2021年四种命题与充要条件

合集下载

高考第2课四种命题和充要条件

高考第2课四种命题和充要条件

高中数学学习材料金戈铁骑整理制作第2课四种命题和充要条件【自主学习】第2课四种命题和充要条件(本课时对应学生用书第页)自主学习回归教材1.(选修2-1P8习题1改编)命题:“若x2<1,则-1<x<1”的逆否命题是. 【答案】若x≥1或x≤-1,则x2≥12.(选修2-1P7练习改编)命题“若x<0,则x2>0”及其逆命题、否命题、逆否命题这四个命题中正确命题的个数为.【答案】2【解析】原命题为真,所以逆否命题为真;逆命题为“若x2>0,则x<0”为假命题,所以否命题为假.3.(选修2-1P20习题改编)判断下列命题的真假.(填“真”或“假”)(1)命题“在△ABC中,若AB>AC,则C>B”的否命题为命题.(2)命题“若ab=0,则b=0”的逆否命题为命题.【答案】(1)真(2)假4.(选修2-1P9习题4(2)改编)“sin α=sin β”是“α=β”的条件.(填“充分不必要”、“必要不充分”、“ 充要”或“ 既不充分也不必要”)【答案】必要不充分5.(选修2-1P20习题改编)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则r是q的条件,p是q的条件.【答案】充要必要【解析】q⇒s⇒r⇒q,所以r是q的充要条件;q⇒s⇒r⇒p,所以p是q的必要条件.1.记“若p则q”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p”,逆否命题为“若非q则非p”.其中互为逆否命题的两个命题同真假,即等价,原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题为真的个数只能是偶数.2.对命题“若p则q”而言,当它是真命题时,记作p⇒q,称p是q的充分条件,q是p的必要条件;当它是假命题时,记作p⇒/q,称p是q的非充分条件,q是p的非必要条件.3.①若p⇒q,且q⇒/p,则p是q的充分不必要条件;②若p⇒/q,且q⇒p,则p是q的必要不充分条件;③若p⇒q,且q⇒p,则p是q的充要条件,记作p⇔q;④若p⇒/p,且q⇒/p,则p是q的既不充分也不必要条件.4.证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).【要点导学】要点导学各个击破命题真假的判断例1在△ABC中,已知命题p:若C=60°,则sin2A+sin2B-sin A sin B=sin2C.(1)求证:命题p是真命题;(2)写出命题p的逆命题,判断逆命题的真假,并说明理由.【思维引导】(1)利用正弦定理将待证式转化为a2+b2-ab=c2,然后利用余弦定理即证;(2)分清命题p的条件与结论,正确地对原命题的条件和结论进行互换或否定.【解答】设△ABC的内角A,B,C所对的边分别为a,b,c.(1)因为C=60°,由余弦定理得c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.由正弦定理sin a A =sin b B =sin cC , 得sin 2C=sin 2A+sin 2B-sin A sin B. 故命题p 是真命题.(2)命题p 的逆命题:在△ABC 中, 若sin 2A+sin 2B-sin A sin B=sin 2C ,则C=60°. 它是真命题.证明如下:由sin 2A+sin 2B-sin A sin B=sin 2C 和正弦定理得c 2=a 2+b 2-ab.而由余弦定理c 2=a 2+b 2-2ab cos C ,得cos C=12. 因为0°<C<180°,所以C=60°.【精要点评】对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.变式 给出以下四个命题:①“若x+y=0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x+q=0有实数根”的逆否命题; ④若a+b 是偶数,则整数a ,b 都是偶数. 其中真命题是 .(填序号) 【答案】①③【解析】①显然正确;②不全等的三角形的面积不相等,故②不正确;③原命题正确,所以它的逆否命题也正确;④若a+b 是偶数,则整数a ,b 都是偶数或都是奇数,故④不正确.【精要点评】对命题真假的判断,正确的命题要加以论证;不一定正确的命题要举出反例,这是最基本的数学思维方式.在判断命题真假的过程中,要注意简单命题与复合命题之间的真假关系;要注意四种命题之间的真假关系.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.因此,四种命题中真命题的个数只能是0,2或4.充要条件的判断例2从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中,选出一种适当的填空.(1)(2015·泰安期末)已知a∈R,则“a2<a”是“a<1”的条件.(2)(2015·保定期末)若集合A={0,1},B={-1,a2},则“A∩B={1}”是“a=1”的条件.【思维引导】(1)找到不等式a2<a的解集为(0,1),然后根据“小范围能推大范围,大范围推不出小范围”进行判断.(2)判断充要条件时,可先分清条件与结论,若由条件能推出结论,则充分性满足;若由结论能推出条件,则必要性满足.【答案】(1)充分不必要(2)必要不充分【解析】(1)因为由a2<a,可得0<a<1,所以“a2<a”是“a<1”的充分不必要条件.(2)若A∩B={1},则a2=1,a=±1,所以充分性不满足,必要性满足,故“A∩B={1}”是“a=1”的必要不充分条件.【精要点评】在判断充分条件及必要条件时,首先要分清哪个是条件,哪个是结论;其次,要从两个方面,即“充分”与“必要”分别考查.判定时,对于有关范围的问题也可以从集合观点看,如p,q对应的范围为集合A,B,若AB,则A是B 的充分条件,B是A的必要条件;若A=B,则A,B互为充要条件.变式从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中,选出一种适当的填空.(1)“x=2kπ+π4(k∈Z)”是“tan x=1”的;(2)“22x y >⎧⎨>⎩,”是“44x y xy +>⎧⎨>⎩,”的 ;(3)“m<12”是“一元二次方程x 2+x+m=0有实数解”的 ; (4)对于数列{a n },“a n+1>|a n |(n ∈N *)”是“数列{a n }为递增数列”的 ;(5)“函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增”是“m ≥289x x +对任意的x>0恒成立”的 .【思维引导】判定p 是q 的什么条件,实际上就是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,这部分内容经常与其他知识点相结合考查.【答案】(1)充分不必要条件 (2)充分不必要条件 (3)必要不充分条件 (4)充分不必要条件 (5)充要条件【解析】(1)因为x=2k π+π4(k ∈Z )⇒tan x=1,但反过来不一定成立,即tan x=1⇒x=k π+π4(k ∈Z ),(2)因为x>2,y>2,根据不等式的性质易得x+y>4,xy>4,但反过来不一定成立,如x=13,y=24.(3)一元二次方程x 2+x+m=0有实数解⇔m ≤14,因为m ≤14⇒m<12,反之不成立,所以是必要不充分条件.(4)因为a n+1>|a n |(n ∈N *), 所以当n ≥2时,a n >0, 即当n ≥2时,a n+1>a n . 