湖南大学高等数学复习资料大全
高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
高数学习资料(含讲义及全部内容)(一)

第一章 函数与极限函数和极限都是高等数学中最重要、最基本的概念,极值方法是最基本的方法,一切内容都将从这二者开始。
§1、 函 数一、集合、常量与变量1、集合:集合是具有某种特定性质的事物所组成的全体。
通常用大写字母A 、B 、C ……等来表示,组成集合的各个事物称为该集合的元素。
若事物a 是集合M 的一个元素,就记a ∈M (读a 属于M );若事物a 不是集合M 的一个元素,就记a ∉M 或a ∈M (读a 不属于M );集合有时也简称为集。
注 1:若一集合只有有限个元素,就称为有限集;否则称为无限集。
2:集合的表示方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+++======等。
中在点;为我校的学生;须有此性质。
如:中的元素必中,且,即:有此性质的必在所具有的某种性质合可表示为:,那么该集若知其元素有某种性质不到元素规律的集合,、列不出全体元素或找为全体偶数集;,,,然数集,为全体自,,,写出,如:元素的规律,也可类似、对无限集,若知道其;鸡一只猫,一只狗,一只的方法来表示,如:可用列举出其全体元素、若集合为有限集,就枚举法}),(),{(}{}0375{}{)(}642{}321{)(}{},10,,3,2,1{)(23D y x y x C x x B x x x x A A A x x A iii B A ii B A i 3:全体自然数集记为N,全体整数的集合记为Z,全体有理数的集合记为Q,全体实数的集合记为R 。
以后不特别说明的情况下考虑的集合均为数集。
4:集合间的基本关系:若集合A 的元素都是集合B 的元素,即若有A x ∈,必有B x ∈,就称A 为B 的子集,记为B A ⊂,或A B ⊃(读B 包含A)。
显然:R Q Z N ⊂⊂⊂.若B A ⊂,同时A B ⊂,就称A 、B 相等,记为A=B 。
5:当集合中的元素重复时,重复的元素只算一次.如:{1,2,2,3}={1,2,3}。
湖南省考研数学复习资料推荐高等代数习题集

湖南省考研数学复习资料推荐高等代数习题集湖南省考研数学复习资料推荐——高等代数习题集高等代数是湖南省考研数学科目中的重要一部分,对于考生来说,掌握高等代数的基本理论和解题技巧至关重要。
在复习过程中,一本优质的高等代数习题集,既可以帮助考生巩固知识点,又能够检验自己的学习成果。
本文将为湖南省考研数学考生推荐几本优秀的高等代数习题集,希望能够对考生的复习备考工作有所帮助。
1.《高等代数习题集》- 王式同编著这本习题集是湖南省考研数学中较为经典的一本教辅资料。
它包含了高等代数的各个知识点,习题难度适中,涵盖了基本概念、性质和解题方法。
作者编著的习题旨在考察学生对高等代数知识点的掌握程度,有助于考生训练解题的思维方式和技巧。
此外,习题解析详细,为考生提供了充分的解题思路和方法,能够帮助考生理解难点,提高解题效率。
2.《高等代数习题集与指南》- 李鸣与彭军编著该书是湖南省考研数学中另一本较为知名的习题集。
它从题目的选材和难度上具有一定特色,突出了高等代数中的典型问题和难点。
习题集中的部分题目相对较难,适合对高等代数有一定基础的考生进行深入练习。
此外,习题集的解析详尽,对考生进行了全面的解题指导,有助于考生巩固和拓展知识点。
3.《高等代数习题集》- 朱光编著这本习题集是湖南省考研数学中的经典教材之一,曾经多次被推荐给考生作为复习资料。
它的特点是习题分析透彻,解题方法详细,能够帮助考生理解高等代数中的重难点和解题思路,提高解题能力。
此外,习题集中的题目难度适中,有助于考生温故知新、巩固基础,帮助考生顺利备考。
总结:对于湖南省考研数学复习来说,高等代数是其中的重点内容。
选择一本合适的高等代数习题集进行练习对于考生来说非常重要。
本文推荐的三本习题集都得到了广大考生的认可,它们分别是《高等代数习题集》- 王式同编著、《高等代数习题集与指南》- 李鸣与彭军编著、《高等代数习题集》- 朱光编著。
这些习题集的特点是题目全面、解析详尽,对考生复习备考起到了很大的帮助。
