侧,∴B(﹣4,0),C(2,0),当x=0时,得:y=﹣2,即E(0,﹣2),=×6×2=6;∴S△BCE②由抛物线解析式y=(x﹣2)(x+4),得对称轴为直线x=﹣1,根据C与B关于抛物线对称轴直线x=﹣1对称,连接BE,与对称轴交于点H,即为所求,设直线BE解析式为y=kx+b,将B(﹣4,0)与E(0,﹣2)代入得:,解得:,∴直线BE解析式为y=﹣x﹣2,将x=﹣1代入得:y=﹣2=﹣,则H(﹣1,﹣).23.(9分)国庆节期间,某品牌月饼经销商销售甲、乙两种不同味道的月饼,已知一个甲种月饼和一个乙种月饼的进价之和为14元,每个甲种月饼的利润是6元,每个乙种月饼的售价比其进价的2倍少1元,小王同学买4个甲种月饼和3个乙种月饼一共用了89元.(1)甲、乙两种月饼的进价分别是多少元?(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种月饼200个和乙种月饼150个.如果将两种月饼的售价各提高1元,则每天将少售出50个甲种月饼和40个乙种月饼.为使每天获取的利润更多,经销商决定把两种月饼的价格都提高x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元?【解答】解:(1)设甲种月饼的进价是x元/个,乙种月饼的进价是y元/个,则,解得.故甲种月饼的进价是8元/个,乙种月饼的进价是6元/个;(2)依题意有(6+x)(200﹣50x)+(6﹣1+x)(150﹣40x)=2650,解得x1=1,x2=﹣,∵x>0,∴x=1.答:当x为1元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元.24.(10分)如图(1),正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=6,将正方形AEFG绕点A逆时针旋转a(0°≤α≤45°).(1)如图(2),正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点P,在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DP 的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD=90°,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴BE=DG;(2)解:如图1,过点A作AH⊥BE交BE的延长线于点H,∵∠BEA=120°,∴∠AEH=180°﹣∠BEA=60°,∵∠AHE=90°,∴∠EAH=90°﹣60°=30°,∴EH=AE=×6=3,∴AH===3,在Rt△ABH中,BH===3,∴BE=BH﹣EH=3﹣3;(3)解:存在.如图2,连接AF,∵四边形AEFG是正方形,∴AE=EF=6,∠AEF=90°,∴AF===12,∵BF=BC=AB=12,∴AF=BF=AB=12,∴△ABF是等边三角形,∵BA=BF,EA=EF,∴BE是线段AF的垂直平分线,∵EG是线段AF的垂直平分线,∴直线BE与直线EG是同一条直线,∴点P与点G重合,即DP=DG,设EG与AF交于点O,则AO=EO=AF=6,∠AOB=90°,∴BO===6,∴BE=BO﹣EO=6﹣6,∵∠BAE+∠EAD=∠DAG+∠EAD=90°,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴DG=BE,∴DP=BE=6﹣6.25.(10分)如图1所示,直线与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式:(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB 取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.【解答】解:(1)∵直线y=x+3与x轴、y轴分别相交于点A,点B,∴A(﹣4,0),B(0,3),∵点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.∴,∴,∴y=﹣x2﹣x+3;(2)如图,作PD⊥OB于D,设Q(m,﹣m2﹣m+3),P(m,m+3),∴PQ=﹣m2﹣m+3﹣(m+3)=﹣m2﹣m,∵PD∥OA,∴△BPD∽△BAO,∴=,∵A(﹣4,0),B(0,3),∴AB===5,∴,∴PB=﹣m,∴PQ+PB=﹣m2﹣m﹣m=﹣m2﹣m=﹣(m+)2+,∴当m=﹣时,PQ+PB取得最大值,∵×(﹣)+3=,∴P(﹣,);(3)如图,作CN⊥AD于N,作MT⊥AB于T,∵C(1,2),G(﹣1,0),∴CN=GN=2,∴∠CGN=∠NCG=45°,∴∠CFD+∠GDF=45°,∵∠CFD+∠ABH=45°,∴∠GDF=∠ABH,∵∠GDF=∠HBO,∴∠ABH=∠HBO,∴OM=MT,+S△BOM=S△AOB,∵S△ABM∴AB•MT+OB•OM=OB•OA,∴5OM+3OM=3×4,∴OM=,∴M(﹣,0),∴直线BM的解析式为:y=2x+3,∵C(1,2),G(﹣1,0),∴直线CG的解析式为:y=x+1,由2x+3=x+1得,x=﹣2,∴x+1=﹣1,∴H(﹣2,﹣1).。
九年级数学月考试题(含答案)

第五次月考一 选择题(共10小题,每小题3分,计30分)1. 如图,在⊿ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( )A.43 B.34 C.53 D.542. △ABC 中,∠A 、∠B 都是锐角,且sin A =21,cos B =23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定3. .在△ABC 中,AB =AC =4,BC =2,则4cos B 等于( )A.1B.2C.15D.4154. 如果∠A 为锐角,且cos A =41,那么∠A 的范围是 A . 0°<∠A ≤30° B.30°<∠A <45° C. 45°<∠A <60°D.60°<∠A <90°5 如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工。
