河南省武陟一中2020届高考数学模拟试题 文(无答案)新人教A版

合集下载

【2020年高考必备】河南省高考数学一诊试卷(文科)及解析

【2020年高考必备】河南省高考数学一诊试卷(文科)及解析

河南省高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.32.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣23.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.65.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.87.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或29.(5分)函数f(x)=的部分图象大致是()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2 11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.212.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.2018年河南省高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.3【解答】解:∵A={x∈R|3≤32﹣x<27}={x∈R|﹣1<x≤1},B={x∈Z|﹣3<x<1}={﹣2,﹣1,0},∴A∩B={0}.∴A∩B中元素的个数为1.故选:B.2.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣2【解答】解:z===+a﹣1=(a﹣1)﹣(a+1)i,则=(a﹣1)+(a+1)i,∵=z,∴a+1=0,得a=﹣1,故选:B.3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【解答】解:由该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0℃的月份有3个,故D错误.故选:D.4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.6【解答】解:△ABC中,A=,b=6,∴a2=b2+c2﹣2bccosA,即a2=36+c2﹣6c①;又=2sinAsinB,∴=2ab,即cosC==,∴a2+36=4c2②;由①②解得c=4或c=﹣6(不合题意,舍去);∴c=4.故选:C.5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R==(尺),∴这个四棱锥的外接球的表面积为S=4π×R2==138π(平方尺).故选:B.6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.8【解答】解:模拟程序的运行,可得x=5.8y=5﹣1.6=3.4x=5﹣1=4满足条件x≥0,执行循环体,x=1.7,y=1﹣1.4=﹣0.4,x=1﹣1=0满足条件x≥0,执行循环体,x=﹣0.2,y=﹣1﹣1.6=﹣2.6,x=﹣1﹣1=﹣2不满足条件x≥0,退出循环,z=﹣2+(﹣2.6)=﹣4.6.输出z的值为﹣4.6.故选:C.7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)【解答】解:∵对任意x∈R,都有f(x)+2f(﹣x)=3cosx﹣sinx ①,用﹣x代替x,得f(﹣x)+2f(x)=3cos(﹣x)﹣sin(﹣x)②,即f(﹣x)+2f(﹣x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=sin(x+),∴f(2x)=sin(2x+).令2x+=kπ,k∈Z,求得x=﹣,故函数f(2x)图象的对称中心为(﹣,0),k∈Z,故选:D.8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或2【解答】解:作出不等式组对应的平面区域如图:(阴影部分OAB).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y=1平行,此时a=﹣3,综上a=﹣3或a=2,故选:A.9.(5分)函数f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵函数f(x)的定义域为(﹣∞,﹣)∪(﹣,)∪(,+∞)f(﹣x)===f(x),∴f(x)为偶函数,∴f(x)的图象关于y轴对称,故排除A,令f(x)=0,即=0,解得x=0,∴函数f(x)只有一个零点,故排除D,当x=1时,f(1)=<0,故排除C,综上所述,只有B符合,故选:B.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2【解答】解:由三视图可知该几何体为侧放的四棱锥,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×=12,S△PBC=,S△PCD=S△PBA=,△PAD中AP=PD=5,AD=4,∴AD边上的高为,=,∴S△PAD则该几何体的表面积为12+8+6+6+2=12+20+2,故选:D11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.2【解答】解:根据题意,设|AF|=a,|BF|=b,作AM、BN垂直准线于点M、N,则有|BF|=|BN|=b,|AF|=|AM|=a,若,则有|CB|=4|BF|,即|CB|=4|BN|,又由BN∥AM,则有|CA|=4|AM|,即有4b+a+b=4a,变形可得=,即=,故选:A.12.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.【解答】解:由题意知,方程g(﹣x)﹣f(x)=0在(0,+∞)上有解,即e x+2x2+ax﹣lnx﹣e x﹣x2=0,即x+a﹣=0在(0,+∞)上有解,即函数y=x+a与y=在(0,+∞)上有交点,y=的导数为y′=,当x>e时,y′<0,函数y=递减;当0<x<e时,y′>0,函数y=递增.