高中数学具体内容

合集下载

人教版高中数学有哪些知识点

人教版高中数学有哪些知识点

人教版高中数学有哪些知识点作为我国数学教学领域中的经典教材之一,人教版高中数学绵延五十多年的历史,无论在教学质量、内容丰富度、教学水平以及影响力上都具有举足轻重的地位。

因此,本文旨在总结并介绍人教版高中数学所包含的主要知识点及其重要性,帮助读者更好地了解该教材。

一、函数(1)函数的概念和性质函数是数学上最基本的概念之一,它的研究成果应用广泛。

人教版高中数学的第一章就是函数,它阐述了函数的定义、符号、表示法、性质、图像与分类等;其次,介绍了初等函数及其图像,并进一步延伸到函数的分类与性质。

此知识点是理解高中数学的核心,是其他知识点的基础。

(2)三角函数三角函数也是数学中的重要概念之一,它是数学、物理、工程、计算机科学等领域中不可或缺的基础知识。

人教版高中数学的第二章就是三角函数,它涉及三角函数的定义、基本性质、图像、周期以及初等变形等。

三角函数的应用范围十分广泛,常用于分析周期性现象,如电波等。

(3)指数和对数函数指数和对数函数是人教版高中数学的重要组成部分。

指数函数是数学中一种最基础的函数类型,它在实际应用中常用于表示利率、增长率和衰减率等;而对数函数是指数函数的逆运算,具有很强的解方程能力和简化计算的作用。

人教版高中数学的第三章介绍了指数函数和对数函数的基本概念、性质、计算以及应用等知识点。

二、数列数列是数学中的一个经典概念,也是高中数学中的重要知识点之一。

人教版高中数学的第四章重点讲解数列及其相关内容,包括数列的基本概念、性质、递推公式、通项公式、求和公式、等差数列与等比数列等。

在实际应用中,数列经常用于模型建立、统计、计算机算法等方面,因此掌握数列知识对日常生活和职业发展大有裨益。

三、解析几何解析几何是几何学的一个重要分支,它是分析几何的基础,是实用性较强的数学知识之一。

人教版高中数学的第五章主要包括直线、平面及其相关内容。

学习解析几何可帮助学生正确理解平面曲线、三维图形以及空间关系等概念,然后运用这些知识点解决实际的几何问题。

高中数学大纲

高中数学大纲

高中数学大纲
高中数学大纲通常包括以下内容:
集合与逻辑:学生需要了解集合的基本概念、集合之间的关系,以及基本的逻辑概念。

函数与方程:学生需要理解函数的基本概念、函数的性质,以及如何求解方程。

不等式:学生需要掌握一元二次不等式、不等式的运算规则、不等式的解法等。

数列:学生需要了解等差数列、等比数列的基本概念、性质,以及如何求解数列的通项公式。

平面解析几何:学生需要掌握直线、圆、椭圆、双曲线、抛物线的概念、性质,以及如何求解这些曲线的方程。

立体几何:学生需要了解平面、直线、圆、球等基本几何概念、性质,以及如何求解立体几何问题。