从AC 上的一点B ,取∠ABD=145°,BD=500米,∠D=55°,要使A 、C 、E 成一直线,那么开挖点E 离点D 的距离是( )A. 500sin55°米B. 500cos55°米C. 500tan55°米D. 500tan35°米6. 下列各关系式中,属于二次函数的是(x 为自变量) ( )A.y =81x 2B.y =12-xC.y =21x D.y =a 2x7. 已知二次函数c bx ax y ++=2的图象如右图所示, 则a、b、c满足( )A. a <0,b <0,c >0 B. a <0,b <0, c <0 C. a <0,b >0,c >0 D. a >0,b <0, c >0 8. 下列说法错误的是 ( )BACA.二次函数y =3x 2中,当x >0时,y 随x 的增大而增大B.二次函数y =-6x 2中,当x =0时,y 有最大值0C.a 越大图象开口越小,a 越小图象开口越大D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 9. 在同一坐标系中,作y =x 2,y =-21x 2,y =31x 2的图象,它们的共同特点是( ) A.抛物线的开口方向向上B.都是关于x 轴对称的抛物线,且y 随x 的增大而增大C.都是关于y 轴对称的抛物线,且y 随x 的增大而减小D.都是关于y 轴对称的抛物线,有公共的顶点10. 已知a <-1,点(a -1,y 1),(a ,y 2)(a +1,y 3)都在函数y =x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 3二 填空题(共6小题,每小题3分,计18分)11. 如图,等腰三角形ABC 的顶角为1200,腰长为10,则底边上的高AD=12. 某段公路每前进100 m ,就升高4 m ,则路面的坡度约为_____13. 如果由点A 测得点B 在北偏西20°的方向,那么由点B 测得点A 的方向是______ 14. 若函数y =(k 2-4)x 2+(k +2)x +3是二次函数,则k ______15. 写出一个开口向上,顶点是y 轴上的二次函数的表达式:16. 在边长为6 cm 的正方形中间剪去一个边长为x cm(x <6)的小正方形,剩下的四方框形的面积为y ,y 与x 之间的函数关系是______ 三 解答题(共8小题,计52分,解答应写出过程)17(本题满分6分)求值:sin 245°- cos60°+ tan60°·cos 230°18.(本题满分10分)如图,一位篮球运动员跳起投篮,球沿抛物线21 3.55y x =-+运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?19. (本小题满分12 分)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图①所示):(1)在测点A 处安置测倾器,测得旗杆顶部 M 的仰角∠MCE =α;(2)量出测点A 到旗杆底部N 的水平距离AN = m ; (3)量出测倾器的高度AC = h .根据上述测量数据,即可求出旗杆的高度MN .如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图②)的方案: (1)在图②中,画出你测量小山高度 MN 的示意图(标上适当字母); (2)写出你设计的方案.x20. (本小题满分12 分)有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米;(1)在如图的坐标系中,求抛物线的表达式.(2)若洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2米的速度上升)21(本小题满分12 分)如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1.)(1)(2)参考答案:一、1. A 2.B 3. A 4. D 5. B 6. A 7. A 8. C 9. D 10. C二、11.5 12. 1∶24.98 13. 南偏东20° 14. ≠±2 15. 21y x =+ 16. y =36-x 2三、17. 解:原式= 2212- (2分)=112244-+= (6分) 18.解:⑴ ∵抛物线 21 3.55y x =-+的顶点为(0,3.5) ∴最大高度为3.5米 (4分) ⑵ 在21 3.55y x =-+中 当 3.05y =时 213.05 3.55x =-+ ∴2 2.25x = ∴ 1.5x =±又∵x >0 ∴ 1.5x = …………………… (8分) 当 2.25y =时 212.25 3.55x =-+ ∴2 6.25x = ∴ 2.5x =± 又∵x <0 ∴ 2.5x =- …………………… (11分) 故运动员距离篮框中心水平距离为 1.5+2.5 = 4 …………………… (12分) 19.解:(1)正确画出示意图. (4分) (2)① 在测点A 处安置测倾器,测得此时山顶M 的仰角 ∠MCE = α;② 在测点A 与小山之间的B 处安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角 ∠MDE = β;③ 量出测倾器的高度AC = BD = h ,以及测点A 、B 之间的距离AB = m . 根据上述测量数据,即可求出小山的高度MN . (12分)20.解:(1)设拱桥顶到警戒线的距离为m .∵抛物线顶点在(0,0)上,对称轴为y 轴, ∴设此抛物线的表达式为y =ax 2(a ≠0). 依题意:C (-5,-m ),A (-10,-m -3).∴⎩⎨⎧-=---=-.)10(3,)5(22a m a m ⎪⎩⎪⎨⎧-=-=∴.1,251m a ∴抛物线表达式为y =2125x -8分 (2)∵洪水到来时,水位以每小时0.2米的速度上升,|m |=1, ∴从警戒线开始再持续2.01=5(小时)到拱桥顶. 12分(1) (2)21解:(1)如图,建立直角坐标系, …………2分 设二次函数解析式为 y =ax 2+c …………3分 ∵ D (-0.4,0.7),B (0.8,2.2), …………4分∴ ⎩⎨⎧.=+,=+2.264.07.016.0c a c a …………5分∴ ⎪⎩⎪⎨⎧.=,=2.0528c a∴绳子最低点到地面的距离为0.2米. …………7分 (2)分别作EG ⊥AB 于G ,FH ⊥AB 于H …………8分 AG =21(AB -EF )=21(1.6-0.4)=0.6. 在Rt △AGE 中,AE =2, EG =22AG AE -=226.02 =64.3≈1.9. …………11分∴ 2.2-1.9=0.3(米).∴ 木板到地面的距离约为0.3米. …………12分。
安徽初三初中数学月考试卷带答案解析

安徽初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()2.下列方程中是关于x的一元二次方程的是( )A.B.C.D.3.下列计算正确的是()4.设a=-1,a在两个相邻整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和55.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°6.一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和27.把a根号外的因式移入根号内的结果是()A.B.C.D.8.方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.不能确定9.关于的方程有两个不相等的实根、,且有,则的值是()A.1B.-1C.1或-1D.210.已知m,n是方程x2-2x-1=0的两根,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于()A.-5B.5C.-9D.92二、填空题1.当 2<x <3 时, _____。