可得x=e处函数y=取得极大值,函数y=x+a与y=在(0,+∞)上的图象如右:当直线y=x+a与y=相切时,切点为(1,0),可得a=0﹣1=﹣1,由图象可得a的取值范围是(﹣∞,﹣1].故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=﹣4【解答】解:在△ABC中,|+|=|﹣|,可得|+|2=|﹣|2,即有2+2+2•=2+2﹣2•,即为•=0,则△ABC为直角三角形,A为直角,则•=﹣•=﹣||•||•cosB=﹣||2=﹣4.故答案为:﹣4.14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.【解答】解:如图,设正方体的棱长为2a,则其内切球的半径为a,则,,∴蜜蜂“安全飞行”的概率为P=.故答案为:.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.【解答】解:α∈(﹣,0),sin(α+)=﹣,∴cos(α+)==,则====,故答案为:.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为2.【解答】解:根据双曲线的定义,可得|AF1|﹣|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|﹣|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°,∴|F1F2|2=|BF1|2+|BF2|2﹣2|BF1|•|BF2|cos120°,即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得===,则m=,由A在双曲线上,可得﹣=1,解得a=,则2a=2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.【解答】解:(1)设公差为d,由,得,化简得d2=2a1d,因为d≠0,a1=3,所以d=6,所以a n=6n﹣3.(2)因为,所以﹣(36×(2n)2﹣9),所以,即S2n=﹣36(1+2+3+4+…+(2n﹣1)+2n)=.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.【解答】解:(1)由频率分布直方图估计该校的100名同学的平均体重为:=45×0.005×10+55×0.035×10+65×0.030×10+75×0.020×10+85×0.010×10=64.5.(2)要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,体重在[60,70)内的男生中选:6×=3人,体重在[70,80)内的男生中选:6×=2人,体重在[80,90]内的男生中选:6×=1人,再从这6人中选2人当正副队长,基本事件总数n==15,∴这2人中至少有1人体重在[70,80)内的概率p=1﹣=.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.【解答】证明:(1)∵在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,∴DE∥BC,DB A 1B1,∴四边形DBB1A1是平行四边形,∴A1D∥BB1,∵A1D∩DE=D,BB1∩BC=B,A1D、DE⊂平面A1DE,BB1、BC⊂平面BCB1,∴平面A1DE∥平面B1BC,∵B1C⊂平面B1BC,∴B1C∥平面A1DE.解:(2)∵AC=3BC=6,△AB1C为等边三角形,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.∴AE=3,DE=1,B1E==3,∠AED=90°,∴四棱锥A1﹣B1C1ED的体积:=﹣=S△ADE•B1E﹣====3.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.【解答】解:(1)由题意可得,∴故W的标准方程为.(2)联立得∴,∴,易知B(0,1),∴l的方程为y=﹣3x+1.联立,得37x2﹣24x=0,∴x=0或,∴,联立,得31x2﹣18x﹣9=0,设M(x1,y1),N(x2,y2),则,,∴,故.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a 的取值范围.【解答】解:(1)由已知得(x>0),则,所以x0=e,所以所求切线方程为.(2)令,得x>1;令f'(x)<0,得0<x<1.所以f(x)在(0,1)上单调递减,在[1,+∞)上单调递增,所以f(x)min=f(1)=1,所以f(x)∈[1,+∞).而g(x)=(e﹣1)x在(﹣∞,a)上单调递增,所以g(x)∈(﹣∞,(e﹣1)a).欲使函数的值域为R,须a>0.①当0<a≤1时,只须(e﹣1)a≥1,即,所以.②当a>1时,f(x)∈[a﹣lna,+∞),g(x)∈(﹣∞,(e﹣1)a),只须a﹣lna≤(e﹣1)a对一切a>1恒成立,即lna+(e﹣2)a≥0对一切a>1恒成立,令φ(x)=lnx+(e﹣2)x(x>1),得,所以φ(x)在(1,+∞)上为增函数,所以φ(x)>φ(1)=e﹣2>0,所以a﹣lna≤(e﹣1)a对一切a>1恒成立.综上所述:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.【解答】解:(Ⅰ)将参数方程转化为一般方程,①,②①×②消k可得:.即P的轨迹方程为.C1的普通方程为.C1的参数方程为(α为参数α≠kπ,k∈Z).(Ⅱ)由曲线C2:,得:,即曲线C2的直角坐标方程为:x+y﹣8=0,由(Ⅰ)知曲线C1与直线C2无公共点,曲线C1上的点到直线x+y﹣8=0的距离为:,所以当时,d的最小值为.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.【解答】解:(1)f(x)≥|2x+3|即|x+a|≥|2x+3|,平方整理得:3x2+(12﹣2a)x+9﹣a2≤0,所以﹣3,﹣1是方程3x2+(12﹣2a)x+9﹣a2=0的两根,…2分由根与系数的关系得到…4分解得a=0…5分(2)因为f(x)+|x﹣a|≥|(x+a)﹣(x﹣a)|=2|a|…7分所以要不等式f(x)+|x﹣a|≥a2﹣2a恒成立只需2|a|≥a2﹣2a…8分当a≥0时,2a≥a2﹣2a解得0≤a≤4,当a<0时,﹣2a≥a2﹣2a此时满足条件的a不存在,综上可得实数a的范围是0≤a≤4…10分。

