九年级数学月考试题
北京清华大学附属中学朝阳学校2024-2025学年九年级上学期数学9月月考试题

北京清华大学附属中学朝阳学校2024-2025学年九年级上学期数学9月月考试题一、单选题1.下列变量具有二次函数关系的是( ) A .圆的周长C 与半径rB .在弹性限度内,弹簧的长度y 与所挂物体的质量xC .正三角形的面积S 与边长aD .匀速行驶的汽车,路程s 与时间t2.抛物线y=﹣12x 2+3x ﹣52的对称轴是( )A .x=3B .x=﹣3C .x=6D .x=﹣523.下列所给方程中,没有实数根的是( ) A .20x x += B .24520x x -+= C .25410x x --=D .23410x x -+=4.用配方法解方程2240x x --=,配方正确的是() A .()213x -=B .()214x -=C .()215x -=D .()213x +=5.已知二次函数2y ax bx c =++的图象如图所示,则下列结论中,正确的是( )A .0a >,0b >,0c >B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c >6.已知方程2x 2+4x ﹣3=0的两根分别为x 1和x 2,则x 1+x 2的值等于( ) A .2B .﹣2C .32D .﹣327.函数221y ax x =-+和y ax a =+(a 是常数,且0)a ≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.已知一个二次函数图象经过()113,P y -,()221,P y -,()331,P y ,()443,P y 四点,若324y y y <<,则1234,,,y y y y 的最值情况是( ) A .3y 最小,1y 最大 B .3y 最小,4y 最大 C .1y 最小,4y 最大D .无法确定二、填空题9.关于x 的一元二次方程()22110m x x m -++-=有一根为0,则m =. 10.方程2x x =的解是.11.把函数23y x =-的图象向左平移2个单位,再向上平移5个单位,得到的图象的解析式是.12.已知抛物线22y x x =+经过点12(4,),(1,)y y -,则1y 2y .(填“>”,“=”,“<”) 13.二次函数2y x 2x 3=-+-,用配方法化为2y a(x h)k =-+的形式为.14.如图,要在空地上用40米长的竹篱笆围出一个矩形园地,矩形的一边靠教学楼25米的外墙,其余三边用竹篱笆.设矩形垂直于的一边为x 米,面积为y 平方米.写出y 与x 的函数关系式,自变量x 的取值范围是.15.如图,抛物线2y ax bx c =++的部分图象如图所示,若点P 的坐标为()4,0,则抛物线与x 轴的另一个交点坐标是.16.车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表:若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且一名修理工每次只能修理一台机床,则下列三个修复车床的顺序:①D A C E B →→→→;②D B E A C →→→→;③C A E B D →→→→中,经济损失最少的是(填序号);(2)若由两名修理工同时修复车床,且每台机床只由一名修理工修理,则最少经济损失为元.三、解答题17.解方程:()232x x x +=+. 18.解方程()224415x x x -+=+19.已知﹣1是方程x 2+ax ﹣b=0的一个根,求a 2﹣b 2+2b 的值.20.已知关于x 的方程()2320x m x m -+++=.(1)求证:无论实数m 取何值时,方程总有实数根; (2)若方程有一个根的平方等于4,求m 的值.21.在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()2,1A 和()0,1B -.(1)求该函数解析式;(2)当2x >-时,对于x 的每一个值,函数12y x n =+的值小于函数()0y kx b k =+≠的值且大于4-,直接写出n 的取值范围.22.一个小球以6m /s 的速度开始向前滚动,并且均匀减速,4s 后小球停止滚动. (1)小球的滚动速度平均每秒减少______米,滚动______米后停止.(2)小球滚动11m 1.73)(提示:匀变速直线运动中,每个时间段内的平均速度v (初速度与末速度的算术平均数)与路程s ,时间t 的关系为s vt =)23.已知:二次函数()20y ax bx c a =++≠中的x 和y 满足下表:(1)直接写出m 的值为______; (2)求这个二次函数的解析式;(3)当14x -<<时,y 的取值范围为______. 24.综合与实践 【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考. 【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示. 将所收集的样本数据进行如下分组:整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值. 【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号). ①两园样本数据的中位数均在C 组; ②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.25.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.26.四边形ABCD 是正方形,AC 是对角线,E 是平面内一点,且CE C B <,过点C 作FC CE ⊥,且CF CE =,连接AE 、AF 、M 是AF 的中点,作射线DM 交AE 于点N .(1)如图1,若点E 在BC 边上,F 在CD 边上. ①请补全图形;②请问DN 和AE 有怎样的位置关系,并证明;(2)如图2,若点E 在四边形ABCD 内,点F 在直线BC 上方,求EAC ∠与ADN ∠的和的度数.。
九年级数学月考试题(含答案)