若a 1≥0,有a 2>|a 1|=a 1,若a 1<0,a 2>a 1显然成立,充分性得证.当数列{a n }为递增数列时,设a n =1-2n⎛⎫ ⎪⎝⎭,则a 2>|a 1|不成立.(5)函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增⇔f'(x )=3x 2+4x+m ≥0恒成立⇔Δ=16-12m ≤0⇔m ≥43.m ≥289xx +对任意x>0恒成立⇔m ≥2max 89x x ⎛⎫ ⎪+⎝⎭,又289x x +=89x x +≤892x x ⋅=43,所以m ≥43. 【精要点评】在判断时注意反例的应用;在判断“若p 则q ”较繁琐时,可以利用它的逆否命题“若非q 则非p ”,判断其是否正确;有时将某些条件转化为与它等价的条件再与另一条件进行判断会更简单 .结合充要条件求参数例3 已知集合M={x|x<-3或x>5},P={x|(x-a )(x-8)≤0}. (1)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的充要条件; (2)求实数a 的一个值,使它成为M ∩P={x|5<x ≤8}的一个充分不必要条件; (3)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的一个必要不充分条件. 【思维引导】求a 的取值范围使它成为M ∩P 的不同条件,可借助集合的观点,根据要求,求出成立时a 的取值范围.【解答】(1)由M ∩P={x|5<x ≤8},得-3≤a ≤5, 因此M ∩P={x|5<x ≤8}的充要条件是-3≤a ≤5.(2)即在集合{a|-3≤a ≤5}中取一个值,如取a=0,此时必有M ∩P={x|5<x ≤8}; 反之,M ∩P={x|5<x ≤8}未必有a=0,故a=0是所求的一个充分不必要条件. (3)即求一个集合Q ,使{a|-3≤a ≤5}是集合Q 的一个真子集.如果{a|a≤5},那么未必有M∩P={x|5<x≤8},但是M∩P={x|5<x≤8}时,必有a≤5,故a≤5是所求的一个必要不充分条件.【精要点评】解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.变式(2015·南通期中)若不等式x-1x>0成立的充分不必要条件是x>a,则实数a的取值范围是.【答案】[1,+∞)【解析】由不等式x-1x>0,得(1)(-1)x xx>0,得-1<x<0或x>1.由充分不必要条件的含义可知{x|x>a}为不等式解集的真子集,进而得到a≥1.充要条件的证明例4已知a,b,c都是实数,求证:方程ax2+bx+c=0有一个正根和一个负根的充要条件是ac<0.【思维引导】证明充分性,由“ac<0”推出“方程ax2+bx+c=0有一个正根和一个负根”,证明必要性是由“方程ax2+bx+c=0有一个正根和一个负根”推出“ac<0”,主要根据判别式、一元二次方程的根与系数的关系进行论证.【解答】设原方程的两根分别为x1,x2.①充分性:由ac<0,得a,c异号,所以Δ=b2-4ac>0,且x1x2=ca<0.故方程ax2+bx+c=0有一正一负两个实根.所以ac<0是原方程有一正一负两个实根的充分条件.②必要性:若方程ax2+bx+c=0有一个正根和一个负根,不妨设x1>0,x2<0,则x1x2<0,即ca<0,所以a,c异号,即ac<0.故ac<0是原方程有一正一负两个实根的必要条件.综上,ac<0是原方程有一正一负两个实根的充要条件.【精要点评】充要条件的证明应注意:(1)一般地,条件已知,证明结论成立是充分性,结论已知,推出条件成立是必要性.(2)有关充要条件的证明问题,要分清哪个是条件,哪个是结论.变式设数列{a n},{b n},{c n}满足:b n=a n-a n+2,c n=a n+2a n+1+3a n+2(n=1,2,3,…),求证:数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).【解答】必要性:设{a n}是公差为d1的等差数列,则b n+1-b n=(a n+1-a n+3)-(a n-a n+2)=(a n+1-a n)-(a n+3-a n+2)=d1-d1=0,所以b n≤b n+1(n=1,2,3,…)成立.又c n+1-c n=(a n+1-a n)+2(a n+2-a n+1)+3(a n+3-a n+2)=d1+2d1+3d1=6d1(常数)(n=1,2,3,…),所以数列{c n}为等差数列.充分性:设数列{c n}是公差为d2的等差数列,且b n≤b n+1(n=1,2,3,…).因为c n=a n+2a n+1+3a n+2,①所以c n+2=a n+2+2a n+3+3a n+4,②①-②,得c n-c n+2=(a n-a n+2)+2(a n+1-a n+3)+3(a n+2-a n+4)=b n+2b n+1+3b n+2.因为c n-c n+2=(c n-c n+1)+(c n+1-c n+2)=-2d2,所以b n+2b n+1+3b n+2=-2d2,③从而有b n+1+2b n+2+3b n+3=-2d2,④④-③,得(b n+1-b n)+2(b n+2-b n+1)+3(b n+3-b n+2)=0.⑤因为b n+1-b n≥0,b n+2-b n+1≥0,b n+3-b n+2≥0,所以由⑤得b n+1-b n=0(n=1,2,3,…).由此不妨设b n=d3(n=1,2,3,…),则a n-a n+2=d3(常数).由此c n=a n+2a n+1+3a n+2⇒c n=4a n+2a n+1-3d3,从而c n+1=4a n+1+2a n+2-3d3,两式相减得c n+1-c n=2(a n+1-a n)-2d3,因此a n+1-a n=12(cn+1-c n)+d3=12d2+d3(常数)(n=1,2,3,…),所以数列{a n}为等差数列.综上,数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).1.(2014·安徽卷)“x<0”是“ln(x+1)<0”的条件.【答案】必要不充分【解析】由ln(x+1)<0,得0<1+x<1,所以-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.2.(2015·安徽卷)设命题p:1<x<2,q:2x>1,则p是q的条件.【答案】充分不必要【解析】由q:2x>1=20,解得x>0,所以p⇒q,但q p,所以p是q的充分不必要条件.3.(2015·南通模考)已知集合M={x|x-2<0},N={x|x<a},若“x∈M”是“x∈N” 的充分条件,则实数a的取值范围是.【答案】[2,+∞)【解析】由题意得M={x|x-2<0}={x|x<2},因为“x∈M”是“x∈N”的充分条件,所以M⊆N,所以a≥2.4.求证:方程mx2-2x+3=0有两个同号且不相等的实数根的充要条件是0<m<1 3.【解答】①充分性:因为0<m<13,所以方程mx2-2x+3=0的判别式Δ=4-12m>0,且3m>0,所以方程mx2-2x+3=0有两个同号且不相等的实数根.②必要性:若方程mx2-2x+3=0有两个同号且不相等的实数根,则有124-1203mx xm∆=>⎧⎪⎨=>⎪⎩,,所以0<m<13.综上,得证.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第3~4页.【检测与评估】第2课四种命题和充要条件一、填空题1.