高三数学整理解排列组合应用问题的十种思考方法
探析排列组合常见的十六种解题方法

探析排列组合常见的十六种解题方法ʏ福建省泉州市第七中学 彭耿铃高考排列组合试题能有效地考查同学们的阅读判断能力㊁转化与化归处理能力及应用意识㊂这类试题新颖别致,联系社会实际,贴近生活,反映了排列组合应用领域的广阔,体现了数学的应用价值㊂本文特精选一些排列组合例题予以分类探析,旨在探究题型及解题方法,希望同学们能决胜于高考㊂求解排列㊁组合问题的常见方法有以下几种㊂(1)限制条件排除法:先求出不考虑限制条件的个数,然后排除不符合条件的个数,相当于减法原理;(2)相邻问题捆绑法:在特定条件下,将几个相关元素当作一个元素来考虑,待整个问题排好之后再考虑它们 内部 的排列数,主要用于解决相邻问题;(3)插空法:先把不受限制的元素排列好,然后把特定元素插在它们之间或两端的空当中;(4)特殊元素㊁位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置;(5)多元问题分类法:将符合条件的排列分为几类,根据分类计数原理求出排列总数;(6)元素相同隔板法:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入m -1块隔板来完成分组,此法适用于同元素分组问题;(7) 至多 ㊁ 至少 间接法: 至多 ㊁ 至少 的排列组合问题,需分类讨论且一般分类的情况较多,所以通常用间接法,即排除法,它适用于反面明确且易于计算的问题;(8)选排问题先取再排法:选排问题很容易出现重复或遗漏的错误,因此常先取出元素(组合)再排列,即先取再排;(9)定序问题消序法:甲㊁乙㊁丙顺序一定,采用消序法,即除法,用总排列数除以顺序一定的排列数;(10)有序分配逐分法:有序分配是指把元素按要求分成若干组,常采用逐分的方法求解㊂一㊁定位问题优先法(特殊元素和特殊位置优先考虑)例1 由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?解析:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置㊂先排末位共有C 13种方法;然后排首位共有C 14种方法;最后排其他位置共有A 34种方法㊂由分步计数原理得,有C 14C 13A 34=288(个)满足要求的数㊂例2 6个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )㊂A.192种 B .216种C .240种D .288种解析:若最左端排甲,其他位置共有A 55=120(种)排法;若最左端排乙,最右端共有4种排法,其余4个位置有A 44=24(种)排法㊂所以共有120+4ˑ24=216(种)排法,选B ㊂小结:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其他元素㊂若以位置分析为主,需先满足特殊位置的要求,再处理其他位置㊂若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其他条件㊂二㊁相邻元素捆绑法例3 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?解析:可先将甲乙两个元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其他元素进行排列,同时对相邻元素内部进行自排㊂由分步计数原理可得,共有A55A22A22=480(种)不同的排法㊂例4某人射击了8枪,命中4枪,4枪命中且恰好有3枪连在一起的情形共有种㊂解析:命中的3枪捆绑在一起,与命中的另一枪插入到未命中4枪形成的5个空位,共有A25=20(种)情况㊂小结:要求某几个元素必须排在一起的问题,可以用捆绑法来解决㊂即将需要相邻的元素合并为一个元素,再与其他元素一起进行排列,同时要注意合并元素内部也必须排列㊂三㊁不相邻问题插空法例5某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()㊂A.72B.120C.144D.168解析:歌舞类节目设为a1,a2,a3,小品类节目设为b1,b2,相声类节目设为c㊂先排a1,a2,a3不相邻,顺序如ˑb1ˑb2ˑcˑ,共A33A34种方法,b1b2相邻前提下,ˑb1b2ˑcˑ插空法共A22A33A22种方法,所以同类节目不相邻的排法种数为A33A34-A22A33A22=A33㊃(A34-4)=6ˑ20=120,选B㊂例66把椅子摆成一排,3人随机就座,任何2人不相邻的坐法种数为()㊂A.144B.120C.72D.24解析:先把3把椅子隔开摆好,它们之间和两端有4个位置,再把3人带椅子插放在四个位置,共有A34=24(种)方法,故选D㊂例7(2022年新高考Ⅱ卷)有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有()种㊂A.12B.24C.36D.48解析:因为丙丁要在一起,先把丙丁捆绑,看作一个元素,连同乙,戊看成三个元素排列,有A33种排列方式㊂为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式㊂注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有A33ˑ2ˑ2=24(种)不同的排列方式,选B㊂小结:元素相离问题可先把没有位置要求的元素进行排队,再把不相邻元素插入中间和两端㊂四㊁定序问题除序(去重复)㊁空位㊁插入法例87人排队,其中甲乙丙3人顺序一定,共有多少种不同的排法?解析:法一(除序法):对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是A77A33=840㊂法二(空位法):设想有7把椅子,让除甲乙丙以外的4人就座共有A47种方法,其余的三个位置甲乙丙共有1种坐法,则共有1ˑA47=840(种)方法㊂法三(插入法):先选三个座位让甲乙丙三人坐下,共有C37种方法,余下4个空座位让其余四人就座,共有A44种方法,则共有C37A44=840(种)方法㊂小结:定序问题可以用除序法,还可转化为空位法㊁插入法㊂五㊁重排问题求幂法例9把6名实习生分配到7个车间实习,共有多少种不同的分法?