概率与统计:学生需要理解概率的基本概念、统计的方法,以及如何进行概率计算和统计分析。

导数与微积分:学生需要了解导数的概念、性质,以及如何求解函数的导数。

同时还需要掌握微积分的基本概念、性质,以及如何进行微积分计算。

算法与程序:学生需要了解算法的基本概念、程序的基本结
构,以及如何编写程序实现特定的算法。

数学建模:学生需要了解数学建模的基本概念、方法,以及如何应用数学建模解决实际问题。

以上是高中数学大纲的一般内容,具体的教学内容和难度可能会因学校和地区的不同而有所差异。

高中数学新课标考试大纲

高中数学新课标考试大纲

高中数学新课标考试大纲高中数学新课标考试大纲主要分为必修和选修两个部分,旨在培养学生的数学素养,提高学生解决实际问题的能力。

以下是大纲的主要内容:1. 必修内容:- 集合与简易逻辑:包括集合的概念、运算,以及简易逻辑的基本知识。

- 函数:函数的概念、性质、图像,以及基本初等函数。

- 三角函数:三角函数的定义、图像、性质和应用。

- 立体几何:空间几何体的性质、体积和表面积的计算。

- 解析几何:直线和圆的方程,以及它们的几何性质和应用。

- 概率与统计:概率的基本概念,随机事件的概率计算,以及统计的基础知识。

2. 选修内容:- 数学史与数学文化:介绍数学的发展历史,以及数学在文化中的作用。

- 微积分初步:导数、微分、积分的基本概念和计算方法。

- 线性代数初步:矩阵、行列式、向量空间的基础知识。

- 离散数学:包括组合数学、图论、逻辑和集合论等。

- 数学建模:数学建模的基本方法,以及如何应用数学解决实际问题。

- 算法初步:算法的概念,以及基本的算法设计和分析。

3. 考试要求:- 学生需要掌握数学基础知识和基本技能。

- 能够运用数学知识解决实际问题。

- 具备一定的数学思维能力和创新能力。

- 能够理解和运用数学概念、定理和公式。

- 能够进行数学推理和证明。

4. 考试形式:- 考试通常包括选择题、填空题和解答题。

- 选择题和填空题主要测试学生对基础知识的掌握。

- 解答题则更侧重于考察学生的综合应用能力和解题技巧。

5. 考试范围:- 考试内容将覆盖上述必修和选修内容。

- 考试难度将根据学生所学课程的深度和广度来设定。

6. 考试准备:- 学生应该系统地复习所学内容,加强对重点和难点的理解。

- 通过做历年真题和模拟题来提高解题速度和准确率。

- 注重培养数学思维,提高分析问题和解决问题的能力。

请注意,具体的考试大纲可能会根据不同地区的教育部门有所调整,因此建议学生和教师参考最新的官方文件和指导。

高中数学学什么内容?

高中数学学什么内容?

高中数学学什么内容?高中数学是学生接受高等教育的基础,它不仅为后续学习高等数学、物理、化学等学科打下良好基础,更能提升学生的逻辑思维能力、抽象思维能力和解决问题的能力。