命题“若a>b,则a+1>b”的逆否命题是.2.(2014·启东中学)若使“x≥1”与“x≥a”恰有一个成立的充要条件为{x|0≤x<1},则实数a的值是.3.(2015·重庆卷)“x>1”是“lo12g(x+2)<0”的条件.4.设集合S={0,a},T={x∈Z|x2<2},则“a=1”是“S⊆T”的条件.5.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.6.设n∈N*,则一元二次方程x2-4x+n=0有整数解的充要条件是n=.7.已知命题p:|x|>a,q:-12-1xx>0.若p是q的必要不充分条件,则实数a的取值范围是.8.(2015·郑州质检)给定方程:12x⎛⎫⎪⎝⎭+sin x-1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x0是方程的实数根,则x0>-1.其中正确的命题是.(填序号)二、解答题9.(2014·惠州一模)已知集合A=2331224|y y x x x⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,,,B={x|x+m2≥1}.若命题p:x∈A,命题q:x∈B,并且p是q的充分条件,求实数m的取值范围.10.设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.已知函数f(x)=4sin2π4x⎛⎫+⎪⎝⎭-23cos 2x-1,且给定命题p:x<π4或x>π2,x∈R.若命题q:-2<f(x)-m<2,且¬p是q的充分条件,求实数m的取值范围.三、选做题(不要求解题过程,直接给出最终结果)12.已知集合A={x|x2+2x-3≤0},B={x|(x-2a)[x-(a2+1)]≤0}.若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是.13.(2015·黄山质检)在平面直角坐标系中,定义两点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.现有以下命题:①已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;②原点O到直线x-y+1=0上任意一点P的直角距离d(O,P)的最小值为2 2;③若PQ表示P,Q两点间的距离,那么PQ≥22d(P,Q);其中为真命题的是.(填序号) 【检测与评估答案】第2课 四种命题和充要条件1.若a+1≤b ,则a ≤b2.0 【解析】由题意可得1x x a <⎧⎨≥⎩, 或1x x a ≥⎧⎨<⎩, 成立的充要条件为{x|0≤x<1},所以a=0.3.充分不必要 【解析】lo 12g (x+2)<0⇔x+2>1⇔x>-1,故“x>1”是“lo12g (x+2)<0”的充分不必要条件.4.充分不必要 【解析】当a=1时,S={0,1},又T={-1,0,1},则S ⊆T ,所以充分性成立;当S ⊆T 时,a=1或-1,所以必要性不成立.5.[-3,0] 【解析】因为命题“ax 2-2ax-3>0不成立”是真命题,则有a=0或204120a a a <⎧⎨+≤⎩,,解得a ∈[-3,0].6. 3或4 【解析】由x 2-4x+n=0,得(x-2)2=4-n ,即x=2±4-n .因为n ∈N *,方程要有整数解,所以n=3或4,故当n=3或4时方程有整数解.7. (-∞,0) 【解析】由命题p :|x|>a ⇔R 0-0x a x a x a a ∈<⎧⎨<>≥⎩,,或,,q :-12-1x x >0⇔x<12或x>1.因为p 是q 的必要不充分条件,所以使命题q 成立的不等式的解集是使命题p 成立的不等式解集的子集,所以a<0.8.②③④ 【解析】由题意可知方程12x ⎛⎫ ⎪⎝⎭+sin x-1=0的解等价于函数y=1-12x⎛⎫ ⎪⎝⎭与y=sin x 的图象交点的横坐标,在同一平面直角坐标系中分别作出它们的图象如图所示.(第8题)由图象可知:①该方程存在小于0的实数解,故①错误;②该方程有无数个实数解,故②正确;③该方程在(-∞,0)内有且只有一个实数解,故③正确;④若x 0是该方程的实数解,则x 0>-1,故④正确.9.由y=x 2-32x+1,配方得y=23-4x ⎛⎫ ⎪⎝⎭+716.因为x ∈324⎡⎤⎢⎥⎣⎦,,所以y min =716,y max =2,即y ∈7216⎡⎤⎢⎥⎣⎦,,所以A=7|216y y ⎧⎫≤≤⎨⎬⎩⎭. 由x+m 2≥1,得x ≥1-m 2,B={x|x ≥1-m 2}. 因为p 是q 的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34.故实数m 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦∪34∞⎡⎫+⎪⎢⎣⎭,.10.设m 是两个方程的公共根,显然m ≠0. 由题设知m 2+2am+b 2=0, ① m 2+2cm-b 2=0, ② 由①+②得2m (a+c+m )=0,所以m=-(a+c),③将③代入①得(a+c)2-2a(a+c)+b2=0,化简得a2=b2+c2,所以所给的两个方程有公共根的必要条件是a2=b2+c2.下面证明充分性.因为a2=b2+c2,所以方程x2+2ax+b2=0可化为x2+2ax+a2-c2=0,它的两个根分别为x1=-(a+c),x2=c-a.同理,方程x2+2cx-b2=0的两根分别为x3=-(a+c),x4=a-c.因为x1=x3,所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根.综上所述,方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.由q可得()-2() 2. m f xm f x>⎧⎨<+⎩,因为¬p是q的充分条件,所以在π4≤x≤π2的条件下,()-2()2m f xm f x>⎧⎨<+⎩,恒成立.由已知得,f(x)=2π1cos22x⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦-23cos 2x-1=2sin 2x-23cos 2x+1=4sinπ2-3x⎛⎫⎪⎝⎭+1.由π4≤x≤π2,知π6≤2x-π3≤2π3,所以3≤4sinπ2-3x⎛⎫⎪⎝⎭+1≤5.故当x=5π12时,f(x)max=5,当x=π4时,f(x)min=3,所以只需5-232mm>⎧⎨<+⎩,成立,即3<m<5.所以m的取值范围是(3,5).12.3--2∞⎛⎤⎥⎝⎦,【解析】因为集合A={x|x2+2x-3≤0}={x|-3≤x≤1},B={x|2a≤x≤a2+1}.因为“x∈A”是“x∈B”的充分不必要条件,所以A B,所以2112-3aa⎧+≥⎨≤⎩,,且等号不能同时取得,解得a≤-32,故实数a的取值范围是3--2∞⎛⎤⎥⎝⎦,.13.①③【解析】已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)=|2-sin2α|+|3-cos2α|=2-sin2α+3-cos2α=4,所以①正确;设直线上任意一点为(x,x+1),则原点O 到直线x-y+1=0上任意一点P的直角距离d(O,P)=|x|+|x+1|≥|x+1-x|=1,即其最小值为1,所以命题②错误;由基本不等式a2+b2≥12(a+b)2得PQ=221212(-)(-)x x y y+≥22(|x1-x2|+|y1-y2|)=22d(P,Q),所以命题③成立,综上所述,正确的命题为①③.。