解析:完成此事共分六步,把第一名实习生分配到车间有7种分法,把第二名实习生分配到车间也有7种分法, ,由分步计数原理知共有76种不同的分法㊂小结:允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置㊂一般地,n个不同的元素没有限制地安排在m 个位置上的排列数为m n ㊂六㊁环排问题线排法例10 8人围桌而坐,共有多少种坐法?解析:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定1人并从此位置把圆形展成直线,其余7人共有(8-1)!=7!=5040(种)排法㊂小结:一般地,n 个不同元素作圆形排列,共有(n -1)!种排法㊂如果从n 个不同元素中取出m 个元素作圆形排列,共有1nA mn ㊂七㊁排列组合混合问题先选后排法例11 有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少种不同的装法解析:第一步从5个球中选出2个组成复合元素,共有C 25=10(种)方法;再把4个元素(包含一个复合元素)装入4个不同的盒内,有A 44=24(种)方法㊂根据分步计数原理,装球的方法共有C 25A 44=240(种)㊂例12 (2021年全国乙卷)将5名北京冬奥会志愿者分配到花样滑冰㊁短道速滑㊁冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )㊂A.60种 B .120种C .240种D .480种解析:根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人组成一个小组,有C 25种选法;然后连同其余3人,看成4个元素,4个项目看成4个不同的位置,4个不同的元素在4个不同的位置的排列方法数为A 44㊂根据乘法原理,完成这件事共有C 25ˑA 44=240(种)不同的分配方案,选C ㊂例13 (2020年全国Ⅱ卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种㊂解析:因为4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,所以先取2名同学看作一组,选法有C 24种㊂现在可看成是3组同学分配到3个小区,分法有A 33种㊂根据分步乘法原理,可得不同的安排方法有C 24A 33=6ˑ6=36(种)㊂小结:解决排列组合混合问题,先选后排是最基本的指导思想,此法与相邻元素捆绑策略相似㊂八㊁元素相同问题隔板法例14 有10个运动员名额,分给7个班,每班至少1人,有多少种分配方案?解析:10个名额没有差别,把它们排成一排,相邻名额之间形成9个空隙㊂在9个空隙中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法,共有C 69=84(种)分法㊂小结:将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m -1块隔板,插入n 个元素排成一排的n -1个空隙中,所有分法数为C m -1n -1㊂九㊁正难则反总体淘汰法例15 从1,3,5,7,9这5个数中,每次取出2个不同的数分别记为a ,b ,共可得到l g a -l gb 的不同值的个数是( )㊂A.9 B .10 C .18 D .20解析:l g a -l g b =l gab,从1,3,5,7,9中任取2个数分别记为a ,b ,共有A 25=20(种)结果㊂其中l g13=l g 39,l g 31=l g 93,故共可得到不同值的个数为20-2=18,选C ㊂例16 某学校安排甲㊁乙㊁丙㊁丁4位同学参加数学㊁物理㊁化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲㊁乙不能参加同一学科,则不同的安排方法有种㊂解析:把4位同学分成3组,有C 24=6(种)方法,然后进行全排列,即有C 24A 33=36(种)方法,去掉甲㊁乙在一个组的情况,当甲㊁乙在一个组时,参加的方法有A 33=6(种)㊂故符合题意的安排方法有36-6=30(种)㊂小结:有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰㊂十㊁平均分组问题除法例17将5名同学分到甲㊁乙㊁丙3个小组,若甲小组至少2人,乙㊁丙组至少1人,则不同的分配方案种数为()㊂A.80B.120C.140D.50解析:先将5名同学分成3组,有两种分配方案,一是3组人数分别为2,2,1,分组方法有C25C23C11A22=15(种),然后将有2人的两组分给甲㊁乙或甲㊁丙,分配方法是15ˑ(A22+ A22)=60(种);二是3组人数分别为3,1,1,分组方法有C35C12C11A22=10(种),然后将有1人的两组分给乙㊁丙两组,分配方法有10ˑA22 =20(种)㊂共有60+20=80(种)方案,选A㊂小结:平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为平均分的组数)避免重复计数㊂十一㊁合理分类与分步法例18甲㊁乙两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()㊂A.10种B.15种C.20种D.30种解析:由题意知比赛局数至少为3局,至多为5局㊂当局数为3局时,情况为甲或乙连赢3局,共2种㊂当局数为4局时,若甲赢,则前3局中甲赢2局,最后一局甲赢,共有C23=3(种)情况㊂同理,若乙赢,也有3种情况,共有3+3=6(种)情况㊂当局数为5局时,前4局,甲㊁乙各赢2局,最后1局胜出的人赢,共有2C24=12(种)情况㊂综上可知,共有2+6+12=20(种)情况㊂选C㊂十二㊁构造模型法例19马路上有编号为1,2,3,4,5, 6,7,8,9的9盏路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种㊂解析:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯有C35 =10(种)㊂小结:一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决㊂十三㊁分解与合成法例2030030能被多少个不同的偶数整除?