第五次月考一 选择题(共10小题,每小题3分,计30分)1. 如图,在⊿ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( )A.43 B.34 C.53 D.542. △ABC 中,∠A 、∠B 都是锐角,且sin A =21,cos B =23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定3. .在△ABC 中,AB =AC =4,BC =2,则4cos B 等于( )A.1B.2C.15D.4154. 如果∠A 为锐角,且cos A =41,那么∠A 的范围是 A . 0°<∠A ≤30° B.30°<∠A <45° C. 45°<∠A <60°D.60°<∠A <90°5 如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工。
从AC 上的一点B ,取∠ABD=145°,BD=500米,∠D=55°,要使A 、C 、E 成一直线,那么开挖点E 离点D 的距离是( )A. 500sin55°米B. 500cos55°米C. 500tan55°米D. 500tan35°米6. 下列各关系式中,属于二次函数的是(x 为自变量) ( )A.y =81x 2B.y =12-xC.y =21x D.y =a 2x7. 已知二次函数c bx ax y ++=2的图象如右图所示, 则a、b、c满足( )A. a <0,b <0,c >0 B. a <0,b <0, c <0 C. a <0,b >0,c >0 D. a >0,b <0, c >0 8. 下列说法错误的是 ( )BACA.二次函数y =3x 2中,当x >0时,y 随x 的增大而增大B.二次函数y =-6x 2中,当x =0时,y 有最大值0C.a 越大图象开口越小,a 越小图象开口越大D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 9. 在同一坐标系中,作y =x 2,y =-21x 2,y =31x 2的图象,它们的共同特点是( ) A.抛物线的开口方向向上B.都是关于x 轴对称的抛物线,且y 随x 的增大而增大C.都是关于y 轴对称的抛物线,且y 随x 的增大而减小D.都是关于y 轴对称的抛物线,有公共的顶点10. 已知a <-1,点(a -1,y 1),(a ,y 2)(a +1,y 3)都在函数y =x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 3二 填空题(共6小题,每小题3分,计18分)11. 如图,等腰三角形ABC 的顶角为1200,腰长为10,则底边上的高AD=12. 某段公路每前进100 m ,就升高4 m ,则路面的坡度约为_____13. 如果由点A 测得点B 在北偏西20°的方向,那么由点B 测得点A 的方向是______ 14. 若函数y =(k 2-4)x 2+(k +2)x +3是二次函数,则k ______15. 写出一个开口向上,顶点是y 轴上的二次函数的表达式:16. 在边长为6 cm 的正方形中间剪去一个边长为x cm(x <6)的小正方形,剩下的四方框形的面积为y ,y 与x 之间的函数关系是______ 三 解答题(共8小题,计52分,解答应写出过程)17(本题满分6分)求值:sin 245°- cos60°+ tan60°·cos 230°18.(本题满分10分)如图,一位篮球运动员跳起投篮,球沿抛物线21 3.55y x =-+运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?19. (本小题满分12 分)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图①所示):(1)在测点A 处安置测倾器,测得旗杆顶部 M 的仰角∠MCE =α;(2)量出测点A 到旗杆底部N 的水平距离AN = m ; (3)量出测倾器的高度AC = h .根据上述测量数据,即可求出旗杆的高度MN .如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图②)的方案: (1)在图②中,画出你测量小山高度 MN 的示意图(标上适当字母); (2)写出你设计的方案.x20. (本小题满分12 分)有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米;(1)在如图的坐标系中,求抛物线的表达式.(2)若洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2米的速度上升)21(本小题满分12 分)如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1.)(1)(2)参考答案:一、1. A 2.B 3. A 4. D 5. B 6. A 7. A 8. C 9. D 10. C二、11.5 12. 1∶24.98 13. 南偏东20° 14. ≠±2 15. 21y x =+ 16. y =36-x 2三、17. 解:原式= 2212- (2分)=112244-+= (6分) 18.解:⑴ ∵抛物线 21 3.55y x =-+的顶点为(0,3.5) ∴最大高度为3.5米 (4分) ⑵ 在21 3.55y x =-+中 当 3.05y =时 213.05 3.55x =-+ ∴2 2.25x = ∴ 1.5x =±又∵x >0 ∴ 1.5x = …………………… (8分) 当 2.25y =时 212.25 3.55x =-+ ∴2 6.25x = ∴ 2.5x =± 又∵x <0 ∴ 2.5x =- …………………… (11分) 故运动员距离篮框中心水平距离为 1.5+2.5 = 4 …………………… (12分) 19.解:(1)正确画出示意图. (4分) (2)① 在测点A 处安置测倾器,测得此时山顶M 的仰角 ∠MCE = α;② 在测点A 与小山之间的B 处安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角 ∠MDE = β;③ 量出测倾器的高度AC = BD = h ,以及测点A 、B 之间的距离AB = m . 根据上述测量数据,即可求出小山的高度MN . (12分)20.解:(1)设拱桥顶到警戒线的距离为m .