高数第一章复习资料

⾼数第⼀章复习资料第⼀章预备知识⼀、定义域1.已知得定义域为,求得定义域。
答案:2.求得连续区间。
提⽰:任何初等函数在定义域范围内都就是连续得。
答案:⼆、判断两个函数就是否相同?1., 就是否表⽰同⼀函数?答案:否2.下列各题中, 与就是否相同?答案:都不相同三、奇偶性1.判断得奇偶性。
答案:奇函数四、有界性,使,则在上有界。
有界函数既有上界,⼜有下界。
1.在内就是否有界?答案:⽆界2.就是否有界?答案:有界,因为五、周期性1.下列哪个不就是周期函数(C)。
A. B. C. D.注意: 就是周期函数,但它没有最⼩正周期。
六、复合函数1.已知,求例:已知,求解1:解2:令, , ,2.设,求提⽰:3.设,求提⽰:先求出4.设,求提⽰:七、函数图形熟记得函数图形。
第⼆章极限与连续⼋、重要概念1.收敛数列必有界。
2.有界数列不⼀定收敛。
3.⽆界数列必发散。
4.单调有界数列极限⼀定存在。
5.极限存在得充要条件就是左、右极限存在并且相等。
九、⽆穷⼩得⽐较1.时,下列哪个与就是等价⽆穷⼩(A)。
A. B. C. D.⼗、求极限1.⽆穷⼩与有界量得乘积仍就是⽆穷⼩。
, , , ,2.⾃变量趋于⽆穷⼤,分⼦、分母为多项式例如: 提⽰:分⼦、分母同除未知量得最⾼次幂。
3.出现根号,⾸先想到有理化补充练习:(1) (2)(3) (4)(5)4.出现三⾓函数、反三⾓函数,⾸先想到第⼀个重要极限例:作业:P49 7 (1)~(3)5.出现指数函数、对数函数、幂指函数,⾸先想到第⼆个重要极限例:作业:P49 7 (4)~(6)6.、、、、、、,可以使⽤洛必达法则作业:P99 5 (1)~(8)7.分⼦或分母出现变上限函数提⽰:洛必达法则+变上限函数得导数等于被积函数例:补充练习:(1) (2)(3) (4)⼗⼀、连续与间断任何初等函数在其定义域范围内都就是连续得。
分段函数可能得间断点就是区间得分界点。
若,则在处连续,否则间断。
大学高等数学知识点及例题复习整理

经济数学复习考试范围:教材1-5章第一章: 函数、极限与连续1.主要内容:(1) 函数的定义域(2) 函数的简单特性:有界性、单调性、周期性和奇偶性. (3) 复合函数及分段函数(4) 极限、左极限与右极限、极限的性质及四则运算法则 (5) 极限存在的两个准则、利用两个重要极限求极限的方法 (6) 无穷小、无穷大,无穷小的比较,用等价无穷小求极限(7) 函数连续性(含左连续与右连续)、函数间断点的类型(8) 闭区间上连续函数的性质(有界性定理、最值定理、零点定理与介值定理) 注意:用函数与数列的极限定义来证明极限存在、双曲函数、映射不做要求。
2.重点:求极限 3.典型例题与习题(1)§1-1 T1-10,12,13,15-17 (2)§1-2 T6(3)§1-3 例题3-9 习题1-4 (4)§1-4 例题4-7 习题1-4 (5)§1-5 例题2-8 习题1-4 (6)§1-6 例题3-9 习题1-6 (7)§1-7 例题1-7 习题1-7 (8)§1-8 例题1-7 习题2-5(9)综合练习一:1-64.典型方法(1)求定义域的方法:①若12()()y f x f x =±或12()()y f x f x =,则12f f f D D D =⋂ ②若12()()f x y f x =,则122{|()0}f f f D D D x f x =⋂-= ③若1122(),(),f x x D y f x x D ∈⎧=⎨∈⎩,则12f D D D =⋃④若()f x 定义域为a x b <<,则(())f x ϕ定义域由()a x b ϕ<<解出例1求22ln(1),2x y x x -<<=-≥⎪⎩定义域【解】(2,2)[2.)(2,)f D =-⋃+∞=-+∞ 例2求ln(1)y x =-定义域 【解】[3,3](1.)(1,3]f D =-⋂+∞=例3求y =【解】(1,2)(2,3]f D =⋃例4 设()f x 定义域为(0,1),求()f x a +定义域 【解】由01x a <+<得, 1a x a -<<- 例5 求1ln lg y x=定义域 【解】0lg 0ln lg 0x x x >⎧⎪>⎨⎪≠⎩ 01lg 1x x x >⎧⎪⇒>⎨⎪≠⎩ 0110x x x >⎧⎪⇒>⎨⎪≠⎩,故(1,10)(10,)f D =⋃+∞例6 设()f x 定义域为(1,4),求2()f x 定义域【解】由214x <<得, 21x -<<-或12x <<,故2()f x 定义域为(2,1)(1,2)--⋃2.