2.已知,则=_________。
3.如图,四边形ABCD 中,∠BAD=∠C=90º,AB=AD ,AE ⊥BC 于E ,若线段AE=5,则S 四边形ABCD = 。
4.如果是两个不相等的实数,且满足,那么;三、解答题1.(2-3)+(2+)(2-)2.解方程:(2x+1)(x-4)=53.如图,每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上, ①写出A 、B 、C 的坐标.②以原点O 为对称中心,画出△ABC 关于原点O 对称的△A 1B 1C 1,并写出A 1、B 1、C 1.4.先化简再计算:,其中x 是一元二次方程的正数根。
2023-2024学年天津市河东区九年级上学期数学月考试卷及答案

2023-2024学年天津市河东区九年级上学期数学月考试卷及答案一、选择题1. 下列方程属于一元二次方程的是( )A. 2x 2﹣=7B. xy =91x C. x 2=4D. x 2+y 2=0 【答案】C【解析】【分析】根据是否为整式方程对A 进行判断;根据未知数的个数对B 、D 进行判断;根据一元二次方程的定义对C 进行判断.【详解】解: A 、2x 2﹣=7不是整式方程,所以A 选项错误; 1xB 、xy =8含有两个未知数,所以B 选项错误;C 、x 2=4是一元二次方程,所以C 选项正确;D 、x 2+y 2=0含有两个未知数,所以D 选项错误.故选C .【点睛】考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的ax 2+bx+c=0(a 、b 、c 为常数,a≠0).2. 用配方法解方程时,原方程应变形为( )2250x x +-=A.B.()216x +=()216x -=C.D. ()229x +=()229x -=【答案】A【解析】【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全平方公式表示即可.【详解】解:,2250x x +-=∴, 225x x +=即,2216x x ++=∴,()216x +=故选:A .【点睛】本题考查的是一元二次方程的解法,掌握配方法解一元二次方程的一般步骤是解题的关键.3. 已知是一元二次方程的一个解,则m 的值为( )=2x 220x mx ++=A. 3B. C. 0 D. 0或3 3-【答案】B【解析】【分析】将代入一元二次方程,解方程即可得到答案.=2x 【详解】解:由题意得,4220m ++=解方程得,3m =-故选:B .【点睛】本题考查一元二次方程的解,掌握能使一元二次方程左右两边相等的未知数的值就是一元二次方程的解是解答本题的关键..4. 关于x 的一元二次方程3x 2﹣4x+8=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根 【答案】D【解析】【分析】根据判别式公式,求这个一元二次方程的判别式,根据正负情况即可得到答案.【详解】解:根据题意得:△=(﹣4)2﹣4×3×8=16﹣96=﹣80<0,∴该方程没有实数根,故选D .【点睛】考查了根的判别式,正确掌握根的判别式公式是解题的关键.5. 已知函数是二次函数,则m 的值为()()22227m y m x x -=-+-A. ±2B. 2C. -2D. m 为全体实数【答案】C【解析】 【分析】根据二次函数定义列式求解即可.【详解】解:∵函数是二次函数()22227m y m x x -=-+-∴m-2≠0,,解得:m=-2.222m -=故选:C .【点睛】本题主要考查了二次函数定义,掌握形如y=ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数.6. 顶点坐标为(﹣2,3),开口方向和大小与抛物线相同的抛物线为( ) 212y x =A. B. ()21232y x =-+()21232y x =--C. D. ()21232y x =++()21232y x =-++【答案】C【解析】 a 值有关,利用顶点式解析式写出即可.【详解】解:∵抛物线的顶点坐标(﹣2,3),开口方向和大小与抛物线相同, 212y x =∴这个二次函数的解析式为y =(x+2)2+3.12故选C .【点睛】考查了二次函数图象与系数的关系,熟记抛物线y=ax 2+bx+c 中,a 值确定抛物线的开口方向和抛物线的形状是解题的关键.7. 抛物线y=﹣x 2+1的顶点坐标是( )12A. (0,1)B. (,1)C. (﹣,﹣1)D. (2,1212﹣1)【答案】A【解析】【分析】将抛物线解析式写成顶点式即可.【详解】解:y=﹣x 2+1 12=, 21(x 0)12--+∴顶点坐标是(0,1).故选A.【点睛】本题考查了抛物线的顶点坐标.8. 二次函数y =3(x﹣1)2+2的最小值是( )A. 2B. 1C. ﹣1D. ﹣2 【答案】A【解析】【分析】根据完全平方式和顶点式的意义,可直接得出二次函数的最小值.【详解】解:由于(x﹣1)2≥0,所以当x =1时,函数取得最小值为2,故选A .【点睛】考查了二次函数的性质,要熟悉非负数的性质,找到完全平方式的最小值即为函数的最小值.9. 二次函数y=(x﹣1)2+2的图象可由y=x 2的图象( )1212A. 向左平移1个单位,再向下平移2个单位得到B. 向左平移1个单位,再向上平移2个单位得到C. 向右平移1个单位,再向下平移2个单位得到D. 向右平移1个单位,再向上平移2个单位得到【答案】D【解析】【详解】y=x 2向右平移1个单位得到:y=x-1)2,再向上平移2个单位得到:y=x-121(21(21)2+2.所以选D.10. 抛物线与轴的公共点是,,则这条抛物线的对称轴是2y ax bx c =++x ()1,0-()3,0直线( )A. 直线B. 直线C. 直线D. 直线1x =-0x =1x =3x =【答案】C【解析】【分析】因为点A 和B 的纵坐标都为0,所以可判定A ,B 是一对对称点,把两点的横坐标代入公式x=求解即可. 122x x +【详解】∵抛物线与x 轴的交点为(−1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x===1. 122x x +132-+故答案选C.【点睛】本题考查了抛物线与坐标轴的交点的相关知识点,解题的关键是熟练的掌握抛物线与坐标轴的交点的性质.11. 某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元?这道应用题如果设每件玩具应涨x 元,则下列说法错误的是( )A. 