∵抛物线顶点在(0,0)上,对称轴为y 轴, ∴设此抛物线的表达式为y =ax 2(a ≠0). 依题意:C (-5,-m ),A (-10,-m -3).∴⎩⎨⎧-=---=-.)10(3,)5(22a m a m ⎪⎩⎪⎨⎧-=-=∴.1,251m a ∴抛物线表达式为y =2125x -8分 (2)∵洪水到来时,水位以每小时0.2米的速度上升,|m |=1, ∴从警戒线开始再持续2.01=5(小时)到拱桥顶. 12分(1) (2)21解:(1)如图,建立直角坐标系, …………2分 设二次函数解析式为 y =ax 2+c …………3分 ∵ D (-0.4,0.7),B (0.8,2.2), …………4分∴ ⎩⎨⎧.=+,=+2.264.07.016.0c a c a …………5分∴ ⎪⎩⎪⎨⎧.=,=2.0528c a∴绳子最低点到地面的距离为0.2米. …………7分 (2)分别作EG ⊥AB 于G ,FH ⊥AB 于H …………8分 AG =21(AB -EF )=21(1.6-0.4)=0.6. 在Rt △AGE 中,AE =2, EG =22AG AE -=226.02 =64.3≈1.9. …………11分∴ 2.2-1.9=0.3(米).∴ 木板到地面的距离约为0.3米. …………12分。
陕西省西安市高新第一中学2024-2025学年度第一学期九年级月考数学试题

陕西省西安市高新第一中学2024-2025学年度第一学期九年级月考数学试题一、单选题1.如图,是由两个大小不同的长方体组成的几何体,则该几何体的主视图为( )A .B .C .D .2.在下列条件中,能够判定ABCD Y 为矩形的是( )A .AB AC = B .AC BD ⊥ C .AB AD = D .AC BD = 3.如果两个相似三形对应边之比1:9,那么它们的对应中线之比是( ) A .1:2 B .1:3 C .1∶9 D .1:81 4.如图,已知AB CD EF ∥∥,23AC CE =∶∶,3BD =,那么DF 的长为( )A .4B .92C .5D .1125.如图,DE 是ABC V 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A .132B .7C .152D .86.如图,在67⨯的网格中,每个小正方形的边长均为1,若点A ,B ,C 都在格点上,则sin B 的值为( )A B C .23 D 7.若()1,3A y -、()2,2B y -、()31,C y 三点都在函数1y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .123y y y <<C .213y y y >>D .132y y y << 8.如图,在矩形ABCD 中,对角线,AC BD 相交于点,O BE AC ⊥于点E .若36CE AE ==,则边AD 的长是( )A .B .C .D .6二、填空题9.若34a b =,则a b a -=.10.在一个不透明的口袋中装有3个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个. 11.在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为米.12.如图,已知在ABO V 中,点C 在AB 上,2,BC AC CO CB ==,2AOC S =△,反比例函数k y x=的图像经过点C ,则k 的值为.13.如图,在平行四边形ABCD 中,3AB =,4AD =,点E 在AD 的延长线上,且2DE =,过点E 作直线l 分别交边CD ,AB 于点M ,N .若直线l 将平行四边形ABCD 的面积平分,则线段CM 的长为 .三、解答题14.解方程:2420x x -+=.15.计算:222sin 454cos 30tan 60︒+︒-︒16.如图,已知四边形ABCD ,AD BC ∥,请用尺规作图法,在边AD 上求作一点E ,在边BC 上求作一点F ,使四边形BFDE 为菱形.(保留作图痕迹,不写作法)17.如图,已知AD •AC =AB •AE ,∠DAE =∠BAC .求证:△DAB ∽△EAC .18.从同一副扑克牌中选出四张牌,牌面数字分别为2,5,6,8.将这四张牌背面朝上,洗匀.(1)从这四张牌中随机抽出一张牌,这张牌上的牌面数字是偶数的概率是;(2)小明从这四张牌中随机抽出一张牌,记下牌面数字后,放回.背面朝上,洗匀.然后,小华从中随机抽出一张牌,请用画树状图或列表的方法,求小华抽出的牌上的牌面数字比小明抽出的牌上的牌面数字大的概率.19.如图,在平面直角坐标系中,ABC V 的顶点坐标分别为()1,2A -,()3,3B -,()3,1C -.(1)以点B 为位似中心,在点B 的下方画出11A BC V ,使11A BC V 与ABC V 位似,且相似比为2:1,点A ,C 的对应点分别为1A ,1C ;(2)直接写出点1A 和点1C 的坐标:1A (______,______),1C (______,______).20.如图所示,在ABC V 中,90ACB ∠=︒,CD 平分ACB ∠,DE AC ⊥于E ,DF BC ⊥于F ,求证:四边形CEDF 是正方形.21.某商品专卖店,平均每天可售出40件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于35元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若该商品降价5元,那么平均每天销售数量是多少件?(2)若专卖店每天销售该商品盈利2400元,那么每件商品应降价多少元?22.关于x 的一元二次方程2610x x k -+-=.(1)如果方程有实数根,求k 的取值范围;(2)如果1x ,2x 是这个方程的两个根,且221212324x x x x ++=,求k 的值. 23.新学期,小华和小明被选为升旗手,为了更好地完成升旗任务,他俩想利用测倾器和阳光下的影子来测量学校旗杆的高度PA .如图所示,旗杆直立于旗台上的点P 处,他们的测量方法是:首先,在阳光下,小华站在旗杆影子的顶端F 处,此时,量得小华的影长2m FG =,小华身高 1.6m EF =;然后,在旗杆影子上的点D 处,安装测倾器CD ,测得旗杆顶端A 的仰角为49︒,量得0.6m CD =,6m DF =,旗台高 1.2m BP =.