2020届高三下学期第一次模拟考试文科数学试卷及答案解析(附答题卡)

2020届高三下学期第一次模拟考试文科数学试卷及答案解析(附答题卡)

A . 1a a(x + c )2 的图象如图所示,则下列结论成立的是2020 届高三年级第二学期第一次模拟考试数学(文科)本试卷分选择题和非选择题两部分,共 4 页,满分 150 分,考试时间 120 分钟.注意事项:1.答卷前,考生请用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上。

2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需 改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在各题目指定区域内相 应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束,将答题卡交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若 a, b ∈ R , i 为虚数单位,且 (a + i)i = b + i ,则A . a = 1,b = 1B . a = -1,b = 1C . a = -1,b = -1D . a = 1,b = -12.设集合 S = {x | x 2 + 2 x = 0, x ∈ R } , T = {x | x 2 - 2 x = 0, x ∈ R } ,则 S I T =A . {0}B . {0,2}C . {-2,0}D . {-2,0,2}⎧ 2x + 1, x < 13.已知函数 f ( x ) = ⎨⎩ x 2 + ax, x ≥ 1,若 f ( f (0)) = 4a ,则实数 a =4 B .C .2D .9254.命题 p :数列 { }既是等差数列又是等比数列,命题 q :数列 { }是常数列,则 p 是 q 的 n nA .充分不必要条件C .充分必要条件 B .必要不充分条件D .既不充分又不必要条件5.函数 f (x )= - x + bA . b < 0 , c > 0B . b > 0 , c > 0C . b > 0 , c < 0D . b < 0 , c < 06.在一次马拉松比赛中,35 名运动员的成绩(单位:分钟)的茎叶图如图所示.高三级数学(文科)答卷 第1页(共 6 页)7.若 sin α + cos α = ,则 tan α =8.设实数 x ,⎧-1≤x +y- - y ≤ 1 ...2若将运动员按成绩由好到差编为 1~35 号,再用系统抽样方法从中抽取 7 人,则其中成绩小于 139 分钟的运动员人数为A .4B .2C .5D .31sin α - cos α 2A . -3B . -2C . 2D . 3⎩ ,则 x + 2 y 的最大值和最小值分别为A .1, -1B . 2 , -2C .1, -2D . 2 , -19.在平行四边形 ABCD 中, AB =(1,2), AD = (-4,2) ,则该四边形的面积为A . 5B . 2 5C .5D .1010.如图,四棱锥 S —ABCD 的底面为正方形,SD ⊥ 底面 ABCD ,则下列结论中不正确的是A . AC ⊥ SBB . AD ⊥ SCC .平面 SAC ⊥ 平面 SBDD . BD ⊥ SASDA BC11.已知双曲线 x 2 y 2 -a b 2= 1(a > 0, b > 0) 的左顶点与抛物线 y 2 = 2 px( p > 0) 的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2, -1) ,则双曲线的焦距为A . 2 3B . 2 5C . 4 3D . 4 512.已知∆ABC 的内角 A , B ,C 所对的边分别是 a, b , c ,且b = 2 ,b 2 + c 2-a 2=bc ,若BC 边上的中线 AD = 7 ,则 ∆ABC 的外接圆面积为A . 4πB . 7πC .12πD .16π二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.曲线 y = x(3ln x + 1) 在点 (1,1) 处的切线方程为_________________.高三级数学(文科)答卷 第2页(共 6 页)14.已知函数 y = sin(2x + ϕ ) ( ϕ < π )的一条对称轴为 x = ,则 ϕ 的值是., a = 2 ,则 a =_________.(2)从 2011 年开始到 2019 年该地区清明节当天降雨量(单位: m m )如下表:(其中降雨. .0 ......经研究表明:从 2011 年开始至 2020 年,该地区清明节有降雨的年份的降雨量 y 与年份 t 成π2315.数列{a }满足 ann +1 = 1 1 - a n8 116.已知抛物线 y 2 = 4 x 上有三点 A ,B ,C ,直线 AB ,BC ,AC 的斜率分别为 3 ,6 ,-2 ,则 ∆ABC 的重心坐标为_________.三、解答题:共 70 分。