涨价后每件玩具的售价是元;B. 涨价后每天少售出玩具的数量是(30)x +件 C. 涨价后每天销售玩具的数量是件D. 可列方10x (30010)x -程为:(30)(30010)3750x x +-=【答案】D【解析】【详解】A.涨价后每件玩具的售价是元,正确;B.涨价后每天少售出玩具的数量()30x +是件,正确;C.涨价后每天销售玩具的数量是件,正确;D.可列方程为:10x ()30010x -,错误,应为(30+x-20)(300-10x)=3750,故选D.()()30300103750x x +-=12. 二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac﹣b 2<0;②4a+c<2b ;③3b+2c<0;④m(am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题13. 若关于x的方程(m+1)x2+2mx﹣7=0是一元二次方程,则m的取值范围是_____.【答案】m≠﹣1【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】解:由题意,得m+1≠0.解得m≠﹣1.故答案是:m≠﹣1.【点睛】利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.14. 如果抛物线的对称轴是y 轴,那么m 的值是_________.2(1)2y x m x m =-+--+【答案】1【解析】【分析】根据对称轴公式可得,即可求解. 02b x a=-=10m -=【详解】解:∵抛物线的对称轴是y 轴,2(1)2y x m x m =-+--+∴, 02b x a=-=∴,10m -=∴,1m =故答案为:.1【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.15. 已知一元二次方程,则_________.22310x x -+=12x x +=【答案】#### 321.5112【解析】【分析】根据一元二次方程根与系数的关系,即可求解.【详解】解:∵中,,22310x x -+=2,3a b ==-∴, 123322b x x a -+=-=-=故答案为:. 32【点睛】本题考查了一元二次方程根与系数的关系:若是一元二次方程12,x x 的两根,,,掌握一元二次方程根与系数()200ax bx c a ++=≠12b x x a+=-12c x x a =的关系是解题的关键. 16. 若实数a 满足a 2﹣2a=3,则3a 2﹣6a﹣8的值为_____.【答案】1【解析】【分析】先对已知进行变形,所求代数式化成已知的形式,再利用整体代入法即可求解.【详解】解:∵a 2﹣2a=3,∴3a 2﹣6a﹣8=3(a 2﹣2a)﹣8=3×3﹣8=1,∴3a 2﹣6a﹣8的值为1.故答案是:1.【点睛】考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.要把a 2-2a 看作一个整体,整体代入即可求出答案.17. 有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了______个人.【答案】12【解析】【分析】设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有169人患了流感,列方程求解【详解】解:设平均一人传染了x 人,x+1+(x+1)x=169解得:x=12或x=-14(舍去).∴平均一人传染12人.故答案为:12.【点睛】本题考查理解题意的能力,关键是看到两轮传染,从而可列方程求解.18. 如图抛物线y=x 2+2x﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值【解析】【分析】连接AC,与对称轴交于点P, 此时DE+DF 最小,求解即可.【详解】连接AC,与对称轴交于点P,此时DE+DF 最小,点D 、E 、F 分别是BC 、BP 、PC 的中点,11,,22DE PC DF PB ∴==在二次函数y=x 2+2x﹣3中,当时,0x =3,y =-当时,或0y =3x =- 1.x =即()()()3,0,1,0,0,3.A B C --3,OA OC ==AC ==点P 是抛物线对称轴上任意一点,PA+PC=AC,PB+PC=DE+DF 的最小值为: ()12PB PC +=【点睛】考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P 的位置是解题的关键.三、解答题19. 用适当的方法解下列方程:(1)()2324x -=(2)212270x x ++=(3)264x x +=(4)()()22333x x -=-【答案】(1),;13x =+23x =-(2),;13x =-29x =-(3),;13x =-+23x =--(4),13x =2 4.5x =【解析】【分析】(1)方程开方即可求出解;(2)方程利用因式分解法求出解即可;(3)方程利用配方法求出解即可;(4)方程整理后,利用因式分解法求出解即可.【小问1详解】解:开方得:3x -=±解得:,; 13x =+23x =-【小问2详解】解:分解因式得:,()()390x x ++=解得:,;13x =-29x =-【小问3详解】解:配方得:,26913x x ++=即,()2313x +=开方得:,3x +=解得:,13x =-+23x =--【小问4详解】解:方程整理得:,()()223330x x ---=分解因式得:,()()3[233]0x x ---=解得:,13x =2 4.5x =【点睛】此题考查了解一元二次方程因式分解法,配方法,直接开平方法,熟练掌握各-种解法是解本题的关键.20. 已知关于x 的方程的一个根是1. 求的值和方程的另一个根.2250x x k -+=k 【答案】,方程的另一个根为3k =32【解析】【分析】将代入,即可求出k 的值,再利用因式分解法解方程即得1x =2250x x k -+=出其另一个根.【详解】将,代入,得:,1x =2250x x k -+=250k -+=解得:.3k =∴该方程为 22530x x -+=(1)(23)0x x --=∴, 12312x x ==,∴方程的另一个根为. 32【点睛】本题考查一元二次方程的解和解一元二次方程.掌握方程的解就是使等式成立的未知数的值是解题关键.21. 已知二次函数y =ax 2(a≠0)的图象经过点(﹣2,3)(1)求a 的值,并写出这个二次函数的解析式;(2)求出此抛物线上纵坐标为3的点的坐标.【答案】(1), (2)(﹣2,3),(2,3) 34234y x =【解析】【分析】(1)根据二次函数图象上点的坐标满足其解析式,把点(-2,3)代入解析式得到关于a 的方程,然后解方程即可;(2)把y=3代入解析式求出x 的值即可.