已知在测量过程中,点、、、B D F G 在同一水平直线上,点A P B 、、在同一条直线上,AB CD EF 、、均垂直于BG .求旗杆的高度PA .(参考数据:sin 490.8,cos490.7,tan 49 1.2︒≈︒≈︒≈)24.如图,在平面直角坐标系中,O 为坐标原点,一次函数2y x =-+的图象与反比例函数k y x=在第二象限的图象交于点(,3)A n ,与x 轴交于点B ,连结AO 并延长交这个反比例函数第四象限的图象于点C .(1)求这个反比例函数的表达式.(2)求ABC V 的面积.(3)当直线..AC 对应的函数值大于反比例函数k y x=的函数值时,直接写出x 的取值范围. 25.在Rt ABC △中,90C ∠=︒,10AC =cm ,7BC =cm ,现有动点P 从点A 出发,沿线段AC 向终点C 运动,动点Q 从点C 出发,沿线段CB 向终点B 运动,连接PQ .如果点P 的速度是2cm /s ,点Q 的速度是1cm /s .它们同时出发,当有一点到达终点时,另一点也停止运动,设运动时间为s t .(1)当t 为多少时,PQ cm ?(2)当t 为多少时,以C ,P ,Q 为顶点的三角形与ABC V 相似?26.问题提出(1)如图1,AD 是等边ABC V 的中线,点P 在AD 的延长线上,且AP AC =,则APC ∠的度数为__________.问题探究(2)如图2,在ABC V 中,6,120CA CB C ==∠=︒.过点A 作AP BC ∥,且AP BC =,过点P 作直线l BC ⊥,分别交AB BC 、于点O 、E ,求四边形OECA 的面积.问题解决(3)如图3,现有一块ABC V 型板材,ACB ∠为钝角,45BAC ∠=︒.工人师傅想用这块板材裁出一个ABP V 型部件,并要求15,BAP AP AC ∠=︒=.工人师傅在这块板材上的作法如下: ①以点C 为圆心,以CA 长为半径画弧,交AB 于点D ,连接CD ;②作CD 的垂直平分线l ,与CD 于点E ;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP BP、,得ABPV.请问,若按上述作法,裁得的ABPV型部件是否符合要求?请证明你的结论.。
人教版九年级上册数学第一次月考试卷含答案

人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。
福建省漳州市2024-2025学年九年级上学期第一次数学月考试题

2024-2025学年上学期数学月考学校: 班级: 姓名: 座号:一、单项选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)A.0x >B.1x >C.1x ≥D.1x ≠ 2.下列根式是最简二次根式的是( )A.9B.3C.4.用配方法解方程2210x x +−=时,配方结果正确的是( ) A.2(2)2x +=B.2(1)2x +=C.2(2)3x +=D.2(1)3x +=5.下列关于x 的方程中,一定是一元二次方程的是( )A.10x −=B.33x x +=C.2350x x +−=D.6.函数2y =++,则y x 的值为( )A.0B.2C.4D.87.下列计算正确的是( )4=3=−8.关于x 的一元二次方程280x mx +−=的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9.微信红包是沟通人们之间感情的一种方式,已知小丽在2018年”元旦节”收到微信红包为300元,2020年为363元,若这两年小丽收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A.2300(1)363x +=B.2300(1)363x +=C.363(12)300x +=D.2300363x +=10.已知m ,n 是一元二次方程220230x x +−=的两个实数根,则代数式20ax bx c ++=22m m n ++的值等于( )A.2019B.2020C.2021D.2022二、填空题(本题共6小题,每小题4分,共24分。
) 11.比较大小:13.已知n 是整数,则n 的最小值是______ .14.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为_____________.15.已知a ,b 是一元二次方程2320x x −+=的两根,则22a b ab +=____________. 16.等腰三角形的边长都是方程2680x x −+=的根,则此三角形的周长为_____. 三、解答题(本题共9小题,共86分。
广东省深圳市明德外语实验学校2024-2025学年九年级上学期9月月考数学试题

广东省深圳市明德外语实验学校2024-2025学年九年级上学期9月月考数学试题一、单选题1.方程2430x x ++=的两个根为( )A .121,3x x ==B .121,3x x =-=C .121,3x x ==-D .121,3x x =-=- 2.已知关于x 的一元二次方程2610x x k -++=的两个实数根为1x ,2x ,且221224x x +=,则k 的值为( )A .5B .6C .7D .83.下列四种说法:①矩形的两条对角线相等且互相垂直;②菱形的对角线相等且互相平分;③有两边相等的平行四边形是菱形;④有一组邻边相等的菱形是正方形.其中正确的有( ) A .0个 B .1个 C .2个 D .3个4.根据下列表格的对应值:由此可判断方程212150x x +-=必有一个根满足( )A .1 1.1x <<B .1.1 1.2x <<C .1.2 1.3x <<D . 1.3x >5.若关于x 的一元二次方程()2500ax bx a ++=≠的一个解是=1x -,则2017a b -+的值是( )A .2016B .2018C .2020D .20226.如图,▱ABCD 的对角线AC 、BD 相交于点O ,那么下列条件中,能判断▱ABCD 是菱形的为( )A.AO=CO B.AO=BO C.∠AOB=∠BOC D.∠BAD=∠ABC 7.