河南省武陟一中2020届高考数学模拟试题 理(无答案)新人教A版

河南省武陟一中2020届高考数学模拟试题 理(无答案)新人教A版

武陟一中2020届高三高考模拟数学(理)试题1. 已知集合{11}A x x =+<,1{|()20}2xB x =-≥,则=BC A R I ( )A .(2,1)--B (2,1)--C (1,0)-D [1,0)- 2.若复数z 满足:34iz i =+,则z = ( )A .1B .2C 5D .5 3.下列函数中,既是偶函数又在区间(1,2)上单调递增的是 ( )45.若下框图所给的程序运行结果为35S =,那么判断框中应填入的关于k 的条件是( ) A 7k = B 6k > C 6k < D 6k ≤ 若(2)nx x-的展开式中第2项与6. 第4项的二项式系数相等,则直线y=nx 与曲线2x y =围成的封闭区域面积为( )A .223 B .12 C .323D .36 7. 已知3sin()45x π-=,则sin2x 的值为( )A 1925B 1625C 1425D 7258.如图是一个组合几何体的三视图,则该几何体的体积是( ) 27364π 273128π+ C. 36128π+D. 1264π+9.双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) A. 3 B. 5 C. 6 D. 210.设函数()f x )定义为如下数表,且对任意自然数n 均有1n x +=02014(),6,n f x x x =若则的值为( ) A .1 B .2C .4D .5 11.设函数()3sin(2)cos(2)()2f x x x πϕϕϕ=+++<,且其图象关于直线0x =对称,则下列结论正确的是( ) A .()y f x =的最小正周期为π,且在(0,)2π上为增函数B .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 C .()y f x =的最小正周期为π,且在(0,)2π上为减函数D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数12.函数21()3cos log 22f x x x π=--的零点个数为 ( )A.3B.2C.5D.4第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须回答。