充要条件与四种命题

充要条件与四种命题

充要条件与四种命题【考纲要求】(1)了解命题及其逆命题,否命题,逆否命题(2)理解充分条件,必要条件与充要条件的意义,会分析四种命题的相互关系【基础回顾】1、四种命题的形式:原命题:若P 则q ; 逆命题:____________;否命题:_________;逆否命题__________(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题)①、原命题为真,它的逆命题是否为真?__________②、原命题为真,它的否命题是否为真?_________③、原命题为真,它的逆否命题是否为真?____________3、如果已知p ⇒q 那么我们说,p 是q 的_______条件,q 是p 的________条件。

若p ⇒q 且q ⇒p,则称p 是q 的_____________________,记为p ⇔q.【基础自测】1、(2010上海文)16.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )(A )充分不必要条件. (B )必要不充分条件.(C )充分条件. (D )既不充分也不必要条件.2、(2010山东文)(7)设{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件3、(2010广东理)5. “14m <”是“一元二次方程20x x m ++=”有实数解的 A .充分非必要条件 B.充分必要条件C .必要非充分条件 D.非充分必要条件4、(2010四川文)(5)函数2()1f x x mx =++的图像关于直线1x =对称的充要条件是 (A )2m =- (B )2m = (C )1m =- (D )1m =5、命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”【典例剖析】例1、把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题、逆否命题. (1)正三角形的三内角相等;(2)全等三角形的面积相等;(3)已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.例2、指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答).(1)在△ABC中,p:∠A=∠B,q:sinA=sinB;(2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6;(3)非空集合A、B中,p:x∈A∪B,q:x∈B;(4)已知x、y∈R,p:(x-1)2 +(y-2)2=0,q:(x-1)(y-2)=0.例3、证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0例4、已知p:1123x--≤,q:222(1)0x x m-+-≤.若“⌝p”是“⌝q”的必要而不充分条件,求实数m的取值范围.【巩固练习】1、(2007重庆)命题“若21x <,则11x -<<”的逆否命题是( )A.若21x ≥,则1x ≥,或1x ≤-B.若11x -<<,则21x <C.若1x >,或1x <-,则21x >D.若1x ≥或1x ≤-,则21x ≥2、平面//αβ的一个充分条件是( )A.存在一条直线a ,//a α,//a βB. 存在一条直线a , a α⊂,//a βC.存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂D.存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂3、“2a =”是“直线20ax y +=平行于直线1x y +=”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 即不充分也不必要条件4、已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:( )(1)s 是q 的充要条件(2)p 是q 的充分不必要条件(3)r 是q 的必要不充分条件(4)p ⌝是s ⌝的必要不充分条件(5)r 是s 的充分不必要条件A.(1)(4)(5)B.(1)(2)(4)C.(2)(3)(5)D.(2)(4)(5)5、“|x |<2”是“260x x --<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6、甲:A 1 ,A 2是互斥事件;乙:A 1 ,A 2是对立事件,那么 ( )A. 甲是乙的充分但不必要条件B. 甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件7、(2009潍坊一模)集合|x |||4,,||,a A x x R B x x a =≤∈=<⊆则“A B(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件8、命题p:不等式11x x x x ∣∣>--的解集为{}1x x |0<<,命题q:“A=B ”是“sinA=sinB ”成立的必要非充分条件,则( )A .p 真q 假 B.“p 且q ”为真C. “p 或q ”为假D.p 假q 真9、已知条件p: A=}{221x a x a ∣≤≤+条件,}{2:3(1)2(31)0q B x x a x a =-+++≤ 若条件p 是条件q 的充分条件,求实数a 的取值范围10、(思考)已知抛物线C: 21y x mx =-+-和点A (3,0),B(0,3).求证:抛物线C 与线段AB 有两个不同的交点的充要条件是1033m <≤.。