求函数极限方法:利用极限的定义、极限的四则运算法则、函数式的恒等变形、两个重要极限、无穷小量及等价无穷小代换定理、函数连续性与L ’Hospital 法则例1 求下列极限(1)22sin(2)23lim[]41x x x x x →-++--; (2)0x → (3)3x → (4)10515(51)(12)lim (31)x x x x →∞+-- (5)10sin lim(1)2xx x →-; (6)11lim()1ln x x x x →+-3.证明函数连续方法:利用连续的定义、连续的四则运算法则和复合函数连续性、可导的必要条件例1 设,0(),0x e x f x x k x ⎧≤=⎨+>⎩连续,求常数k 之值。
高等数学复习资料大全

高等数学复习第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达)2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
数学复习资料推荐湖南省考研线性代数重点

数学复习资料推荐湖南省考研线性代数重点在湖南省考研数学复习中,线性代数是一门重点科目。
良好的复习资料对于提高学习效果至关重要。
本文将向大家推荐数学复习资料,重点介绍适合湖南省考研线性代数的相关图书和参考资料。
一、教材推荐1.《线性代数》(湖南大学出版社):这是湖南大学数学系编写的线性代数教材,是湖南省考研线性代数复习的主要参考教材。
该教材内容全面,涵盖了线性代数的基本知识和概念,配有大量的例题和习题,可以帮助考生快速掌握知识。
2.《线性代数与解析几何》(高等教育出版社):这是一本经典的线性代数教材,通俗易懂,适合初学者使用。
书中每个概念都有详细的解释和示例,同时配有大量的练习题,可以帮助考生更好地理解线性代数的相关知识。
二、参考书推荐1.《线性代数应该这样学》(浙江大学出版社):这本书是一本线性代数的辅导书,适合有一定基础的考生使用。
书中通过举例和解析,详细讲解了线性代数的各个知识点,对一些难点和疑惑进行了深入剖析,可以帮助考生加深对线性代数的理解。
2.《线性代数习题集》(清华大学出版社):这是一本针对线性代数习题的专题复习参考书,其中包含了大量的习题和解析,可以帮助考生加强对知识点的理解和应用能力。
通过反复做题,不仅可以巩固所学的知识,还能帮助考生熟悉考试题型和解题思路。
三、网络资源推荐除了传统的教材和参考书,网络资源也是一种便捷、灵活的复习方式。
以下是一些适合湖南省考研线性代数复习的网络资源推荐:1. 清华大学线性代数公开课:这是一门由清华大学开设的线性代数公开课程,通过在线视频的形式讲解线性代数的相关知识,包含了理论讲解和例题讲解等内容。
考生可以根据自己的时间和进度进行自主学习。
2. 网上习题库:在网上搜索相关的线性代数习题库,可以找到大量的习题资源,考生可以通过做题来提高自己的理解和应用能力。
同时,部分习题库还提供了答案和解析,方便考生自我检查和复习。
以上是本文对于湖南省考研线性代数复习资料的推荐。
大学高数知识点总结

大学高数知识点总结大学高数知识点总结一、代数:1、函数及其图象:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、相交函数、无穷小量的概念、函数的极限及其性质。
2、不等式:一元不等式与多元不等式的性质、解不等式的方法以及在几何中的应用。
3、导数:函数的导数的定义、性质、计算、利用导数解析函数的最值问题;高阶导数的概念以及利用它确定函数图象的单调性。
4、曲线的积分:曲线的面积、积分的定义、计算方法、利用积分求曲线面积、平面曲线的积分、特殊函数的积分。
5、复数:复数的概念、运算规则、虚部抽象概念、复数函数、复数解析函数及其图象、利用几何性质解决复数问题。
6、三角函数:三角函数的概念、函数表达式、图象、关系式、函数的性质、函数的变换、求解三角函数的方法、应用。
7、统计:概率的概念、抽样理论、统计分布、误差分析、检验理论。