2020高考文科数学仿真模拟卷01含解析.docx

2020高考文科数学仿真模拟卷01含解析.docx

2020年4月开学摸底考(新课标卷)高三数学(文)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设全集U =R ,集合{}13A x x =-<<,{}21B x x x =≤-≥或,则()U AC B =( )A .{}11x x -<<B .{}23x x -<<C .{}23x x -≤<D .{}21x x x ≤->-或2.已知11abi i=-+-,其中,a b 是实数,则复数a bi -在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.设15log 6a =,0.216b ⎛⎫= ⎪⎝⎭,165c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<4.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( )A .94-B .94C .274D .274- 5.函数()()sin x xf x e ex -=+⋅的图象大致是( )A .B .C .D .6.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为( )A .23B .43C .83D .47.古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出己知线段的黄金分割点,具体方法如下:(l )取线段AB =2,过点B 作AB 的垂线,并用圆规在垂线上截取BC =12AB ,连接AC ;(2)以C 为圆心,BC 为半径画弧,交AC 于点D ;(3)以A 为圆心,以AD 为半径画弧,交AB 于点E .则点E 即为线段AB 的黄金分割点.若在线段AB 上随机取一点F ,则使得BE ≤AF ≤AE 的概率约为( )(参)A .0.236B .0.382C .0.472D .0.6188.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为A .35B .20C .18D .99.甲,乙,丙,丁四名学生,仅有一人阅读了语文老师推荐的一篇文章.当它们被问到谁阅读了该篇文章时,甲说:“丙或丁阅读了”;乙说:“丙阅读了”;丙说:“甲和丁都没有阅读”;丁说:“乙阅读了”.假设这四名学生中只有两人说的是对的,那么读了该篇文章的学生是( ) A .甲B .乙C .丙D .丁10.已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是()A .16(,)e eB .746[,)e eC .741[,)e eD .7416(0,][,)e e e11.设函数π()sin 6f x x ⎛⎫=- ⎪⎝⎭,若对于任意5ππ,62α⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为A .π6 B .π2C .7π6D .π12.如图,过双曲线()2222:10,0x y C a b a b-=>>的右焦点F 作x 轴的垂线交C 于,A B 两点(A 在B 的上方),若,A B 到C 的一条渐近线的距离分别为12,d d ,且214d d =,则C的离心率为( )AB .54C D .43二、填空题(本大题共4小题,每小题5分,共20分)13.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为___________.14.若,x y 满足20,40,0,x y x y y -+⎧⎪+-⎨⎪⎩,则2z y x =-的最小值为____________.15.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.16.已知12,F F 是椭圆C :22221x y a b+=(0)a b >>的两个焦点,P 为椭圆C 上的一点,且121260,PF F F PF S ︒∆∠==,则b =______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)数列{}n a 满足11a =,()112n n n a a a +=+(*n N ∈).(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)若1223122311633n n a a a a a a a a a a +++++++>,求正整数n 的最小值. 18.(本小题满分12分)如图所示,AB 为圆O 的直径,点E ,F 在圆O 上,AB EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==,60BAF ∠=︒. (1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求三棱锥M DAF -的体积1V 与多面体CD AFEB -的体积2V 之比的值.19.(本小题满分12分)基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率%y 进行了统计,结果如下表:(1)请用相关系数说明能否用线性回归模型拟合y 与月份代码x 之间的关系.如果能,请计算出y 关于x 的线性回归方程,如果不能,请说明理由;(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的A 型车和800元/辆的B 型车中选购一种,两款单车使用寿命频数如下表:车型 报废年限经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?参考数据:61()()35iii x x y y =--=∑,621()17.5ii x x =-=∑,621()76i i y y =-=∑36.5≈.参考公式:相关系数()()niix x y y r --=∑,121()()()ˆniii ni i x x y y bx x ==--=-∑∑,a y bx =-.20.(本小题满分12分)已知定点()30A -,,()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C 。

2020年河南省第一次高考模拟考试文科数学试题与答案

2020年河南省第一次高考模拟考试文科数学试题与答案

2020年河南省第一次高考模拟考试文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

|﹣1<x<5},集合A={1,3},则集合∁U A的子集的个数是()1. 设全集U={x NA. 16B. 8C. 7D. 42. 下列各式的运算结果为纯虚数的是()A. i(1+i)2B. i2(1﹣i)C. (1+i)2D. i(1+i)3. 为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。