如图,在矩形ABCD中,对角线AC、BD交于点O,自点A作AE⊥BD于点E,且BE:ED=1:3,过点O作OF⊥AD于点F,若OF=3cm,则BD的长为()cm.A.6 B.9 C.12 D.158.如图,在菱形ABCD中,菱形的边长为5,对角线AC的长为8,延长AB至E,BF平分CBE,则ACGV的面积为()A.20B.C.12D.249.如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E,PF⊥AB 于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4 B.245C.6 D.48510.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A .2B .4C .D .2二、填空题11.若关于x 的方程2(1)210k x x +--=有实数根,则k 的取值范围是.12.如图,三个边长均为2的正方形重叠在一起,1O 、2O 是其中两个正方形的中心,则阴影部分的面积是.13.已知:如图所示,E 是正方形ABCD 边BC 延长线一点,若EC AC =,AE 交CD 于F ,则AFC ∠=度.14.如图,在菱形ABCD 中,AC =24,BD =10,AC 、BD 相交于点O ,若CE //BD ,BE //AC ,连接OE ,则OE 的长是.15.如图,菱形ABCD 中,∠ABC =60°,AB =2,E 、F 分别是边BC 和对角线BD 上的动点,且BE =DF ,则AE +AF 的最小值为 .三、解答题16.解方程:(1)22950x x --=(2)244x x x -=-17.阅读下面的例题:分解因式:221x x +-.解:令2210x x +-=得到一个关于x 的一元二次方程,121a b c ===-Q ,,,1x ∴===-解得11x =-21x =-()()(((212211111x x x x x x x x x x ⎡⎤⎡⎤∴+-=--=----=++⎣⎦⎣⎦. 这种因式分解的方法叫求根法,请你利用这种方法完成下面问题:(1)已知代数式22x x k --对应的方程解为5-和7,则代数式22x x k --分解后为 ;(2)将代数式231x x --分解因式.18.如图,在矩形ABCD 的BC 边上取一点E ,连接AE ,使得AE =EC ,在AD 边上取一点F ,使得DF =BE ,连接CF .过点D 作DG ⊥AE 于G .(1)求证:四边形AECF 是菱形;(2)若AB =4,BE =3,求DG 的长.19.某农场要建一个饲养场(矩形ABCD )两面靠现有墙(AD 位置的墙最大可用长度为27米,AB 位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.设饲养场(矩形ABCD )的一边AB 长为x 米.(1)饲养场另一边BC=____米(用含x 的代数式表示).(2)若饲养场的面积为180平方米,求x 的值.20.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,延长DC 到点E ,使C E C D =,延长BC 到点F ,使CF BC =,顺次连接点B ,E ,F ,D ,且1BD =,AC =(1)求菱形ABCD 的面积;(2)求证:四边形BEFD 是矩形;(3)求四边形BEFD 的周长及面积.21.数学课上,师生们以“利用正方形和矩形纸片折叠特殊角”为主题开展数学活动.(1)操作判断小明利用正方形纸片进行折叠,过程如下:步骤①:如图1,对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;步骤②:连接AF ,BF .可以判定ABF △的形状是: .(直接写出结论) 小华利用矩形纸片进行折叠,过程如下:如图2,先类似小明的步骤①,得到折痕EF 后把纸片展平;在BC 上选一点P ,沿AP 折叠AB ,使点B 恰好落在折痕EF 上的一点M 处,连接AM .小华得出的结论是:30BAP PAM MAD ∠=∠=∠=︒.请你帮助小华说明理由.(2)迁移探究小明受小华的启发,继续利用正方形纸片进行探究,过程如下:如图3,第一步与步骤①一样;然后连接AF ,将AD 沿AF 折叠,使点D 落在正方形内的一点M 处,连接FM 并延长交BC 于点P ,连接AP ,可以得到:PAF ∠= ︒(直接写出结论);同时,若正方形的边长是4,可以求出BP 的长,请你完成求解过程.(3)拓展应用如图4,在矩形ABCD 中,6AB =,8BC =.点P 为BC 上的一点(不与B 点重合,可以与C 点重合),将ABP V 沿着AP 折叠,点B 的对应点为M 落在矩形的内部,连接MA ,MD ,当△MAD 为等腰三角形时,可求得BP 的长为 .(直接写出结论) 22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接PG ,PC .(1)探究PG 与PC 的位置关系及PG PC的值(写出结论,不需要证明); (2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=度.探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明; (3)如图3,将图2中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的边BG 恰好与菱形ABCD 的边AB 在同一条直线上,问题(2)中的其他条件不变.你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.。
安徽省池州市2024-2025学年九年级上学期九月月考数学试题(沪科版)