【详解】解:(1)∵抛物线y =ax 2经过点(﹣2,3),∴4a=3,∴a=, 34∴二次函数的解析式为; 234y x =(2)∵抛物线上点的纵坐标为3,∴3=x 2, 34解得x =±2,∴此抛物线上纵坐标为3的点的坐标为(﹣2,3),(2,3).【点睛】考查了待定系数法求解析式,二次函数图象上点的坐标特征,函数解析式与图象上的点之间的关系,点在图象上,则满足解析式;反之,满足解析式则在函数图象上.22. 已知二次函数. 2134y x x =--(1)求出函数图象顶点坐标;(2)写出图象的对称轴;(3)写出图象的开口方向;(4)写出当自变量x 取何值时,y 随x 的增大而减小.【答案】(1) ()24-,(2)直线2x =(3)向上 (4)2x ≤【解析】【分析】(1)将解析式化成顶点式求解即可;(2)根据顶点式求解即可;(3)根据,判断作答即可; 104a =>(4)根据二次函数的图象与性质作答即可.【小问1详解】解:∵, ()221132444y x x x =--=--∴函数图象顶点坐标为; ()24-,【小问2详解】解:由(1)可知,对称轴为直线;2x =【小问3详解】解:由(1)可知,, 104a =>∴图象的开口向上;【小问4详解】解:由图象开口向上,对称轴为直线,2x =∴当时,y 随x 的增大而减小.2x ≤熟练掌握与灵活运用.23. 已知,抛物线有经过两点,顶点为,求:2y x bx c =-++()()1,05,0A B -、P (1)求,的值:b c (2)求的面积;ABP (3)写出抛物线与轴交点坐标y 【答案】(1),4b =5c =(2)27(3)()0,5【解析】【分析】(1)利用交点式得到,然后展开即可得到和的值; ()()15y x x =-+-b c(2)把(1)的解析式进行配方可得到顶点式,然后写出顶点坐标即可求得面积;(3)将代入,即可求解.0x =【小问1详解】解:设抛物线的解析式为,()()15y x x =-+-∴,245y x x =-++∴;45b c ==,【小问2详解】解:∵,2245(2)9y x x x =-++=--+则点坐标为,P ()2,9∵,()()1,05,0A B -、∴,()516AB =--=∴的面积; ABP 12=AB ⨯⨯12P y =6927⨯⨯=【小问3详解】解:∵245y x x =-++当时,0x =5y =∴抛物线与轴交点坐标为y ()0,5【点睛】本题考查了待定系数法求二次函数关系式,求抛物线与坐标轴的交点问题,面积问题,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.24. 某学校计划利用一片空地建一个花面,花面为矩形,其中一面靠墙,这堵墙的长度为米,另三面用总长米的篱笆材料围成,且计划建造花圃的面积为平方米.设垂直122880于墙的边长为x 米,根据实际情况回答以下问题(1)平行于墙的边长为____米(用含x 代数式填空)(2)这个花圃的长和宽分别应为多少米?【答案】(1)()282x -(2)这个花圃的长为米,宽为米.108【解析】【分析】(1)设垂直于墙的边长为米,则平行于墙的边长为米,x ()282x -(2)根据花圃的面积为平方米,即可得出关于的一元二次方程,解得的值,再结80x x 合墙的长度为米,即可得出结论.12【小问1详解】解:设垂直于墙的边长为米,则平行于墙的边长为米,x ()282x -故答案为:.()282x -【小问2详解】依题意,得:,()28280x x -=解得:,.14x =210x =当时,,不符合题意,舍去;4x =2822012x -=>当时,,符合题意.10x =2828x -=答:这个花圃的长为米,宽为米.108【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,抛物线与轴交于,两点.2y x bx c =-++x ()1,0A ()3,0B -(1)求该抛物线的解析式;(2)设(1)中的抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得y C Q 的周长最小?若存在,求出点的坐标;若不存在,请说明理由;QAC △Q (3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?若存P PBC 在,求出点的坐标及的面积最大值;若没有,请说明理由.P PBC 【答案】(1)223y x x =--+(2)存在,(1,2)Q -(3)存在,,, 3(2-15)4278【解析】【分析】(1)根据题意可知,将点、代入函数解析式,列得方程组即可求得、的A B b c 值,求得函数解析式;(2)根据题意可知,边的长是定值,要想的周长最小,即是最AC QAC △AQ CQ +小,所以此题的关键是确定点的位置,找到点的对称点,求得直线的解析式,Q A B BC 求得与对称轴的交点即是所求;(3)存在,设点的坐标,将的面积表示成二次函数,根据二次函数最值的方法P BCP 即可求得点的坐标.P 【小问1详解】解:将,代入中得(1,0)A (3,0)B -2y x bx c =-++, 10930b c b c -++=⎧⎨--+=⎩. ∴23b c =-⎧⎨=⎩抛物线解析式为:;∴223y x x =--+【小问2详解】存在.理由如下:由题知、两点关于抛物线的对称轴对称,A B =1x -直线与的交点即为点,此时周长最小,∴BC =1x -Q AQC ,223y x x =--+ 的坐标为:,C ∴(0,3)直线解析式为:,BC 3y x =+点坐标即为, Q 13x y x =-⎧⎨=+⎩解得, 12x y =-⎧⎨=⎩;(1,2)Q ∴-【小问3详解】存在.理由如下:设点,,P (x 223)(30)x x x --+-<<, 92BPC BOC BPCO BPCO S S S S =-=- △△四边形四边形若有最大值,则就最大,BPCO S 四边形BPC S △,BPE BPCO PEOC S S S ∴=+△四边形直角梯形 11()22BE PE OE PE OC =⋅++ 2211(3)(23)()(233)22x x x x x x =+--++---++, 233927(2228x =-+++当时,最大值, 32x =-BPCO S 四边形92728=+最大, BPC S ∴△9279272828=+-=当时,, 32x =-215234x x --+=点坐标为,. ∴P 3(2-15)4【点睛】此题考查了二次函数的综合应用,要注意距离最短问题的求解关键是点的确定,还要注意面积的求解可以借助于图形的分割与拼凑,特别是要注意数形结合思想的应用.。
重庆南开中学2024年九年级上学期9月月考模拟数学试卷+答案

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4)A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
九年级数学上册月考试卷及答案【完整】

九年级数学上册月考试卷及答案【完整】第一部分:选择题
1. 请问下列哪个选项是正确的?