其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④4. 已知直线,直线为,若则( )A.或 B.C .D .或5. 已知,条件甲:;条件乙:,则甲是乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( ) A . B .C .D .7. 在中,a ,b ,c 分别是角A ,B ,C 的对边,,则角B=( )A.B. C.D.8. 执行如图所示的程序框图,输出的S=( )A. 25B. 9C. 17D. 209. 设直线1:210l x y -+=与直线A 的交点为A ;,P Q 分别为12,l l 上任意两点,点M 为,P Q 的中点,若12AM PQ =,则m 的值为( ) A. 2B. 2-C. 3D. 3-10.在V ABC 中,sin B A =,BC =4C π=,则=AB ( )B. 5C. D.11. 已知函数,若,且函数存在最小值,则实数的取值范围为( ) A.B.C. D. 12.已知三棱锥的底面的顶点都在球的表面上,且,,,且三棱锥的体积为,则球的体积为( ) A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2020年河南省焦作市武陟县第一中学高二数学理模拟试卷含解析

2020年河南省焦作市武陟县第一中学高二数学理模拟试卷含解析

2020年河南省焦作市武陟县第一中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 椭圆的焦点坐标为 ( )(A)(B)(C)(D)参考答案:A略2. (x2+x+y)5的展开式中,x7y的系数为()A.10 B.20 C.30 D.60参考答案:B【考点】二项式定理的应用.【专题】转化思想;综合法;二项式定理.【分析】只有当其中一个因式取y,一个因式取x,其余的3个因式都取x2时,才能可得到含x7y的项,由此得出结论.【解答】解:∵(x2+x+y)5表示5个因式(x2+x+y)的乘积,当只有一个因式取y,一个因式取x,其余的3个因式都取x2,即可得到含x7y的项.故x7y的系数为??=20,故选:B.【点评】本题主要考查排列组合、二项式定理的应用,乘方的意义,属于基础题.3. 对于曲线C: +=1,给出下面四个命题:①曲线C不可能表示椭圆;②“1<k<4”是“曲线C表示椭圆”的充分不必要条件;③“曲线C表示双曲线”是“k<1或k>4”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<”的充要条件其中真命题的个数为()A.0个B.1个C.2个D.3个参考答案:B【考点】曲线与方程.【分析】根据曲线方程的特点,结合椭圆双曲线的标准方程分别判断即可.【解答】解:①当1<k<4且k≠2.5时,曲线表示椭圆,所以①错误;②当k=2.5时,4﹣k=k﹣1,此时曲线表示圆,所以②错误.③若曲线C表示双曲线,则(4﹣k)(k﹣1)<0,解得k>4或k<1,所以“曲线C表示双曲线”是“k<1或k>4”的充分必要条件,所以③不正确.④若曲线C表示焦点在x轴上的椭圆,则,解得1<k<2.5,所以④正确.故选B.4. 设{an}是由正数组成的等比数列,且a5a6=81,log3a1+ log3a2+…+ log3a10的值是()A.5 B.10; C.20 D.2或4参考答案:C略5. 已知数列的通项公式是,若前n项的和为10,则项数n为()(A)11 (B)99 (C)120(D)121参考答案:C6. 等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()A. B. C. D.参考答案:C7. 不等式对于一切实数都成立,则()A B C D 或参考答案:B略8. 定义运算,则符合条件的复数对应的点在()A.第一象限; B.第二象限; C.第三象限; D.第四象限;参考答案:A略9. 已知在R上可导的函数的图象如图所示,则不等式的解集为( )A. B.C. D.参考答案:B10. 某中学高一年级有540人,高二年级有440人,高三年级有420人。

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。

2020年河南省高考文科科数学仿真模拟试题一(附答案)

2020年河南省高考文科科数学仿真模拟试题一(附答案)