那么,高中数学具体学什么内容呢?一、函数与方程函数是数学的核心概念之一,是解释变量之间关系的有力工具。

高中数学中,学生将学习多种函数类型,包括一次函数、二次函数、指数函数、对数函数、三角函数等,并掌握其性质和应用。

同时,方程是函数的另一种表达形式,在高中数学中也扮演着重要角色。

学生将学习一元一次方程、一元二次方程、二元一次方程组等,并掌握其解法和应用。

二、几何与向量几何是研究图形性质和空间关系的学科,高中数学中,学生将学习平面几何和立体几何,并掌握基本图形的性质和定理。

向量是描述力、速度等物理量的重要工具,在高中数学中也占有重要地位。

学生将学习向量的概念、运算和应用,并用向量解决几何问题。

三、数列与不等式数列是研究数的排列规律的学科,高中数学中,学生将学习等差数列、等比数列、等差数列等,并掌握其性质和应用。

不等式是比较大小关系的有力工具,在高中数学中也发挥着重要作用。

学生将学习不等式的性质、解法和应用,并用不等式解决问题。

四、概率与统计概率与统计是研究随机现象的学科,高中数学中,学生将学习概率的基本概念、计算方法和应用,并掌握数据的收集、整理、分析和推断等统计方法。

五、导数与积分导数与积分是微积分的重要组成部分,也是高等数学的基础。

高中数学中,学生将学习导数的概念、性质和应用,包括定积分的概念和简单的应用。

六、数学建模与应用数学建模是指用数学方法解决生活中的实际问题,高中数学中,学生将学习基本的数学建模方法,并尝试将数学知识应用到解决实际问题中。

总而言之,高中数学的内容涵盖了函数、方程、平面几何、向量、数列、不等式、概率、统计、导数、积分等多个方面,是学生接受高等教育和未来发展的重要基础。

学习高中数学,不仅能提升学生的数学素养,更能培养学生的逻辑思维能力和解决问题的能力。

高中文科的数学学习什么内容

高中文科的数学学习什么内容

高中文科的数学学习什么内容文科数学一共会学7本书,分别是:必修1、必修2、必修3、必修4、必修5、选修2-1、选修2-2。

文科数学主要学习的内容有:集合;函数;空间几何体;点、直线、平面之间的位置关系;直线和方程;圆和方程;算法初步;概率;统计;三角函数;平面向量;数列;不等式;常用逻辑用语与推理、证明;圆锥曲线与方程;导数及其应用;复数。

文科数学相对理科数学来说,难度较低。

因此我们要在两个地方多下功夫:做题的正确率和做题的速度。

所以不难看出文科学数学的思路就是题海战术。

很多都知道题海战术,也都是这么做的,所以效果自然不需要多说。

高中的数学是非常有规律、有体系的,学数学最忌基础没有打好,老师讲的内容没有把握好重点。

基础没有打好,无论做多少题都白做,因为不知道为什么而做,更不知道做完一道题该掌握什么,做题的目的就是为了掌握书上的知识点;还有就是自己买的习题书太多了,做不完,而且还做乱了,有一本习题书就够了,最多不要超过两本。

记住,做数学千万不能怕动手动脑子,只要你一咬牙投入进去,你做数学真的会上瘾的。

建议你提前两天预习,第一天学课本上的基础知识,第二天把习题做了,老师上课,你听的轻松,一天课完了,复习一下老师讲的重点,着重想想思路,一个定理怎么来的,一道题目怎么解的,都用了哪些定理。

一定要理解,学习如果死记硬背那就完了。

做完题了,要总结,不要怕麻烦,越怕麻烦越学不好。

高三总复习的时候好好听老师讲,把你高一时的那些习题集再拿出来做一遍,到后期你们练习卷子的时候更要注意总结,你会发现高考考的不外乎就是那几个题型。

借助外力攻克数学这根硬骨头数学在高考中的位置、分值极为重要,可以说“高考,得数学者得天下”,数学能够学好,对升入理想大学会起到很大的作用。

对文科学生来说更是如此,因为,许多文科学生,在语文、英语等方面差别不大,而来开档次的就在数学上,在平时考试与高考中,有的数学分数甚至相差30-60分。

从以往情况来看,针对文科学生在数学学习上的特点,目前要想提高数学成绩,借助“外力”来学好数学也是很有必要的。

高中数学必修4

高中数学必修4

高中数学必修4
高中数学必修4主要包括以下内容:
1. 多项式与有理式:包括多项式的运算、多项式的因式分解、韦达定理、有理式的运算和化简等。

2. 函数与方程:包括一次函数、二次函数、指数函数、对
数函数、三角函数等各种函数的性质和图像、函数的复合、反函数、函数方程的解法等。

3. 三角恒等变换与解三角形:包括各种三角函数的性质和
恒等变换、解三角形的各种方法和公式。

4. 数列与数学归纳法:包括数列的概念、数列的通项公式、数列的性质、数学归纳法及其应用等。

5. 三角函数和指数函数的应用:包括三角函数和指数函数
在几何、力学、电路等方面的应用,如解三角形、运动问题、电路分析等。

6. 平面向量与解析几何:包括平面向量的基本概念、向量
的运算、平面向量的应用,解析几何方面包括直线的方程、平面的方程、空间向量等。

7. 概率与统计:包括概率的概念、常用的概率计算方法、
离散型和连续型随机变量的概率分布、统计的基本概念和
方法等。

以上仅为高中数学必修4的主要内容,具体的教材章节和
细节会根据不同的教材版本和学校的要求有所不同。

高中数学分章节全部知识点(含拓展内容)全面细致总结(必修必备版)

高中数学分章节全部知识点(含拓展内容)全面细致总结(必修必备版)

第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集∅【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(20)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →. ②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:yxo(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2⇔②x 1≤x 2<k ⇔③x 1<k <x 2⇔af (k )<0④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q=②02x a->,则()M f p =xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q =②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高一数学课程内容知识点