a. A
b. B
c. C
d. D
2. 如果 a = 2,b = 3,那么 a + b 的值是多少?
a. 4
b. 5
c. 6
d. 7
3. 三角形的内角和是多少?
a. 90度
b. 180度
c. 270度
d. 360度
4. 请问下列哪个选项是与三角形有关的公式?
a. F = ma
b. E = mc^2
c. A = 1/2bh
d. H = VQ
第二部分:填空题
1. 以下哪个数是质数:___。
2. 三角形的面积公式是___。
3. 二次方程的解的个数与 ___ 相关。
4. 下面哪个选项是平行四边形的特性之一:___。
第三部分:解答题
1. 解方程:3x + 5 = 20。
2. 计算三角形 ABC 的面积,已知底边 BC = 8 cm,高 AD = 6 cm。
答案
第一部分:选择题
1. c
2. b
3. b
4. c
第二部分:填空题
1. 2
2. A = 1/2bh
3. 二次方程的解的个数与判别式相关
4. 对角线互相平分
第三部分:解答题
1. x = 5
2. 三角形 ABC 的面积为 24 平方厘米。
以上是九年级数学上册月考试卷及答案的完整内容。
请注意,只有在详细核对题目和答案后,才可确认完全准确性。
2024年冀教版九年级数学上册月考试卷49

2024年冀教版九年级数学上册月考试卷49考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共7题,共14分)1、(2016秋•郴州月考)如图:在△ABC中,BE、CD分别是AC、AB边上的中线,BE与CD相交于点O,则=()A.B.C.D.2、如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB3、如图,BC是以AD为直径的⊙O的切线,AB⊥BC,DC⊥BC.在下列哪种情况下,四边形ABCD的面积是整数()A. AB=9,CD=4B. AB=7,CD=3C. AB=5,CD=2D. AB=3,CD=14、如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A. 4cmB. 6cmC. 8cmD. 10cm5、若=0;则x的值()A. 3或-1B. -3或1C. 1D. -16、(2009•福州)若分式图片有意义;则x的取值范围是()A. x≠1B. x>1C. x=1D. x<17、【题文】将二次函数的图象先向右平移2个单位,再向下平移个单位,得到的函数图象的解析式为().A.B.C.D.评卷人得分二、填空题(共5题,共10分)8、二次函数y=ax2+bx+c的部分对应值如下表:。
x ﹣3 ﹣2 0 1 3 5y 7 0 ﹣8 ﹣9 ﹣5 7①抛物线的顶点坐标为(1;﹣9);②与y轴的交点坐标为(0;﹣8);③与x轴的交点坐标为(﹣2;0)和(2,0);④当x=﹣1时,对应的函数值y为﹣5.以上结论正确的是____9、已知扇形的半径为4cm圆心角为120鈭�则扇形的弧长为 ______cm.10、(2006•玉溪)如图,在正方形网格上的三角形①,②,③中,与△ABC相似的三角形有____个.11、(2002•宁德)如图,建筑物甲、乙的楼高均为20米,在某一时刻太阳光线与水平线的夹角为30°,如果两楼间隔为18米,则楼甲的影子落在楼乙上的高度AB=____米(结果保留根号)).12、如图,l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC,其中正确的结论是____(把你认为正确的结论的序号都填上).评卷人得分三、判断题(共8题,共16分)13、两个等腰三角形一定是全等的三角形.____.(判断对错)14、-2的倒数是+2.____(判断对错).15、相交两圆的公共弦垂直平分连结这两圆圆心的线段____.(判断对错)16、扇形是圆的一部分.(____)17、非负有理数是指正有理数和0.____(判断对错)18、5+(-6)=-11____(判断对错)19、过直线外一点可以作无数条直线与已知直线平行.(____)20、有一个角是钝角的三角形就是钝角三角形.____(判断对错)评卷人得分四、作图题(共2题,共6分)21、利用5×5方格作出面积为17的正方形.22、已知△ABC在平面直角坐标系中的位置如图所示.①画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′.②画出△ABC的一个以原点O为位似中心的位似图形△A″B″C″,使△A″B″C″与△ABC的相似比为2.评卷人得分五、解答题(共4题,共16分)23、如图一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,求直线AB的一次函数解析式及△AOC的面积.24、一长方形花坛与一圆形花坛的面积相等,长方形花坛的长为m,宽为m,求圆形花坛的半径.(结果化为最简二次根式)25、通过估算比较下列每组数的大小:(1)与3.14;(2)-2与.26、已知∠MON;OP为∠MON的平分线,在OP上任取一点C,过点C作OM的垂线,垂足为E,垂线CE交ON于B点,过点C作ON的垂线,垂足为F,垂线CF交OM于A点;问AC与BC相等吗?试说明理由.评卷人得分六、多选题(共3题,共30分)27、点(-1,y1)、(-2,y2)、(3,y3)均在y=-的图象上,则y1、y2、y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y3<y1<y228、用四舍五入法对2.098176分别取近似值,其中正确的是()A. 2.09(精确到0.01)B. 2.098(精确到千分位)C. 2.0(精确到十分位)D. 2.0981(精确到0.0001)29、无理数-的相反数是()A. -B.C.D. -参考答案一、选择题(共7题,共14分)1、A【分析】【分析】根据三角形重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1即可直接得到答案.