2020年河南省高考文科数学仿真模拟试题一(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( )A .{-1,0,1,2}B .{-1,0,1}C .{-1,0,2}D .{0,1} 2.“sin A =12”是“A =30°”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.下列函数中,既是偶函数又存在零点的是( )A.y=lnxB.21y x =+ C.y=sinx D.y=cosx 4.已知命题p :∀x>2,x 3-8>0,那么¬p 是( ) A .∀x≤2,x 3-8≤0 B .∃x>2,x 3-8≤0 C .∀x>2,x 3-8≤0 D .∃x≤2,x 3-8≤05. 若函数22,0()(),0x x f x g x x -⎧-<=⎨>⎩为奇函数,则f (g (2))=( )A. ﹣2B. ﹣1C. 0D. 26. 从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A.23B.12C.25D.137. 某几何体的三视图如图所示,则该几何体的表面积为( )A. 3+B. 3+C. 2D. 2+8. 已知直线2y kx =-与抛物线24x y =相切,则双曲线2221x k y -=的离心率等于( )A.2B.29. 已知球O 与棱长为2的正方体1111ABCD A B C D -的各面都相切,则平面1ACB 截球O 所得的截面圆与球心O 所构成的圆锥的体积为 ( )B.18C.27D. 5410. 已知函数()sin cos f x x x ωω=-(0ω>),若()3y f x π=+的图象与()6y f x π=-的图象重合,记ω的最小值为0ω,函数0()cos()3g x x πω=-的单调递增区间为 ( )A. 2[,]63k k ππππ++(k Z ∈)B. 27[,]36k k ππππ+++(k Z ∈) C. [,]12232k k ππππ++(k Z ∈) D. 7[,]32122k k ππππ++(k Z ∈) 11. 若x ,y 满足约束条件220330240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,目标函数z ax y =+仅在点(2,0)处取得最小值,则实数a 的取值范围是 ( ) A. 1(2,)2-B. 1100,32(-,)()C. 1(0,)2D. 11(,)32-12. 若函数212[]22(xf x a x e ax ax a R =---+∈()()())在1,12()上有极大值,则a 的取值范围为 ( )A. )eB.)C. (2,eD. (),e +∞二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武陟一中2020届高三高考模拟数学(文)试题
1. 已知集合{11}A x x =+<,1{|()20}2
x
B x =-≥,则=B
C A R I ( ) A )1,2(-- B ]1,2(-- C )0,1(-
D )0,1[- 2.若复数z 满足:34iz i =+,则=z ( )
A .1
B .2
C .5
D .5 3.下列函数中,既是偶函数又在区间(1,2)上单调递增的是 ( )
4.
5.若下框图所给的程序运行结果为35S =,那么判断框中应填入的关于k 的条件() A 7k = B 6k > C 6k < D 6k ≤
6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) A
13 B 12 C 23 D 34
7. 已知5
3)4sin(=-x π,则sin2x 的值为 ( )
A 2519
B 2516
C 2514
D 257
8.如图是一个组合几何体的三视图,则该几何体的体积( ) A.
273
64π+ B.
273
128π+ C. 36128π+
D. 1264π+
9.双曲线22
221(0,0)x y a b a b
-=>>的左、右焦点分别是
12F F ,,过
1F 作倾斜角为30o 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )
A 3
B 5
C 6
D 2
10.设函数()f x )定义为如下数表,且对任意自然数n 均有x n+1=02014(),6,n f x x x =若则的值为( )
A .1
B .2
C .4
D .5
11设函数()3)cos(2)()2
f x x x π
ϕϕϕ=+++<,且其图象关于直线0x =对称,则下列结论正确
的是( )
A .()y f x =的最小正周期为π,且在(0,)2
π
上为增函数
B .()y f x =的最小正周期为
2π,且在(0,)4
π
上为增函数 C .()y f x =的最小正周期为π,且在(0,)2
π
上为减函数
D .()y f x =的最小正周期为2π,且在(0,)4
π
上为减函数
12.数2
1
log 2cos
3)(2-
-=x x x f π
的零点个数为 ( )
A.3
B.2
C.5
D.4
第Ⅱ卷
本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须回答。