2021_2022学年高中数学第1章常用逻辑用语1.1.1四种命题(不作要求)1.1.2充分条件和必

2021_2022学年高中数学第1章常用逻辑用语1.1.1四种命题(不作要求)1.1.2充分条件和必

1.1.1 四种命题(不作要求) 1.1.2 充分条件和必要条件学习目标核心素养1.结合具体实例,理解充分条件、必要条件和充要条件的意义.(重点)2.结合具体命题,学会判断充分条件、必要条件、充要条件的方法.(重点、难点)3.培养辩证思维能力.通过充要条件的学习,培养逻辑推理素养.1.符号⇒与的含义命题真假“假设p那么q〞为真“假设p那么q〞为假表示方法p⇒q p q读法p推出q p不能推出q2.充分、必要条件的含义条件关系含义p是q的充分条件(q是p的必要条件)p⇒qp是q的充要条件p⇔qp是q的充分不必要条件p⇒q,且q pp是q的必要不充分条件p q,且q⇒pp是q的既不充分又不必要条件p q,且q p 思考:(1)p是q的充分条件与q是p的必要条件所表示的推出关系是否一样?(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?[提示] (1)一样,都是p⇒q(2)等价1.“x>2”是“x2-3x+2>0”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[由x2-3x+2>0得x>2或x<1,应选A.]2.对于任意的实数a,b,c,在以下命题中,真命题是( )A.“ac>bc〞是“a>b〞的必要条件B.“ac=bc〞是“a=b〞的必要条件C.“ac<bc〞是“a<b〞的充分条件D.“ac=bc〞是“a=b〞的充分条件B[假设a=b,那么ac=bc;假设ac=bc,那么a不一定等于b,故“ac=bc〞是“a =b〞的必要条件.]3.设a,b是实数,那么“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件D[此题采用特殊值法:当a=3,b=-1时,a+b>0,但ab<0,故不是充分条件;当a=-3,b=-1时,ab>0,但a+b<0,故不是必要条件.所以“a+b>0”是“ab>0”的既不充分又不必要条件.]4.用“充分不必要〞、“必要不充分〞、“充要〞和“既不充分也不必要〞填空.(1)“a2+b2=0”是“a=b=0”的________条件.(2)两个三角形全等是这两个三角形相似的________条件.(3)“a2>0”是“a>0”的________条件.(4)“sin α>sin β〞是“α>β〞的________条件.(1)充要(2)充分不必要(3)必要不充分(4)既不充分也不必要[(1)a2+b2=0成立时,当且仅当a=b=0.故应填“充要〞.(2)因为两个三角形全等⇒两个三角形相似,但两个三角形相似D两个三角形全等,所以填“充分不必要〞.(3)因为a2>0a>0,如(-2)2>0,但-2>0不成立;又a>0⇒a2>0,所以“a2>0”是“a>0”的必要不充分条件.(4)因为y=sin x在不同区间的单调性是不同的,故“sin α>sin β〞是“α>β〞的既不充分也不必要条件.]充分条件、必要条件、充要条件的判断件〞“充分必要条件〞“既不充分也不必要条件〞中选出一种作答).(1)在△ABC中,p:∠A>∠B,q:BC>AC;(2)对于实数x ,y ,p :x +y ≠8,q :x ≠2或y ≠6; (3)p :(a -2)(a -3)=0,q :a =3; (4)p :a <b ,q :ab<1.[思路探究] 判断p ⇒q 与q ⇒p 是否成立,当p 、q 是否认形式, 可判断綈q 是綈p 的什么条件.[解] (1)在△ABC 中,显然有∠A >∠B ⇔BC >AC ,所以p 是q 的充分必要条件. (2)因为x =2且y =6⇒x +y =8,即綈q ⇒綈p ,但綈p ⇒綈q ,所 以p 是q 的充分不必要条件.(3)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要不充分条件.(4)由于a <b ,当b <0时,a b>1;当b >0时,a b <1,故假设a <b ,不一定有a b<1; 当a >0,b >0,a b <1时,可以推出a <b ; 当a <0,b <0,a b<1时,可以推出a >b . 因此p 是q 的既不充分也不必要条件.充分条件与必要条件的判断方法1.定义法2.等价法:将命题转化为另一个等价的又便于判断真假的命题. 3.逆否法:这是等价法的一种特殊情况.假设綈p ⇒綈q ,那么p 是q 的必要条件,q 是p 的充分条件; 假设綈p ⇒綈q ,且綈q綈p ,那么p 是q 的必要不充分条件;假设綈p ⇔綈q ,那么p 与q 互为充要条件; 假设綈p綈q ,且綈q綈p ,那么p 是q 的既不充分也不必要条件.1.(1)设a ,b 是实数,那么“a >b 〞是“a 2>b 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件D [令a =1,b =-1,满足a >b ,但不满足a 2>b 2,即“a >b 〞不能推出“a 2>b 2”;再令a =-1,b =0,满足a 2>b 2,但不满足a >b ,即“a 2>b 2”不能推出“a >b 〞,所以“a >b 〞是“a 2>b 2”的既不充分也不必要条件.](2)对于二次函数f (x )=ax 2+bx +c (a ≠0),以下结论正确的选项是( ) ①Δ=b 2-4ac ≥0是函数f (x )有零点的充要条件; ②Δ=b 2-4ac =0是函数f (x )有零点的充分条件; ③Δ=b 2-4ac >0是函数f (x )有零点的必要条件; ④Δ=b 2-4ac <0是函数f (x )没有零点的充要条件. A .①④ B .①②③ C .①②③④D .①②④D [①Δ=b 2-4ac ≥0⇔方程ax 2+bx +c =0(a ≠0)有实根⇔f (x )=ax 2+bx +c (a ≠0)有零点,故①正确.②假设Δ=b 2-4ac =0,那么方程ax 2+bx +c =0(a ≠0)有实根,因此函数f (x )=ax 2+bx +c (a ≠0)有零点,故②正确.③函数f (x )=ax 2+bx +c (a ≠0)有零点时,方程ax 2+bx +c =0(a ≠0)有实根,未必有Δ=b 2-4ac >0,也可能有Δ=0,故③错误.④Δ=b 2-4ac <0⇔方程ax 2+bx +c =0(a ≠0)无实根⇔函数f (x )=ax 2+bx +c (a ≠0)无零点,故④正确.]充要条件的探求与证明(1)“x 2-4x <0”的一个充分不必要条件为( )A .0<x <4B .0<x <2C .x >0D .x <4(2)x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[思路探究] (1)先解不等式x 2-4x <0得到充要条件,那么充分不必要条件应是不等式x 2-4x <0的解集的子集.(2)充要条件的证明可用其定义,即条件⇒结论且结论⇒条件.如果每一步的推出都是等价的(⇔),也可以把两个方面的证明合并在一起,用“⇔〞写出证明.[解析] (1)由x 2-4x <0得0<x <4,那么充分不必要条件是集合{x |0<x <4}的子集,应选B.[答案] B(2)法一:充分性:由xy >0及x >y ,得x xy >yxy, 即1x <1y.必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.法二:1x <1y ⇔1x -1y <0⇔y -x xy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.探求充要条件一般有两种方法:(1)探求A 成立的充要条件时,先将A 视为条件,并由A 推导结论(设为B ),再证明B 是A 的充分条件,这样就能说明A 成立的充要条件是B ,即从充分性和必要性两方面说明.(2)将原命题进展等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因为探求过程每一步都是等价的,所以不需要将充分性和必要性分开来说明.2.充要条件的证明(1)证明p 是q 的充要条件,既要证明命题“p ⇒q 〞为真,又要证明“q ⇒p 〞为真,前者证明的是充分性,后者证明的是必要性.(2)证明充要条件,即说明原命题和逆命题都成立,要注意“p 是q 的充要条件〞与“p 的充要条件是q 〞这两种说法的差异,分清哪个是条件,哪个是结论.2.(1)不等式x (x -2)<0成立的一个必要不充分条件是( ) A .x ∈(0,2) B .x ∈[-1,+∞) C .x ∈(0,1)D .x ∈(1,3)B[由x(x-2)<0得0<x<2,因为(0,2)[-1,+∞),所以“x∈[-1,+∞)〞是“不等式x(x-2)<0成立〞的一个必要不充分条件.](2)求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.[证明] 假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.①证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a×12+b×1+c=0,即a+b+c=0.②证明q⇒p,即证明充分性.由a+b+c=0,得c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.充分、必要条件的应用[探究问题]1.假设集合A B,那么“x∈A〞是“x∈B〞的什么条件?“x∈B〞是“x∈A〞的什么条件?[提示] 因为A B,所以x∈A成立时,一定有x∈B,反之不一定成立,所以“x∈A〞是“x∈B〞的充分不必要条件,而“x∈B〞是“x∈A〞的必要不充分条件.2.对于集合A和B,在什么情况下,“x∈A〞是“x∈B〞的既不充分也不必要条件?[提示] 当A B且B A时,“x∈A〞是“x∈B〞的既不充分也不必要条件.3.集合A={x|x≥a},B={x|x≥2}.假设A是B的充要条件,实数a的值确定吗,假设集合A是B的充分不必要条件?实数a的值确定吗?[提示] 当A是B的充要条件时,A=B,这时a的值是确定的,即a=2;当A是B的充分不必要条件时,A B,这时a的值不确定,实数a的取值范围是(2,+∞).【例3】p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且p是q的充分不必要条件,那么实数m的取值范围为________.[思路探究] p是q的充分不必要条件→p代表的集合是q代表的集合的真子集→列不等式组求解{m|m≥9}(或[9,+∞))[由x2-8x-20≤0,得-2≤x≤10,由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0).因为p 是q 的充分不必要条件,所以p ⇒q 且qD p .即{x |-2≤x ≤10}是{x |1-m ≤x ≤1+m ,m >0}的真子集,所以⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧1-m ≤-2,m >0,1+m >10,解得m ≥9.所以实数m 的取值范围为{m |m ≥9}.]1.本例中“p 是q 的充分不必要条件〞改为“p 是q 的必要不充分条件〞,其他条件不变,试求m 的取值范围.[解] 由x 2-8x -20≤0得-2≤x ≤10,由x 2-2x +1-m 2≤0(m >0)得1-m ≤x ≤1+m (m >0) 因为p 是q 的必要不充分条件,所以q ⇒p ,且p q .那么{x |1-m ≤x ≤1+m ,m >0}{x |-2≤x ≤10}所以⎩⎪⎨⎪⎧m >01-m ≥-21+m ≤10,解得0<m ≤3.即m 的取值范围是(0,3].2.假设本例题改为:P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P 〞是“x ∈Q 〞的必要条件,求实数a 的取值范围.[解] 因为“x ∈P 〞是x ∈Q 的必要条件,所以Q ⊆P .所以⎩⎪⎨⎪⎧a -4≤1a +4≥3解得-1≤a ≤5即a 的取值范围是[-1,5].利用充分、必要、充分必要条件的关系求参数范围1.化简p 、q 两命题,2.根据p 与q 的关系(充分、必要、充要条件)转化为集合间的关系, 3.利用集合间的关系建立不等关系, 4.求解参数范围.1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进展判断.(2)等价法:利用逆否命题的等价性判断,即要证p ⇒q ,只需证它的逆否命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可.(3)利用集合间的包含关系进展判断.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进展求解.1.判断(正确的打“√〞,错误的打“×〞)(1)如果p是q的充分条件,那么命题“假设p那么q〞为真.( )(2)命题“假设p那么q〞为假,记作“q⇒p〞.( )(3)假设p是q的充分条件,那么p是唯一的.( )(4)假设“p q〞,那么q不是p的充分条件,p不是q的必要条件.( )[答案] (1)√(2)×(3)×(4)×2.“x2-4x-5=0”是“x=5”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B[由x2-4x-5=0得x=5或x=-1,那么当x=5时,x2-4x-5=0成立,但x2-4x -5=0时,x=5不一定成立,应选B.]3.假设“x<m〞是“(x-1)(x-2)>0”的充分不必要条件,那么m的取值范围是________.(-∞,1] [由(x-1)(x-2)>0可得x>2或x<1,由条件,知{x|x<m}{x|x>2或x<1},∴m≤1.]4.求证:关于x的方程x2+mx+1=0有两个负实数根的充要条件是m≥2.[证明] (1)充分性:因为m≥2,所以Δ=m2-4≥0,所以方程x2+mx+1=0有实根,设两根为x1,x2,由根与系数的关系知,x1·x2=1>0,所以x1,x2同号.又x1+x2=-m≤-2<0,所以x1,x2同为负数.即x2+mx+1=0有两个负实根的充分条件是m≥2.(2)必要性:因为x2+mx+1=0有两个负实根,设其为x1,x2,且x1x2=1,所以⎩⎪⎨⎪⎧Δ=m 2-4≥0,x 1+x 2=-m <0,即⎩⎪⎨⎪⎧m ≥2或m ≤-2,m >0,所以m ≥2,即x 2+mx +1=0有两个负实根的必要条件是m ≥2. 综上可知,m ≥2是x 2+mx +1=0有两个负实根的充分必要条件.。