高一数学课程内容知识点

高一数学课程内容知识点高一数学课程是学生在高中阶段的第一学年所学习的数学内容,包括多个知识点。

以下是高一数学课程内容的知识点概述:一、函数与方程1. 函数的概念:自变量、因变量、函数的定义域、值域、图像等。

2. 函数的表示和性质:显式函数、隐式函数、参数方程等。

3. 一次函数与二次函数:函数的图像、性质和应用。

4. 指数函数与对数函数:函数的性质、图像和应用。

5. 三角函数:正弦函数、余弦函数、正切函数等的性质、图像和应用。

6. 方程与不等式:一次方程、二次方程、绝对值方程、一元一次不等式等的解法和应用。

二、平面几何与空间几何1. 直线与圆:直线的性质、分类与方程;圆的性质、方程和切线等。

2. 三角形与四边形:三角形的性质、分类、相似与全等;四边形的性质、分类与面积计算。

3. 空间几何:点、直线、面、体的位置关系、投影等。

三、解析几何1. 二维坐标系:点、直线、曲线在直角坐标系中的表示、性质和运算。

2. 直线和圆的方程:一般式、点斜式、截距式等的变换和应用。

3. 参数方程与极坐标:参数方程与平面曲线的表示,极坐标系下曲线的方程。

4. 向量与平面向量:向量的定义、运算与性质,平面向量与几何运算的应用。

四、概率论与统计1. 随机事件与概率:随机事件的概念、基本性质、计算和应用。

2. 排列与组合:排列与组合的基本概念、计算与应用。

3. 统计与数据分析:数据的收集、整理、处理和分析方法。

五、数列与数学归纳法1. 等差数列与等比数列:数列的概念、通项公式、求和公式与应用。

2. 数列的极限:数列极限的概念、收敛性与计算。

3. 数学归纳法:数学归纳法的原理和应用。

以上是高一数学课程内容的主要知识点概述,每个知识点都有其具体的定义、性质、计算方法和应用。

通过深入学习这些知识点,学生可以建立起扎实的数学基础,为接下来的高中数学学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学具体内容详见以下表格。

高一:(第一阶段:9月(暑假7,8月),第二阶段:3月(寒假2月))
课时数:预计正常学习课时数目
情况分析:
人教版新课标的课程紧张,大多数学校在赶进度,所以很多知识点都学习的比较笼统。

不少学校频繁的考试,同学的压力很大,再加上科目多,内容杂,高一的学习反而是很困难的。

在高一阶段,必修4中的三角函数部分由于需要记忆大量的公式,故整体较难。

必修5部分《数列》是整个高中阶段最难的一部分知识。

主要是一些特殊数列的性质的应用和常见的求通项和求和问题。

必修2中的立体几何同样也是高中阶段较难的一部分,特别是对于同步的学生,由于空间思维能力还有一定的局限性,故学习起来很吃力。

整体来看学生在高中一年级急需课外的辅导来弥补知识漏洞。

xx:课时流程文科
(第一阶段:9月(暑假7,8月),第二阶段:3月(寒假2月))
xx:课时流程理科
(第一阶段:9月(暑假7,8月),第二阶段:3月(寒假2月))
情况分析:
xx阶段xx学习到的知识相比于高一而言较简单,一般从下学期就进入了总复习状态,理科生则需要继续学习很多的内容,到xx学期末或者到xx才会进入总复习状态。

因此在xx学期末的暑假可以将招生目标放在这些学生身上。

xx:课时流程理科
(第一阶段:9月(暑假7,8月),第二阶段:3月(寒假2月))
情况分析:在xx阶段有的学校会依照上表内容进行有针对性的讲解,而有的学校在xx阶段不讲选修4
1、选修4-4,而是直接进入总复习状态。

而在复习的过程中对该内容进行必要的应试性讲解。

建议主任们通过你们教学点的专职老师了解更详细的具体学校的具体情况。

相关文档
最新文档