解析:先把30030分解成质因数的乘积形式30030=2ˑ3ˑ5ˑ7ˑ11ˑ13,依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数有C05+C15+C25+C35+C45+C55=32(个)㊂例21正方体的8个顶点可连成多少对异面直线解析:我们先从8个顶点中任取4个顶点构成四面体,共有C48-12=58(个),每个四面体有3对异面直线,正方体中的8个顶点可连成3ˑ58=174(对)异面直线㊂例22从正方体六个面的对角线中任取两条作为一对,其中所成的角为60ʎ的共有()㊂A.24对B.30对C.48对D.60对解析:(1)方法一:与正方体的一个面上的一条对角线成60ʎ角的对角线有8条,故共有8对,正方体的12条面对角线共有8ˑ12 =96(对),且每对均重复计算一次,故共有962 =48(对)㊂选C㊂方法二:正方体的面对角线共有12条,两条为一对,共有C212=66(对)㊂同一个面上的对角线不满足题意,对面中的对角线也不满足题意,一组平行平面共有6对不满足题意的对角线对数,所以不满足题意的共有3ˑ6=18(对)㊂从正方体六个面的对角线中任取两条作为一对,其中所成的角为60ʎ的共有66-18=48(对)㊂选C㊂小结:分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略㊂十四㊁复杂问题化归法例2325人排成5ˑ5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解析:将这个问题退化成9人排成3ˑ3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少种选法㊂这样每行必有1人,从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去㊂从3ˑ3方队中选3人的方法有C13C12C11=6(种)㊂再从5ˑ5方阵选出3ˑ3方阵便可解决问题㊂从5ˑ5方队中选取3行3列,有C35C35=100(种)选法,所以从5ˑ5方阵选不在同一行也不在同一列的3人,有C35C35C13C12C11=600(种)选法㊂例24用a代表红球,b代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+a b表示出来,如: 1 表示一个球都不取㊁ a 表示取出一个红球,而 a b 表示把红球和蓝球都取出来㊂以此类推,下列各式中,其展开式可用来表示从5个无区别的红球㊁5个无区别的蓝球㊁5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()㊂A.(1+a+a2+a3+a4+a5)(1+b5)㊃(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)㊃(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)解析:分三步:第一步,5个无区别的红球可能取出0个,1个, ,5个,则有(1+a+ a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同的取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球任取0个,1个, ,5个,有(1+c)5种不同的取法㊂所以所求的取法种数为(1+a+a2+ a3+a4+a5)(1+b5)(1+c)5,选A㊂小结:处理复杂的排列组合问题时可以把一个问题退化成一个简单的问题,通过先解决这个简单问题,从而下一步解决原来的问题㊂十五㊁数字排序问题查字典法例25用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()㊂A.144个B.120个C.96个D.72个解析:首位填4时,比40000大的偶数有2ˑ4ˑ3ˑ2=48(个);首位填5时,比40000大的偶数有3ˑ4ˑ3ˑ2=72(个)㊂故共有48+72=120(个)数满足题意,选B㊂小结:数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数㊂十六㊁住店法例267名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数为㊂解析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将7名学生看作7家 店 ,五项冠军看作5名 客 ,每个 客 有7种住宿法,由乘法原理知有75种可能㊂小结:解决 允许重复排列问题 要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作 客 ,能重复的元素看作 店 ,再利用乘法原理直接求解㊂排列组合历来是高中学习中的难点,同学们只要对基本的解题策略熟练掌握,就可以选取不同的技巧来解决问题㊂对于一些比较复杂的问题,我们可以将几种策略结合起来应用,把复杂的问题简单化㊂请同学们对以上排列组合的几种常见的解题策略加以复习巩固,能举一反三,触类旁通,进而为后续的概率学习打下坚实的基础㊂(责任编辑徐利杰)。
完整版)排列组合的二十种解法(最全的排列组合方法总结)

完整版)排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
3.分类计数原理和分步计数原理区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一、特殊元素和特殊位置优先策略:例1:由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3.由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素。
若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
解决排列组合问题的常用方法

故所求自然数共120+48+6+1=175个.