二、初等数论:1、素数及其分解:素数的概念、素数的分解法、素数的基本性质、素数的充要条件。
2、同余理论:同余方程的概念、同余方程的解法、同余方程的性质、模的概念及其性质。
3、欧几里德算法:求最大公约数、求最小公倍数、求逆元、斯特林公式、欧几里得定理及其应用。
4、置换:置换的概念、置换的性质、置换的构成、置换的表示法、置换的应用。
5、图论:图的概念、图的构成、图的性质、图的表示法、图的生成算法、图的应用。
三、几何:1、几何形体:正n边形、正多边形、空间几何体、椭圆、圆锥、圆柱、圆台等几何形体的性质及其应用。
2、切线、切面:曲线的切线、曲面的切面、曲线的法线方向、曲面的法线方向、曲线的曲率、曲面的曲率及其定义。
3、投影:正射投影、透视投影、锥体投影等投影的概念及其应用。
4、立体视角:立体视角的概念、立体视角的定义及其应用。
四、空间几何:1、几何性质:投影的性质、平面的性质、空间的性质、直线的性质、平行线的性质、平面的性质、直线的性质、平行线的性质、面的性质、曲线的性质、曲面的性质、四边形的性质等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学复习》详细教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dxdy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
解:1|'),,0(|),(,sin cos 2/2/2/-==⎪⎩⎪⎨⎧====πθππθθθθθy e y x e y e x x e y -=-2/π5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。
求f(x)在(6,f(6))处的切线方程。
解:需求)1('),1()6('),6(f f f f 或,等式取x->0的极限有:f(1)=0)6(22)1('8)1('4])1()1(3)1()1([lim sin )sin 1(3)sin 1(lim0sin 0-=∴=∴==--+-+=--+>-=>-x y f f t f t f t f t f x x f x f t t x x C.导数应用问题6.已知xex f x x xf x x f y --=+=1)]('[2)('')(2满足对一切,)0(0)('00≠=x x f 若,求),(00y x 点的性质。
解:令⎩⎨⎧<>>>===-0,00,0)(''00010000x x x e e x f x x x x 代入,,故为极小值点。
7.23)1(-=x x y ,求单调区间与极值、凹凸区间与拐点、渐进线。
解:定义域),1()1,(+∞-∞∈Y x:斜:铅垂;;拐点及驻点2100''300'+===⇒===⇒=x y x x y x x y8.求函数xex y arctan 2/)1(+-=π的单调性与极值、渐进线。
解:101'arctan 2/22-==⇒++=+x x e xx x y x 与驻点π,2)2(-=-=x y x e y 与渐:πD.幂级数展开问题9.⎰=-x x dt t x dxd 022sin )sin( ⎰⎰⎰=⋅⋅⋅++-+⋅⋅⋅+-=-⋅⋅⋅++--+⋅⋅⋅+-=-+---+⋅⋅⋅+-+--=-⋅⋅⋅++--+⋅⋅⋅+---=----+-x n n n nxn n n n x n x x x dt t x dx d n n x x x t x n n t x t x t x dt t x n t x t x t x t x 02)12(2622147302141732)12(2622sin )!12()1(!31)sin()!12)(14()1(7!3131)sin()!12)(14()()1()(7!31)(31)sin()!12()()1()(!31)()sin(或:20202sin sin )(sin x du u dx d du u dx d u t x x x ==-⇒=-⎰⎰ 10.求)0(0)1ln()()(2n fn x x x x f 阶导数处的在=+=解:)(2)1(32()1ln(2213222---+--+⋅⋅⋅-+-=+n n n x o n x x x x x x x =)(2)1(321543n nn x o n x x x x +--+⋅⋅⋅-+-- 2!)1()0(1)(--=∴-n n f n n E.不等式的证明11.设)1,0(∈x ,211)1ln(112ln 1)1(ln )122<-+<-<++x x x x x ,求证(证:1)令0)0(,)1(ln )1()(22=-++=g x x x x g;得证。