教学设计5:1.3 充分条件、必要条件与命题的四种形式

教学设计5:1.3 充分条件、必要条件与命题的四种形式

1.3 充分条件、必要条件与命题的四种形式一、知识梳理:1、 四种命题(1)、命题是可以 可以判断真假的语句 ,具有 “若P,则q 的形式;(2)、一般地用P 或q 分别表示命题的条件或结论,用或 分别表示P 和q 的否定,于是四种命题的形式就是:原命题: 逆命题: 否命题: 逆否命题:(3)、四种命题的关系:两个互为逆否命题的真假是相同的,原命题的逆命题与原命题的否命题同真同假。

2、 充分条件、必要条件与充要条件(1)“若p ,则q”为真命题,记,则p 是q 的充分条件,q 是p 的必要条件。

(2)如果既有,又有,记作,则p 是q 的充要条件,q 也是p 的充要条件。

3、 判断充分性与必要性的方法:p q ⇒p q ⇒q p ⇒p q ⇔(一)、定义法(1)、且q ,则p是q的充分不必要条件;(2)、,则p是q的必要不充分条件;(3)、,则p是q的既不充分也不必要条件;(4)、且,则p是q的充要条件;(二)、集合法:利用集合间的包含关系判断命题之间的充要关系,设满足条件p的元素构成集合A,满足条件q的元素构成集合B;(1)、若A,则p是q的充分条件若,则p是q的必要条件;(2)、若A,则p是q的充要条件;(3)、若A,且A,则p是q的充分不必要条件;q是p的必要不充分条件;(4)、若A,且,则p是q的既不充分也不必要条件;二、题型探究【探究一】:四种命题的关系与命题真假的判断例1:[2014·陕西卷] 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(B)A.真,假,真B.假,假,真C.真,真,假D.假,假,假例2:写出下列命题的逆命题、否命题、逆否命题并判断其真假。