∴正因数之和为31×40×6=7440
【变式】1、72的正约数(包括1和72)共有__________个
解析:72=23×32
∴2m·3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数
m的取法有4种,n的取法有3种,由分步计数原理共3×4个。答案:12
用此法可以逐步计算:6个、7个、8个、……元素的错位排列问题
题型讲解
【例1】某城市在中心广场建造一个花圃,花圃分为6个部分(如下图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种(以数字作答)
解:记颜色为A、B、C、D四色,先安排1、2、3有A 种不同的栽法,不妨设1、2、3已分别栽种A、B、C,则4、5、6栽种方法共5种,由以下树状图清晰可见根据分步计数原理,不同栽种方法有N=A ×5=120
【变式】求不同的排法种数:
(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;
(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.
解:(1)是“相邻”问题,用捆绑法解决:
(2)是“不相邻”问题,可以用插空法直接求解.6男先排实位,再在7个空位中排2女,即用插孔法解决: 。另法:用捆绑与剔除相结合:
【例2】用0,1,2,3,4,5这六个数字,
(1)可以组成多少个数字不重复的三位数?
(2)可以组成多少个数字允许重复的三位数?
(3)可以组成多少个数字不允许重复的三位数的奇数?
(4)可以组成多少个数字不重复的小于1000的自然数?
高中数学排列组合应用解题技巧

高中数学排列组合应用解题技巧在高中数学中,排列组合是一个重要的概念和应用领域。
它不仅在数学中有着广泛的应用,也在现实生活中起到重要的作用。
本文将介绍一些高中数学排列组合应用解题技巧,帮助学生更好地理解和应用这一知识点。
一、排列问题排列是指从一组元素中选取若干个元素按照一定的顺序进行排列的问题。
在解决排列问题时,我们需要注意以下几个关键点。
1. 确定元素的个数:排列问题中,我们需要明确元素的个数。
例如,有5个人参加比赛,我们需要确定从中选取几个人进行排列。
2. 确定元素的顺序:排列问题中,元素的顺序是重要的。
例如,5个人参加比赛,我们需要确定他们的排列顺序。
3. 使用排列公式:在解决排列问题时,我们可以使用排列公式来计算可能的排列数。
排列公式为:A(n,m) = n!/(n-m)!,其中n表示元素的总数,m表示选取的元素个数。
例如,有5个人参加比赛,我们需要确定其中3个人的排列顺序。
根据排列公式,我们可以计算出A(5,3) = 5!/(5-3)! = 5!/2! = 60种可能的排列方式。
二、组合问题组合是指从一组元素中选取若干个元素进行组合的问题。
在解决组合问题时,我们需要注意以下几个关键点。
1. 确定元素的个数:组合问题中,我们需要明确元素的个数。
例如,有5个人参加比赛,我们需要确定从中选取几个人进行组合。
2. 不考虑元素的顺序:组合问题中,元素的顺序不重要。
例如,5个人参加比赛,我们只关心选取的人数,而不关心他们的排列顺序。
3. 使用组合公式:在解决组合问题时,我们可以使用组合公式来计算可能的组合数。
组合公式为:C(n,m) = n!/[(n-m)! * m!],其中n表示元素的总数,m表示选取的元素个数。
例如,有5个人参加比赛,我们需要确定其中3个人进行组合。
根据组合公式,我们可以计算出C(5,3) = 5!/[(5-3)! * 3!] = 5!/2!*3! = 10种可能的组合方式。
三、应用举例下面通过一些具体的例子来说明排列组合在实际问题中的应用。
高中数学轻松搞定排列组合难题21种方法

高考数学排列组合难题21种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A 由分步计数原理得113434288C C A = 143413练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学轻松搞定排列组合难题二十一种方法10页

高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类1办法中有m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步1有m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分类计数原理和分步计数原理。
2.掌握解决排列组合问题的常用策略,能够解决简单的综合应用题,提高解决问题分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法。