【解析】【解答】解:∵BE;CD分别是AC、AB边上的中线;BE与CD相交于点O;∴O为△ABC的重心;∴BO:OE=2:1;∴=故选:A.2、A【分析】【分析】由全等三角形的性质:对应角相等即可得到问题的选项.【解析】【解答】解:∵△ABF与△DCE全等;点A与点D,点B与点C是对应顶点;∴∠DCE=∠B;故选A.3、A【分析】【分析】首先由切线的性质可知OF⊥BC,从而可证明OF为梯形的中位线,然后再△AED中利用勾股定理表示出DE的长,然后可得到四边形ABCD的面积的关系式,然后将AB、CD的值代入即可.【解析】【解答】解:如图所示.连接切点F与圆心O;连接ED.∵BC是圆O的切线;∴OF⊥BC.∵AB⊥BC;DC⊥BC;∴AB∥OF∥DC.又∵AO=DO;∴FO= .∴AD=2OF=DC+AB.∵AD是圆O的直径;∴∠AED=90°.∴∠DEB=∠B=∠C=90°.∴四边形BCDE为矩形.∴DE=BC.在Rt三角形AED中,DE= =∴四边形ABCD的面积= =当AB=9,CD=4时,四边形的面积= =78是整数符合题意.当AB=7,CD=3时,四边形的面积= =10 ;不是整数,不合题意.当AB=5,CD=2时,四边形的面积= =7 ;不是整数,不合题意.当AB=3,CD=1时,四边形的面积= =4 .不是整数;不合题意.故选;A.4、C【分析】【分析】根据平行四边形的对角线互相平分,可得OA=OC,又因为OE⊥AC,可得OE是线段AC的垂直平分线,可得AE=CE,即可求得△DCE的周长.【解析】【解答】解:∵四边形ABCD为平行四边形;∴OA=OC;∵OE⊥AC;∴AE=EC;∵▱ABCD的周长为16cm;∴CD+AD=8cm;∴△DCE的周长=CD+CE+DE=CD+AD=8cm.故选:C.5、D【分析】∵=0,∴x2-2x-3=0且|x-3|≠0;解得x=-1,故选D.【解析】【答案】分式为0的条件:分子为0且分母不为0.6、A【分析】∵x-1≠0;∴x≠1.故选A.【解析】【答案】本题主要考查分式有意义的条件:分母不等于0.7、D【分析】【解析】图像的平移有一个判别方法“正左负右”,向左右平移改变的是x,而上下平移(正上负下)改变的是整个函数,所以得到答案D。
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学阶段试题 2016.10.14(满分:150分 考试时间:120分钟)命题:杰、贵芳第一部分 选择题(共18分)一、选择题(每小题3分,共18分)1. 下列关于x 的方程中,一定是一元二次方程的为A.ax 2+bx+c=0B.x 2-2=(x+3)2C.x 2+x3−5=0 D.x 2-1=02. 五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的中位数为 A .20B .19C .20D .213. 方程0132=++x x 的根的情况是A .有两个相等实数根B .有两个不相等实数根C .有一个实数根D .无实数根4. 如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是A .30° B.45° C.60° D.70° 5. 已知x=-1是一元二次方程x 2+mx+n=0的一个根,则(m – n)2的值为 A.0 B.1 C.2 D.4 6.下列说确的是A .三点确定一个圆B .一个三角形只有一个外接圆C .和半径垂直的直线是圆的切线D .三角形的外心到三角形三边的距离相等第4题 第9题二、填空题 (每题3分,共30分)7. 下表是我市某一天在不同时段测得的气温情况0:00 4:00 8:00 12:00 16:00 20:00 25℃27℃29℃32℃34℃30℃则这一天气温的极差是 ℃. 8. 方程x 2=-2x 的根是 .9. 如图,AB 是⊙O 的直径,直线PA 与⊙O 相切于点A ,PO 交⊙O 于点C ,连接BC,∠P=40°,则∠ABC 的度数为 .10. 超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:测试项目 创新能力 综合知识 语言表达 测试成绩(分数)708090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是______分.11. 如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M 、N ,量得OM=8cm ,ON=6cm ,则该圆玻璃镜的半径是 cm. 12. 已知圆锥的底面半径为4cm ,母线长为6cm ,则它的侧面展开图的面积为 cm 2. 13.小颖同学在手工制作中,把一个圆形的纸片贴到边长为12cm 的等边三角形纸片上,若三角形的三条边恰好都与圆相切,则圆的半径为 cm.第11题 第15题14.设一元二次方程x 2-3x -1=0两根分别是x 1,x 2,则=++2121233x x x x . 15. 如图,四边形ABCD 接于⊙O ,∠DAB=130°,连接OC ,点P 是半径OC 上任意一点(不与O 、C 重合),连接DP ,BP ,则∠BPD 可能为 度(写出一个即可). 16. 一个微信群里有若干个好友,每个好友分别给群里其他好友发送一条信息,这样共发送870条信息,设微信群里有x 个好友,则根据题意可列方程为 . 三、解答题 (本大题共10题,共102分) 17.解下列方程(本题共10分)(1) 2x 2-3x-2=0(用配方法) (2) (x ﹣2)2﹣3x(x ﹣2)=0.18.