安徽省池州市2024-2025学年九年级上学期九月月考数学试题(沪科版)一、单选题1.下列函数是二次函数的是( )A .25y x =+B .21y x x =+C .2321y x x =+-D .2(1)y x x x =-+2.已知点P (a ,m ),Q (b ,n )都在反比例函数y=2x-的图象上,且a <0<b ,则下列结论一定正确的是( )A .m+n <0B .m+n >0C .m <nD .m >n 3.已知二次函数y =ax 2+bx +c ,当x =1时,有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +64.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b 2﹣4ac >0;②abc <0;③4a +b =0;④4a ﹣2b +c >0.其中正确结论的个数是( )A .4B .3C .2D .15.已知两点12A(5,y ),B(3,y )-均在抛物线2(0)y ax bx c a =++≠上,点00C(x ,y )是该抛物线的顶点,若120y y y >≥,则x 0的取值范围是( )A .0x 5>-B .0x 1>-C .05x 1-<<-D .02x 3-<<6.二次函数()220y ax ax c a =-+>的图象过1234()()3,,1,,2(),,)4,(A y B y C y D y --四个点,下列说法一定正确的是( )A .若120y y >,则340y y >B .若140y y >,则230y y >C .若240y y <,则130y y <D .若340y y <,则120y y <7.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m8.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)k y k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF △的面积为1,则k 的值为( )A .125B .32C .2D .39.已知二次函数222(2)1y x b x b =--+-的图象不经过第三象限,则实数b 的取值范围是( ).A .54b ≥B .1b ≥或1b ≤-C .2b ≥D .12b ≤≤10.如图,在正方形ABCD 中,AB =4,动点M 从点A 出发,以每秒1个单位长度的速度沿射线AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿折线AD →DC →CB 运动,当点N 运动到点B 时,点M ,N 同时停止运动.设V AMN 的面积为y ,运动时间为x (s ),则下列图象能大致反映y 与x 之间函数关系的是( )A .B .C .D .二、填空题11.二次函数()()2()y x a x b a b =---<与x 轴的两个交点的横坐标分别为m 和n ,且m n <,则a ,b ,m ,n 四个数的大小关系是(用<号连接)12.如图,Rt △ABC 的两个锐角顶点A ,B 在函数y =k x(x >0)的图象上,AC ∥x 轴,AC =2,若点A 的坐标为(2,2),则点B 的坐标为.13.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB=m 时,矩形土地ABCD 的面积最大.14.如图,抛物线2286y x x =-+-与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,请你探究:(1)2C 对应的函数表达式为;(2)m 的取值范围是.三、解答题15.已知二次函数22y x x m =-+-(m 是常数).(1)若该函数的图象与x 轴有两个不同的交点,求m 的取值范围.(2)若该二次函数的图象与x 轴的其中一个交点坐标为()1,0-,求一元二次方程220x x m -+-=的解.16.已知反比例函数k y x=的图象经过点M(2,1). (1)求该函数的表达式;(2)当2<x<4时,求y 的取值范围(直接写出结果).17.把抛物线()2y a x h k =++先向左平移2个单位长度,再向上平移4个单位长度,得到抛物线()21112y x =+-. (1)试确定,,a h k 的值;(2)作原抛物线关于x 轴对称的图形,求所得抛物线的函数表达式.18.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树. (1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?19.已知顶点为()2,1A -的抛物线经过点B 0,3 ,与x 轴交于C ,D 两点(点C 在点D 的左侧).(1)求抛物线对应的函数表达式;(2)连接AB BD DA ,,,求ABD △的面积.20.如图,在平面直角坐标系中,Y OABC 的顶点A, C 的坐标分别为A(2,0),C(-1,2),反比例函数()k y=k 0x≠的图像经过点B .(1)求k 的值.(2)将Y OABC 沿着x 轴翻折,点C 落在点C′处.判断点C′是否在反比例函数()k y=k 0x≠的图像上,请通过计算说明理由.21.如图,在平面直角坐标系中,抛物线2y ax bx =+经过(2,4)A --,(2,0)B .(1)求抛物线2y ax bx =+的解析式.(2)若点M 是该抛物线对称轴上的一点,求AM OM +的最小值.22.某公司开发一款与教育配套的软件,年初上市后,经历了从亏损到盈利的过程,变化过程可用如图所示的抛物线描述,它刻画了该软件上市以来累积利润S (万元)与销售时间t (月)之间的函数关系(即前t 个月的利润总和S 与t 之间的函数关系),根据图象提供的信息,解答下列问题:(1)此软件上市第几个月后开始盈利?(2)求累积利润S (万元)与销售时间t (月)间的函数表达式;(3)第几个月公司的月利润为2.5万元?23.如图,两条抛物线214y x =-+,2215y x bx c =-++相交于A ,B 两点,点A 在x 轴负半轴上,且为抛物线2y 的最高点.(1)求抛物线2y 的解析式和点B 的坐标;(2)点C 是抛物线1y 上A ,B 之间的一点,过点C 作x 轴的垂线交2y 于点D ,当线段CD 取最大值时,求BCD S △.。
安徽六安市皋城中学2024~2025学年九年级上学期月考数学试题