第22题~第24题为选考题,考生根据要求做答。

二.填空题:本大题共4小题,每小题5分。

13.平面向量→a 、→
b 的夹角为60︒
,)0,2(=→a ,1=→b , 则=+→
→b a 2
14.设,x y 满足约束条件1,3,0,x y x y y -≥-⎧⎪
+<⎨⎪>⎩
, 则z x y =-的取值范围为________.
15.函数sin (3sin 4cos )()y x x x x R =+∈的最大值为M ,最小正周期为T ,则有序数对(,)M T 为 .
16.给出下列五个命题:①不等式x 2-4ax +3a 2
<0的解集为{x |a <x <3a };②若函数y =f (x +1)为偶函
数,则y =f (x )的图象关于x =1对称;③若不等式|x -4|+|x -3|<a 的解集为空集,必有a ≥1;④函数y =f (x )的图像与直线x =a 至多有一个交点;⑤若角α,β满足cos α·cos β=1,则sin(α+β)=0.其中所有正确命题的序号是_________________ 三、解答题:解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)
已知数列}{n a 的前n 项和为n S ,且)1(+=n n S n )(*
N n ∈,
(Ⅰ)求数列}{n a 的通项公式n a
(Ⅱ)数列}{n b 的通项公式2
1
+⋅=n n n a a b ,求数列}{n b 的前n 项
和为n T
18.(本小题满分12分)某校高三数学竞赛考试后,对90分以上的成
绩进行统计,其频率分布直方图如图所示、。

若130~140分数段的人数
为2人。

(1)请估计一下这组数据的平均数M ; (2)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶小组。

若选出的两人成绩差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率。

19.(本小题满分12分)
如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,且 PA ⊥底面ABCD ,BD ⊥PC ,E 是PA 的中点. (Ⅰ)求证:平面PAC ⊥平面EBD ;
(Ⅱ)若PA =AB =AC =2,求三棱锥P -EBD 的体积. 20.(本小题满分12分)
已知抛物线E :y 2
=2px (p >0)的准线与x 轴交于点M ,过点M 作圆C :(x -2)2+y 2
=1的两条切线,切点为A ,B ,|AB |=423

(Ⅰ)求抛物线E 的方程;
(Ⅱ)过抛物线E 上的点N 作圆C 的两条切线,切点分别为P ,Q ,若P ,Q ,O (O 为原点)三点共线,求点N 的坐标.
21.(本小题满分12分)设函数()(1)ln(1),(1,0)f x x a x x x a =-++>-≥. (Ⅰ)求()f x 的单调区间;
(Ⅱ)当1a =时,若方程()f x t =在上有两个实数解,求实数t 的取值范围; (Ⅲ)证明:当0m n >>时,(1)(1)n
m
m n +<+.
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。

做答时请写清题号。

22.(本小题满分10分)选修4-1:几何证明选讲
如图,在△ABC 中,CD 是∠ACB 的角平分线,△ADC 的外接圆交BC 于点E ,AB=2AC (I )求证:BE=2AD ;
(Ⅱ)当AC=3,EC=6时,求AD 的长.
23.(本小题满分10分)选修4—4:坐标系与参数方程
(I )写出直线l 和曲线C 的普通方程;
(II )设直线l 和曲线C 交于A ,B 两点,定点P (—2,—3),求|PA|·|PB|的值.
90 100 110 120 130 140 0
0.045 0.025
0.015 0.01 0.005 频率∕组距
1[,1]2
-
24.(本小题满分10分)选修4-5:不等式选讲 已知函数()|3|,()f x x a a R =-∈
(I )当a=1时,解不等式()5|21|;f x x >--
(II )若存在6x x f ,x 000π+∈)
(使R 成立,求a 的取值范围.。

相关文档
最新文档