在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+。
+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法。
做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×。
×mn种不同的方法。
3.分类计数原理和分步计数原理的区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一、特殊元素和特殊位置优先策略:例1:由0、1、2、3、4、5可以组成多少个没有重复数字五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3,由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。
若以元素分析为主,需先安排特殊元素,再处理其它元素。
若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
高中数学轻松搞定排列组合难题21种方法10页

高考数学轻松搞定排列组合难题二十一种方法2015.1.15排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标 1.1.进一步理解和应用分步和分类计数原理。
一看能否分步(纯“选”问题用乘法就进一步理解和应用分步和分类计数原理。
一看能否分步(纯“选”问题用乘法就误成了分步,而排列是分步的特殊模型。
理解时以混选问题为例);二看分步时某步方法数确定不了是多少时,退回上一步分类。
理解时以染色问题为例)。
某步方法数确定不了是多少时,退回上一步分类。
理解时以染色问题为例)。
2.2.高考出题主要考察两个原理和排列组合概念在新情景中的应用。
分步原理中含一高考出题主要考察两个原理和排列组合概念在新情景中的应用。
分步原理中含一般分步(如映射原理(信投信箱、可重复数字排列问题):一个萝卜有且只有一个坑,分步以萝卜为对象为宜)和特殊分步(排列:一个萝卜有且只有一个坑,且每个坑里最多一个萝卜)。
)。
任何排列组合的策略都是以两原理和排列组合为本源解决出来的结论,理科不限于列举法。
源解决出来的结论,理科不限于列举法。
3.3.排列组合一般用于概率题中概率值计算。
要能在新情景中迅速解题,考前可训练排列组合一般用于概率题中概率值计算。
要能在新情景中迅速解题,考前可训练常用策略,在过程中提高处理能力。
但不必追求掌握所有的策略。
要有应用数学思想和方法解决排列组合问题的意识和自信。
任何时候学习都要在相应章节锻炼我们的数学素养。
的数学素养。
4分类计数原理分步计数原理区别分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.事件.解决排列组合综合性问题的一般过程如下:1.1.认真审题弄清要做什么事认真审题弄清要做什么事认真审题弄清要做什么事2.2.怎样做才能完成所要做的事怎样做才能完成所要做的事怎样做才能完成所要做的事,,即采取分步还是分类即采取分步还是分类,,或是分步与分类同时进行或是分步与分类同时进行,,确定分多少步及多少类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“解排列、组合应用问题”的思维方法一、优先考虑: 对有特殊元素(即被限制的元素)或特殊位置(被限制的位置)的排列,通常是先排特殊元素或特殊位置,再考虑其它的元素或其它的位置。
例1.(1)由0、1、2、3、4、可以组成 个无重复数字的三位数。
(2) 由1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 个。
(3) 5个人排成一排,其中甲不排在两端也不和乙相邻排列的排列共有 种。
二、“捆”在一起:有要求元素相邻(即连排)的排列问题,可以先将相邻的元素看作一个“整体”与其它元素排列,然后“整体”内部再进行排列。
例2.(1) 有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有 种。
(2) 有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共有 种。
三、插空档:有要求元素不相邻(即间隔排)的排列问题,可以制造空档插空。
例3.(1)五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。
(2)6名男生6名女生排成一排,要求男女相间的排法有 种。
四、减去特殊情况(即逆向思考):先算暂时不考虑限制条件的排列或组合种数,然后再从中减去所有不符合条件的排列或组合数。