九年级(上)数学定时作业(一)时间:70分钟 满分:120分一、选择题(共10小题,每小题5分)1.下列关系式中,y 是x 的反比例函数的是( )A .k y x= B .21y x = C .121y x =+ D .21xy −= 2.抛物线221y x x m =++−与x 轴有两个不同的交点,则m 的取值范围是( )A .2m <B .2m >C .02m <≤D .2m <−3.已知点()1,2A x −,()2,1B x −,()3,1C x 在反比例函数2y x =−的图象上,则1x ,2x ,3x 的大小关系是( )A .321x x x <<B .123x x x <<C .312x x x <<D .213x x x <<4.点()2,3−在函数k y x=图象上,下列说法中错误的是( ) A .它的图象分布在二、四象限 B .当0x >时,y 的值随x 的增大而增大C .当0x <时,y 的值随x 的增大而减小D .它的图象过点()1,6− 5.一次函数y ax a =−与反比例函数()0a y a x=≠在同一坐标系中的图象可能是( ) A . B .C .D . 6.已知二次函数()()210y a x a a −−≠,当14x −≤≤时,y 的最小值为4−,则a 的值为( )A .123或4B .43或12−C .43−或4D .12−或4 7.如图,双曲线m y x=与直线y kx b =+交于点M ,N ,并且点M 的坐标为()1,3,点N 的纵坐标为1−.根据图象信息可得关于x 的不等式m kx b x >+的解集为( )A .3x <−或01x <<B .3x <−C .01x <<D .30x −<<或1x >8.菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为( )A .B .C .D . 9.反比例函数k y x =和2y x =在第一象限内的图象如图所示,点P 在k y x=的图象上,过点P 作PA x ⊥轴于点A ,交2y x=的图象于点C ,PB y ⊥轴于点B ,交2y x =的图象于点D .当点P 的横坐标逐渐变大时,四边形OCPD 的面积( )第9题图A .逐渐变大B .逐渐变小C .不变D .无法确定10.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线6y x =−+于A 、B 两点,若反比例函数()0k y x x=>的图象与ABC △有公共点,则k 的取值范围是( )第10题图A .29k ≤≤B .28k ≤≤C .25k ≤≤D .58k ≤≤二、填空题(共5小题,每小题5分)11.正比例函数23y x =的图象与反比例函数6y x=的图象相交于A 、B 两点,其中点A 的坐标为()3,2,那么点B 的坐标为______.12抛物线2y ax bx c ++经过点()3,0A −、()4,0B 两点,则关于x 的一元二次方程()21a x c b bx −+=−的解是______.13.如图,正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点()3,P a a 是正方形与反比例函数图象的一个交点.已知图中阴影部分的面积等于18,则这个反比例函数的表达式为______.第13题图14.如图,抛物线()()20y a x h k a =−+<的顶点为A ,对称轴与x 轴交于点C ,当以AC 为对角线的正方形ABCD 的另外两个顶点B 、D 恰好在抛物线上时,我们把这样的抛物线称为“美丽抛物线”,正方形ABCD 为它的内接正方形.第14题图(1)当抛物线21y ax =+是“美丽抛物线”时,则a =______;(2)若抛物线2y ax k =+是“美丽抛物线”,则a ,k 之间的数量关系为______. 三、解答题(8分+8分+10分+12分+12分)15.已知函数()252k yk x −=−为反比例函数. (1)求k 的值;(2)求出122x −≤≤−时,y 的取值范围. 16.如图,ABCD 中,顶点A 的坐标是()0,2,AD x ∥轴,BC 交y 轴于点E ,顶点C 的纵坐标是4−,ABCD 的面积是24.反比例函数k y x=的图象经过点B 和D ,求反比例函数的表达式.17.如图,一次函数()0y mx n m =+≠的图象与反比例函数()0k yk x=≠的图象交于点()3,A a −,()1,3B ,且一次函数与x 轴,y 轴分别交于点C ,D .(1)求反比例函数和一次函数的表达式;(2)在第三象限的反比例函数图象上有一点P ,使得4OCP OBD S S =△△,求点P 的坐标.18.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y 与x 的函数关系式;(2)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?19.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线()220y a x k =−+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米、垂直距离为6米.(1)若发射石块在空中飞行的最大高度为10米,①求抛物线的解析式;②试通过计算说明石块能否飞越防御墙;(2)若要使石块恰好落在防御墙顶部BC 上(包括端点B 、C ),求a 的取值范围.答案一、选择题1.D 2.A 3.C 4.C 5.D 6.C 7.A 8.C 9.C 10.A二、填空题15.(1)2k =−;(2)812y ≤≤16.6y x=17.(1)反比例函数表达式为y =3322yx + (2)32,2P−18.(1)280y x =−+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初四数学第一次月考试题
一、仔细选一选(本题有10个小题,每小题3分,共30分)
1、日本东部大地震造成日本国内经济损失约2350亿美元,其中2350亿保留两个有效数
字用科学记数法表示为( )
A .2.3×1011
B .2.35×1011
C .2.4×1011
D .0.24×1012
2、下列算式中,正确的是( )
A 、22
1
x x
x x =⨯÷ B 、x x x -=-3232 C 、2623
)(y x y x
= D 、933)(x x =--
3、由一些大小相同的小立方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上立方体的个数,那么该几何体的左视图是( )
4、如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=60°,则∠2的度数等于( )
A .