单调下降,单调下降单调下降,时0)()(,0)(')(',0)('')('')1,0(0)0('')0(',0)1()1ln(2)('''),(''),('2<<<∈∴==<++-=x g x g x g x g x g x g x g g x x x g x g x g2)令单调下降,得证。
,0)('),1,0(,1)1ln(1)(<∈-+=x h x xx x hF.中值定理问题12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f , 0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使证:32)('''!31)0(''!21)0(')0()(x f x f x f f x f η+++= 其中]1,1[),,0(-∈∈x x η将x=1,x=-1代入有)('''61)0(''21)0()1(1)('''61)0(''21)0()1(021ηηf f f f f f f f ++==-+=-=两式相减:6)(''')('''21=+ηηf f3)](''')('''[21)('''][2121=+=∍∈∃ηηξηηξf f f ,,13.2e b a e <<<,求证:)(4ln ln 222a b e a b ->- 证:)(')()(:ξf ab a f b f Lagrange =--令ξξln 2ln ln ,ln )(222=--=a b a b x x f令2222ln )()(0ln 1)(',ln )(ee t t t t t t >∴>∴<-==ξξϕξϕϕϕ )(4ln ln 222a b ea b ->- (关键:构造函数)三、补充习题(作业) 1.23)0('',11ln)(2-=+-=y x x x f 求2.曲线012)1,0(2cos 2sin =-+⎪⎩⎪⎨⎧==x y te y t e x tt处切线为在3.ex y x x e x y 1)0)(1ln(+=>+=的渐进线方程为 4.证明x>0时22)1(ln )1(-≥-x x x证:令3222)1(2)('''),(''),(',)1(ln )1()(xx x g x g x g x x x x g -=---= 02)1(''0)1(')1(>===g g g ,00'),,1(0'),1,0(0''2'',0'''),,1(2'',0'''),1,0(>∴⎩⎨⎧>∞∈<∈⇒>⇒⎭⎬⎫>>+∞∈><∈g g x g x g g g x g g x第三讲 不定积分与定积分一、理论要求 1.不定积分 掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 2.定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值二、题型与解法 A.积分计算1.⎰⎰+-=--=-C x x dx x x dx 22arcsin)2(4)4(22.⎰⎰⎰+=+=+C x e xdx e xdx e dx x e x x x x tan tan 2sec )1(tan 2222223.设xx x f )1ln()(ln +=,求⎰dx x f )( 解:⎰⎰+=dx e e dx x f xx )1ln()( ⎰+++-=+-++=--C e e x dx ee e e xx xx xx)1ln()1()11()1ln( 4.⎰⎰∞∞>-∞+=+-+-=112122ln 214)11(lim |arctan 1arctan b b dx x x x x x dx x x π B.积分性质5.)(x f 连续,⎰=10)()(dt xt f x ϕ,且A xx f x =>-)(lim 0,求)(x ϕ并讨论)('x ϕ在0=x 的连续性。