(本题共8分)先化简,再求值:⎪⎭⎫ ⎝⎛---÷-+x x x x x x 2824222,其中x 2+2x ﹣1=0.19. (本题共12分) 某市射击队甲、乙两名优秀队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1) 请将表格补充完整:平均数 方差 中位数 命中9环(含9环) 以上的环数甲 7 7 1 乙5.4(2) 请从下列四个不同的角度对这次测试结果进行分析: ①从平均数和方差向结合看, 的成绩好些; ②从平均数和中位数相结合看, 的成绩好些;③从平均数和折线统计图走势相结合看, 的成绩好些;④若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.20. (本题共8分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1) 求证:∠ACD=∠B;(2) 如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.21. (本题共8分)已知关于x的方程x2-(m+2)x+2m-1=0(1) 求证:无论m取何值,方程恒有两个不相等的实数根;(2)若此方程的一个根为1,请求出方程的另一个根.22. (本题共8分)如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.(1) 请你用直尺和圆规.....在所给的网格中画出线段AC及点B经过的路径;(2) 线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为;(3) 若有一与(2)中所说的区域形状相同的纸片,将它围成一个圆锥的侧面,则该圆锥底面圆的半径长为.23. (本题共10分)“黄桥烧饼全国闻名”,国庆节期间,黄桥某烧饼店平均每天可卖出300个烧饼,卖出1个烧饼的利润是1元,经调查发现,零售单价每降0.1元,平均每天可多卖出100个,为了使每天获取的利润更多..,该店决定把零售单价下降m(0<m<1)元(1) 零售单价下降m元后,每个烧饼的利润为元,该店平均每天可卖出个烧饼(用含m的代数式表示,需化简...);(2) 在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的烧饼更多..?xyB APOxyF EBAPO24. (本题共12分) 如图,AB 为⊙O 直径,C 是⊙O 上一点,CO ⊥AB 于点O ,弦CD 与AB 交于点F ,过点D 作∠CDE , 使∠CDE=∠DFE ,DE 交AB 的延长线于点E .过点A 作⊙O 的切线交ED 的延长线于点G . (1) 求证:GE 是⊙O 的切线;(2) 若OA=2,∠G=50°,求弧AD 的长; (3) 若OF :OB=1:3,BE=4,求OB 的长.25. (本题共12分)如图1,一次函数10+-=x y 的图像交x 轴于点A ,交y 轴于点B. 以P(1,0)为圆心的⊙P 与y 轴相切,若点P 以每秒2个单位的速度沿x 轴向右平移,同时⊙P 的半径以每秒增加1个单位的速度不断变大,设运动时间为t(s) (1) 点A 的坐标为 ,点B 的坐标为 ,∠OAB= °; (2) 在运动过程中,点P 的坐标为 ,⊙P 的半径为 (用含t 的代数式表示); (3) 当⊙P 与直线AB 相交于点E 、F 时 ①如图2求t=25时弦EF 的长; ②在运动过程中,是否存在以点.P .为直角顶点.....的Rt △PEF ,若存在,请求出t 的值;若不存在,请说明理由(利用图1解题).图1 图226. (本题共14分) 已知一元二次方程M:x 2-bx -c=0和N:y 2+cy+b=0 (1) 若方程M 的两个根分别为x 1=-1,x 2=3,求b,c 的值及方程N 的两根;(2) 若方程M 和N 有且只有....一个根相同,则这个根是 ,此时c b -= ; (3) 若x 为方程M 的根,y 为方程N 的根,是否存在x,y ,使下列四个代数式①x+y ②x-y ③yx④xy 的数值中有且仅有三个数值相同.若存在,请求出x 和y 的值;若不存在,请说明理由.济川中学初三数学阶段试题 2016.10.14参考答案一、选择题(共6小题,每小题3分,满分18分) 1-6.DCBCBB二、填空题(共10小题,每小题3分,满分30分)7.9; 8.x 1=0,x 2=-2; 9.25°; 10.77; 11.5; 12.24π; 13.32; 14.7; 15. 50°<∠BPD <100°即可; 16.x(x-1)=87017.(10分)(1)x 1=2,x 2=21-(5分) (2)x 1=2,x 2=-1(5分) 18.(8分)化简得:)2(21+x x (6分)代入求值得:21(2分)19.(12分) (1)(平均数、方差各2分,其余各1分)平均数 方差 中位数 命中9环以上的环数 甲 7 1.2 7 1 乙 7 5.4 7.5 3(2)①甲;(1分) ②乙.(1分) ③乙.(1分)④综合看,甲发挥更稳定,但射击精准度差;乙发挥虽不稳定,但击中高靶环次数更多,成绩提高潜力大,更具有培养价值.应选乙.(1+2分) 20.(8分)解:(1)略(4分)(2)45°(4分)21.(8分)解:(1)略(4分)(2)m=2(2分),x=3(2分) 22.(8分)(1)略(4分)(2)π425(2分)(3)45(2分) 23.(10分)解:(1)1-m,300+1000m(每空2分)(2)m 1=0.4,m 2=0.3(舍去) (2+2+1+1分) 24.(12分) 解:(1)略(4分)(2)π913(4分)(3)OB=6(4分) 25.(12分) 解:(1)A(10,0),B(0,10),45°(3分) (2)(1+2t,0)(1分),1+t(1分) (3)①EF=17(3分)②t=38或10(4分) 26.(14分)(1)b=2,c=3(每个1分),y 1=-1,y 2=-2(2分) 27.(2)-1, 1-=-c b (每空2分)(3)∵y≠0,∴①和②一定不相等,所以有2种情况:①③④,②③④(只有能分类出这两种情况就得2分)⎪⎩⎪⎨⎧-==121y x (2分)⎪⎩⎪⎨⎧-=-=121y x (2分)。