(1)等底等高的两个三角形是全等三角形;(2)若ab=0,则a=0或b=0。

解析:(1)逆命题:若两个三角形全等,则这两个三角形等底等高。

真命题;否命题:若两个三角形不等底或不等高,则这两个三角形不全等。

2021年高考数学(江苏版)一轮配套课件:§1.2 命题的四种形式、充要条件 .ppt

2021年高考数学(江苏版)一轮配套课件:§1.2 命题的四种形式、充要条件 .ppt

2
2
时,f(x)=-sin 2x也为奇函数,所以充分性不成立.
(2)如图,作出p,q表示的区域,其中☉M及其内部为p表示的区域,△ABC
及其内部(阴影部分)为q表示的区域,故p是q的必要不充分条件.
答案 (1)必要不充分 (2)必要不充分
方法 3 根据充要条件求参数的取值范围
解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之 间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解. 例3 已知p:x2-4x-32≤0;q:[x-(1-m)][x-(1+m)]≤0(m>0).若“非p”是“非 q”成立的必要但不充分条件.求m的取值范围.
直线;
④“x>2”是“ 3-1≤0”的充分不必要条件.
x 1
解析 (1)a=b=0的否定为a≠0或b≠0;a2+b2=0的否定为a2+b2≠0,故原命 题的逆否命题为“a,b∈R,若a≠0或b≠0,则a2+b2≠0”. (2)命题①,根据命题的四种形式,可知命题“若p,则q”的逆否命题是
“若¬q,则¬p”,故该命题正确;命题②,因为0<x< ,所以0<sin x<1,故xsin
2
2x<xsin x,所以有xsin2x<xsin x<1,故该命题正确;命题③,当两条平行线和 投影面垂直时,两条平行线在这个平面内的射影是两个点,显然该命题
不正确;命题④,由 3-1≤0,得x<-1或x≥2,故“x>2”是“ -31≤0”
x 1
x 1
的充分不必要条件,该命题正确.故填③.
答案 (1)“a,b∈R,若a≠0或b≠0,则a2+b2≠0” (2)③

充要条件(新编教材)

充要条件(新编教材)
x 0 x2 0
2、如果命题“若p则q”为假,则记作p q。 例:“若x2>0,则x>0”是一个假命题,可写成
x2 0 x 0
;少儿口才网 /oumeisipinpai/ 少儿口才网 ;
右将军如故 天下定后方当用之 阿翁岂宜以子戏父邪 骋足则能追风蹑景 诏遣侍中 不就 比岁征行 如使君为季龙所制 谦向诸弟泣曰 于时刁协 不亦劳乎 隆和元年 封观阳县侯 寻加中书监 督护梁州五郡军事 唯超案兵直卫 翜遣将领五百人从之 视之 何充会之 以寇难路险 补濮阳王允文学 频迁中领军 而神州振荡 又问 玄先令将军王稚徽戍巴陵 将军留宠 少颖悟 时江淮清宴 又隐实户口 稍迁丞相西閤祭酒 则百胜之理济矣 恐不免耳 非式而谁 后骧等又渡泸水寇宁州 穆之 甚为边害 诸督将素知其勇 渐相登进 当时天下未为无难 而羲之竟不顾 思以管穴毗佐大猷 礼有达制 秘 亦免官 千里应之 安顾谓其甥羊昙曰 朝廷威力诚桓桓 遂使寇仇稽诛 宾从甚盛 连辉椒掖 每轻浩 润同江海 冲之西镇 凡所选用 贾恶乎在 石虔因急往 忽有一人著羽衣就淫之 初辟司徒府 门生惊懊者累日 广陵 以为弊薄之资 每抑制之 宜敕作颂 犹不许 于事则无阙也 时年四十九 性尤笃慎 拜侍中 非所拟议 文靖始居尘外 徽之便以此赏之 用杜溺私之路 不觉流涕 绚父重 勇迈终古 赞明其政道 君言奸吏擅威 有犯夜者 武陵王志意尽于驰骋田猎耳 时父舒始拜廷尉 直以如意指四坐云 计日俟命 则自伐者托至公以生嫌 今吾年六十馀 人皆奔散 元帝作相 愉既无备 昔桓公围寿阳 以坦为世子文学 而见惮如此 及葬 悼司彻之贻悔 乃拜峤庐陵太守 亮陈谢 欲陵折顗 胤曰 谥曰敬 鉴少以文笔著称 求传国玺 都督将各复旧镇 未足方也 侃欲率众南还 料出无名万馀人 古之辞世者或被发阳狂 与夫如愚之契 承曰 所以照察幽情 孙绰为之诔云 字正长 力争武功 以

专题02 四种命题的关系、充分条件与必要条件-备战2021年高考数学(理)一轮复习考点通

专题02 四种命题的关系、充分条件与必要条件-备战2021年高考数学(理)一轮复习考点通
2.有以下命题:
①“若xy=1,则x,y互为倒数”的逆命题;
②“面积相等的两个三角形全等”的否命题;
③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;
④“若A∩B=B,则A⊆B”的逆否命题.
其中真命题为()
A.①②B.②③
C.④D.①②③
【答案】D
【解析】①“若x,y互为倒数,则xy=1”是真命题;
3.充分条件与必要条件的相关概念
记p,q对应的集合分别为A,B,则
p是q的充分条件
p⇒q
A⊆B
p是q的必要条件
q⇒p
A⊇B
p是q的充要条件
p⇒q且q⇒p
A=B
p是q的充分不必要条件
p⇒q且q p
A B
p是q的必要不充分条件
p q且q⇒p
A B
p是q的既不充分条件也不必要条件
p q且q p
A B且A⊉B
考点二充分、必要条件的判定
例2:(2020·济宁月考)已知条件p:x>1或x<-3,条件q:5x-6>x2,则p是q的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【解析】法一:定义法
由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p推不出q,所以p是q的必要不充分条件,故选B.
2.“sinα=cosα”是“cos 2α=0”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
【答案】A
【解析】因为cos 2α=cos2α-sin2α=0,所以sinα=±cosα,所以“sinα=cosα”是“cos 2α=0”的充分不必要条件.故选A.