例4.(1)以正方体的顶点为顶点的四面体共有 个。
(2) 由0、1、2、3、4、可以组成 个无重复数字的三位数。
(3)集合A 有8个元素,集合B 有7个元素,B A 有4个元素,集合C 有3个元素且满足下列条件: B C A C B A C ,,的集合C 有几个。
(4)从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有多少种参赛方案?五、先组后排:排列、组合综合题,通常都是先考虑组合后考虑排列。
例5(1)用1、2、3、 9这九个数字,能组成由3个奇数数字、2个偶数数字的不重复的五位数有 个。
(2)有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。
(3)有五项工作,四个人来完成且每人至少做一项,共有种分配方法。
六、除以排列数:对某些元素有顺序限制的排列,可以先不考虑顺序限制排列后,再除去规定顺序元素个数的全排列。
例6(1)有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。
(2)由0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字,十位数字小于百位数字,则这样的数共有个。
(3)书架上放有5本书(1~5册),现在要再插入3本书,保持原有的相对顺序不变,有种放法。
七、对象互调:有些排列或组合题直接就题论题很难入手,但换个角度去考虑便顺利求得结果又易理解。
例7.(1)一部电影在四个单位轮放,每单位放映一场,可以有种放映次序。
(2)一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。
(3)有6个座位3人去坐,要求恰好有两个空位相连的不同坐法有种。
八、分情况研究:分情况研究(即分类计算)复杂的排列、组合综合题,常常通过画简图、按元素的性质“分类”;按事件发生的连续过程“分步”等方法。
分情况研究求得结果,尤其对含数字“0”的排列,常分“有0”及“无0”两种情况研究,在“有0”时,排列的“首位”又是“特殊”位置要优先考虑。
例8.(1)从编号为了1、2、3 9的九个球中任取4个球,使它们的编号之和为奇数,再把这四个球排成一排,共有多少种不同的排法?(2)用0、1、2、3 9这十个数字组成五位数,其中含有三个奇数字与两个偶数字的五位数有多少个?(3)用0、1、2、3、4五个数字组成的无重复的五位数中,若按从小到大的顺序排列23140是第几个数?排列与组合(思考方法1~8训练)一.优先考虑1.现有6名同学站成一排:(1)甲不站排头也不站排尾有多少种不同的排法?(2)甲不站排头,且乙不站排尾有多少种不同的排法?,2,1,0,5组成无重复数字的5位数,共可以组成多少个?2.用4,3二.插空3.有6名同学站成一排:甲、乙、丙不相邻有多少种不同的排法?4.有4男4女排成一排,要求(1)女的互不相邻有种排法;(2)男女相间有种排法。
三.捆在一起5.由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有_________个。
6.有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共有种。
四.逆向思考7.某小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选时的不同选法有16种,则小组中的女生数为________。
8.6名同学站成一排乙不站排尾有多少种不同的排法?五.先组后排9.有4名学生参加3相不同的小组活动,每组至少一人,有种参加方式。
10.从两个集合 4,3,2,1和 7,6,5中各取两个元素组成一个四位数,可组成个数。
六.除以排列数11.书架上放有6本书,现在要再插入3本书,保持原有的相对顺序不变,有种放法。
12.9人(个子长短不同)排队照相,要求中间的最高,两旁依次从高到矮共有种排法。
七.对象互调:13.某人射击8枪命中4枪,这4枪中恰有3枪连在一起的不同种数是。
14.三个人坐在一排7个座位上,(1)若3个人中间没有空位,有种坐法。
(2)若4个空位中恰有3个空位连在一起,有种坐法。
八.分情况(即分类),2,1,0组成无重复数字的5位数,若按从小到大的顺序排列,则数12340是第_____ 15.用4,3个数。
16.某车间有8名会车工或钳工的工人,其中6人会车工,5人会钳工,现从这些工人中选出2人分别干车工和钳工,问不同的选法有多少种?九.和、整除、倍数、约数问题。