75° B .
60°
C .
45°
第7题
D .
30°
5、如图,正方形ABCD 内接于⊙O ,点P 在弧 AD 上,则∠BPC ( )
A 。
35°
B 。
40° C.45° D.50°
6、已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是( )
A . 第四象限
B . 第三象限
C . 第二象限
D . 第一象限 7、如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB,使
OA=OB;再分别以点A, B 为圆心,以大于1
2
AB 长为半径作弧,两弧交于点C .若
点C 的坐标为(m-1,2n),则m 与n 的关系为
(A)m+2n=1 (B)m-2n=1 (C)2n-m=1 (D)n-2m=1
8、(2012•大庆)如图所示,已知△ACD 和△ABE 都内接于同一个圆,则∠ADC+∠AEB+∠BAC=( )
A . 90°
B . 180°
C . 270°
D .
360° 9、如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )
10、如图2—5,⊙O 的直径AB 垂直于弦CD ,垂足为H ,点P 是弧AC 上的一点(点P 不与A ,C 重合),连结PC ,PD ,PA ,AD ,点E 在AP 的延长线上,PD 与AB 交于点F .给出下列四个结论:①CH 2=AH·BH ;②弧AC =弧AD ;③AD 2=DF·DP;④∠EPC=∠APD .其中正确的个数有( )
A .1个
B .2个
C .3个
D .4个
二、认真填一填(本题有10个小题,每小题3分,共30分)
11、函数y=
x
x 2
+的自变量x 的取值范围是 。
12、 在实数范围内分解因式:3
x x -3=_____________
13、如图,AB 为圆O 的直径,弦CD ⊥AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE = 。
(第14题)
(第15题)
(第9题)
C D
E F
A
B O
x y 4 4
A .
O
x y
4 4 B .
O
x y
4 4 C .
O
x y
4 4 D .
1 1
2 1 3
第4题 A B C D
O
A B C
D
第13题
E 6题
-1- -2-
班 级 姓 名
学 号
装 订 线
14、如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为 15、如图,AB 是⊙O 的直径,点C 在⊙O 上,O D ∥BC , 若OD=1,则BC 的长
为 。
(第18题)
16、如图,菱形ABCD 的边长为8cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为____________cm 2.
17、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则
D ∠等于 .
18、如图,⊙O 与正六边形OABCDE 的边OA 、OE 分别交于点F 、G,则弧FG 所对的圆周角∠FPG 的大小为______度.
19、在⊙0中,半径R=5,AB 、CD 是两条平行弦,且AB=8,CD=6,则弦AC=_________. 20、规定用符号[m ]表示一个实数m 的整数部分,例如: [3
2
]=0,[3.14]=3.按此规定 [110+]的值为_____。
三、解答题(满分60分) 21、计算:(4分) ︒+-+---45cos 2|22|)2011()2
1(02
π
22、(5分)先化简:(a - 2a —1a )÷ 1-a 2
a 2+a ,然后给a 选择一个你喜欢的数代入求值.
23、(6分)如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC=BD ,连结AC ,过点D 作DE ⊥AC ,垂足为E (1)求证:DE 为⊙O 的切线;
(2)若⊙O 的半径为5,∠BAC=60°,求DE 的长.
24、
(2012•湘潭)(6分)节约能源,从我做起.为响应长株潭“两型社会”建设要求,小李决定将家里的4只白炽灯全部换成节能灯.商场有功率为10w 和5w 两种型号的节能灯若
干个可供选择.
(1)列出选购4只节能灯的所有可能方案,并求出买到的节能灯都为同一型号的概率;
(2)若要求选购的4只节能灯的总功率不超过30w ,求买到两种型号的节能灯数量相等的
概率.
25、(2012南充)(8分)关于x 的一元二次方程x 2+3x +m-1=0的两个实数根分别为x 1,x 2. (1)求m 的取值范围.
(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.
26、(2012•大庆)(8分)已知等边△ABC 和⊙M .
(l )如图1,若⊙M 与BA 的延长线AK 及边AC 均相切,求证:AM ∥BC ;
(2)如图2,若⊙M 与BA 的延长线AK 、BC 的延长线CF 及边AC 均相切,求证:四边形ABCM 是平行四边形.
(第17题) C B D A O
27、(9分)小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.
(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;
(2)求小明的综合得分是多少?
(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得
分,他的演讲答辩得分至少要多少分?28.(14分)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D.E,连结AD、BD、BE。
(1)在不添加其他字母和线的前提下
..............,直接
..写出图1中的两对相似三角形。
_____________________,______________________ 。
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线223(0)
y ax ax a a
=--<经过点A.B.D,且B为抛物线的顶点。
①写出顶点B的坐标(用a的代数式表示)___________。
②求抛物线的解析式。
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN
与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由。
M
A
B
C
D
O
E
图1 x
y
A
B
C
D
O
M
图2。