例9.和:(1)用0、1、2、3、4、5、6这七个数字可以组成多少个没有重复数字的三位数?这些三位数的和是多少?整除:(2)用0、1、2、3、4、5组成无重复数字的五位数,其中Ⅰ、能被5整除的数有多少个?Ⅱ、能被3整除的数有多少个?Ⅲ、能被6整除的数有多少个?倍数:(3)在1、2、3 100这100个自然数中,每次取不等的两数相乘,使它们的积是7的倍数,这样的取法共有多少种?(取7,11与取11,7认为是同一种取法)(4)在1、2、3 30这三十个数中,每取两两不等的三个数,使它们的和是3的倍数,共有多少种不同的取法?约数:(5)数2160共有多少个正约数(包括1和本身在内)?其中共有多少个正的偶约数?十、分配、分组问题:解题时要注意“均匀”与“非均匀”的区别、分配与分组(分堆)的区别。
例10.(1)将12本不同的书Ⅰ、分给甲、乙、丙三人,每人各得4本有种分法。
Ⅱ、平均分成三堆,有种分法。
(2)7本不同的书Ⅰ、全部分给6个人,每人至少一本,共有种不同的分法。
Ⅱ、全部分给5个人,每人至少一本,共有种不同的分法。
(3)六本不同的书,分给甲、乙、丙三人,若按下列分配方法,问各有多少种分法?a、甲一本、乙二本、丙三本;有种分法。
b、一人一本、一人二本、一人三本;有种分法。
c、甲一本、乙一本、丙四本;有种分法。
d、一人一本、一人一本、一人四本;有种分法。
排列与组合(思考方法全训练)一~八:1.5名男生和2名女生站成一列,男生甲必须站在正中间,2名女生必须站在甲前面,不同的站法共有种(用数字作答)。
2.8人排成一排, 其中甲、乙、丙三人中有2人相邻,但这3人不同时相邻的排法有______种. 3.现有6张同排连座号的电影票, 分给3名老师与3名学生, 要求师生相间而坐, 则不同的分法数为________.4.在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有种。
5.现从某校5名学生干部中选出4人分别参加上海市“资源”、“生态”、和“环保”三个夏令营,要求每个夏令营活动至少有选出的一人参加,且每人只参加一个夏令营活动,则不同的参加方案的种数是___________.(写出具体数字)6.将A、B、C、D、E、排成一排,其中按A、B、C顺序(即A在B前,C 在B 后)的排列总数为。
7.如果从一排10盏灯中关掉3盏灯,那么关掉的是互不相邻的3盏灯的方法有。
地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种。
(以数字作答)(2)同室4人各写了一张贺年卡先集中起来,然后每人从中取回一张别人送出的贺卡,这4张贺年卡不同的分配方式有__________种。
九.和、整除、倍数、约数问题17.(1) 由2、3、4、5组成无重复数字的四位数,求:①这些数的数字之和;②这些数的和。
(2)由0、2、5、7、9这5个数字可组成多少个无重复数字且能被3整除的四位数?18.(1)在1、2、3、4 、…、50这50个自然数中,每次取出2个(无论先后),使他们的积是13的倍数,这样的取法有多少种?(2)①420共有多少个正约数?②14175共有多少个正约数?十.分配、分组问题:19.六本不同的书,分给甲、乙、丙三人,若按下列分配方法,问各有多少种分法?①甲一本、乙二本、丙三本;有种分法。
②一人一本、一人二本、一人三本;有种分法。
③甲一本、乙一本、丙四本;有种分法。
④一人一本、一人一本、一人四本;有种分法。
20.一般地,现有n6本不同的书,2本、丙得n3本,则有种分法。
①分给甲、乙、丙三人,甲得n本、乙得n2本、另一人得n3本,则有种分法。
②分给三人,一人得n本、一人得n4本,则有种分法。
③分给三人,甲、乙各得n本、丙得n4本,则有种分法。
④分给三人,其中二人各得n本,另一人得n2本、一堆n3本,则有种分法。
⑤分成三堆,一堆n本、一堆n4本,则有种分法。
⑥分成三堆,有二堆各n本,还有一堆n排列与组合 (思考方法1~8训练) 参考答案一.优先考虑:1.(1)法一:(先考虑特殊元素甲)4805514P P 种;法二:(先考虑特殊位置头尾)480425 P P 种; (2)法一:55P (甲在尾)+ 441414P P P (甲不在尾)=120+384=504; (或法二:5042445566 P P P 种); 2.先考虑首位再其它: 6004515P C 。
二.插空: 3.144343 P P ;4.(1)2880454 P P ;(2)1152244 P P 。
三.捆在一起: 5. 242322 P P P ; 6.57604236 P P P 。
四.逆向思考: 7.令小组中的女生数为x ,则:2163636 x C C x ; 8.60056 P P 。
五.先组后排: 9.36324P C ;10.43242324P C C 。
六.除以排列数: 11.504/69 P P (即50439 P );12.70)/(448 P P P 。