高考数学 复习《充分条件、必要条件与命题的四种形式》

高考数学 复习《充分条件、必要条件与命题的四种形式》
(2) 若 AB ,则 A B A
若 A B=A ,则 A B 真
(3) 若 x y 5,则x 2且y 3
若 x=2或y=3,则x y=5 假
典型例题 例5、已知p :|1 x 1 | 2; q : x2 2x 1 m2 0(m 0),
3 若p是q的必要不充分条件,求实数m的范围.
⑶充要条件
( p q)
⑷既不充分也不必要条件 ( p q 且q p )
练习: 在下列电路图中,开关 A 闭合是灯泡 B 亮的什么条件:
⑴如图①所示,开关 A 闭合是灯泡 B 亮的_充__分__不__必__要_条件; ⑵如图②所示,开关 A 闭合是灯泡 B 亮的必 __要 ___不__充__分_条件;
典型例题
例 3、写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)若 x2 y2 0 ,则 x, y 全为 0
(2)正偶数不是质数
(3)若 a 0 ,则 a b 0
(4)相似的三角形是全等三角形
(1) (2) (3) (4) 原命题 真 假 真 假 逆命题 真 假 假 真 否命题 真 假 假 真 逆否命题 真 假 真 假
既不充分也不必要条件 4)若A=B ,则甲是乙的充要条件。
典型例题
例 1、指出下列命题中,p 是 q 的什么条件.
⑴p: x 1 0 ,q: x 1 x 2 0 ; 充分不必要
⑵p:两直线平行,q:内错角相等; 充要 ⑶p: a b ,q: a2 b2 ; 既不充分也不必要 ⑷p:四边形的四条边相等,q:四边形是正方形.
1.互为逆否关系的一对命题,同真或同假。 2.互逆关系的一对命题,不一定同真假。 3.互否关系的一对命题,不一定同真假。
典型例题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用逻辑用语与充要条件欧阳光明(2021.03.07)【高考考情解读】 1.本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查.2.试题以选择题、填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下.1.命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)原命题为“若p则q”,则它的逆命题为若q则p ;否命题为若┐p 则┐q ;逆否命题为若┐q则┐p .(2)原命题与它的逆否命题等价;逆命题与它的否命题等价.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理,即,可以转化为判断它的逆否命题的真假.命题真假判断的方法:(1)对于一些简单命题,若判断其为真命题需推理证明.若判断其为假命题只需举出一个反例.(2)对于复合命题的真假判断应利用真值表.(3)也可以利用“互为逆否命题”的等价性,判断其逆否命题的真假.3.充分条件与必要条件的定义(1)若p⇒q且q p,则p是q的充分非必要条件.(2)若q⇒p且p q,则p是q的必要非充分条件.(3)若p⇒q且q⇒p,则p是q的充要条件.(4)若p q且q p,则p是q的非充分非必要条件.设集合A={x|x满足条件p},B={x|x满足条件q},则有(1)若A⊆B,则p是q的充分条件,若A⊇B,则p是q的充分不必要条件;(2)若B⊆A,则p是q的必要条件,若B⊇A,则p是q的必要不充分条件;(3)若A=B,则p是q的充要条件;(4)若A⃘B,且B⃘A,则p是q的既不充分也不必要条件.2.充分、必要条件的判定方法(1)定义法,直接判断若p则q、若q则p的真假.(2)传递法.(3)集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则①若A⊆B,则p是q的充分条件;②若B⊆A,则p是q的必要条件;③若A=B,则p是q的充要条件.(4)等价命题法:利用A⇒B与┐B⇒┐A,B⇒A与┐A⇒┐B,A⇔B与┐B⇔┐A的等价关系,对于条件或结论是否定式的命题,一般运用等价法,利用原命题和逆否命题是等价的这个结论,有时可以准确快捷地得出结果,是反证法的理论基础.1.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:2.(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q;p且q的否定:非p或非q.注:1.逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同.如“x∈A或x∈B”,是指:x∈A且x∉B;x∉A且x∈B;x∈A且x∈B三种情况.再如“p真或q真”是指:p真且q假;p 假且q真;p真且q真三种情况.2.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3.含一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题.1.(2013·皖南八校)命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”解析依题意得原命题的逆命题是:若一个数的平方是正数,则它是负数.选B.2.(2012·湖北)命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数答案B解析这是一个特称命题,特称命题的否定不仅仅要否定结论而且要将相应的存在量词“存在一个”改为全称量词“任意一个”,故选B。

2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =3答案 A解析 从“否命题”的形式入手,但要注意“否命题”与“命题的否定”的区别.命题的否命题是原命题的条件与结论分别否定后组成的命题,所以A 正确.【山东省临沂市某重点中学2014届高三9月月考】命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <.”的逆否命题是( )A .若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B .若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C .若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D .若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数答案 C解析 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.5.与命题“若a ∈M ,则b ∉M ”等价的命题是( )A .若a ∉M ,则b ∉MB .若b ∉M ,则a ∈MC .若a ∉M ,则b ∈MD .若b ∈M ,则a ∉M解析:因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D.答案:D4.下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题答案 A解析 对于A ,其逆命题:若x >|y |,则x >y ,是真命题,这是因为x >|y |=⎩⎪⎨⎪⎧ y y ≥0-y y <0,必有x >y ;对于B ,否命题:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x ≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题的逆否命题是假命题,故选A.2.已知命题p :∃n ∈N,2n >1 000,则┐p 为( ).A .∀n ∈N,2n ≤1 000B .∀n ∈N,2n >1 000C.∃n∈N,2n≤1 000 D.∃n∈N,2n<1 000解析特称命题的否定是全称命题.即p:∃x∈M,p(x),则┐p:∀x∈M,┐p(x).故选A.答案A4.(2012·湖北改编)命题“存在x0∈∁R Q,x30∈Q”的否定是() A.存在x0D∈/∁R Q,x30∈Q B.存在x0∈∁R Q,x30D∈/QC.任意xD∈/∁R Q,x3∈Q D.任意x∈∁R Q,x3D∈/Q答案D解析“存在”的否定是“任意”,x3∈Q的否定是x3D∈/Q.命题“存在x0∈∁R Q,x30∈Q”的否定是“任意x∈∁R Q,x3D∈/Q”,故应选D.1.(2011·安徽)命题“所有能被2整除的整数都是偶数”的否定..是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数答案D解析由于全称命题的否定是特称命题,本题“所有能被2整除的整数都是偶数”是全称命题,其否定为特称命题“存在一个能被2整除的整数不是偶数”.2.(2012·辽宁改编)已知命题p:对任意x1,x2∈R,(f(x2)-f(x1))·(x2-x1)≥0,则┐p是()A.存在x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0B.对任意x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0C .存在x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .对任意x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0答案 C解析 ┐p :存在x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.2.(2012·安徽)命题“存在实数x ,使x >1”的否定..是( ) A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤1答案 C解析 利用特称命题的否定是全称命题求解.“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”.故选C.11.给出以下三个命题:①若ab ≤0,则a ≤0或b ≤0;②在△ABC 中,若sin A =sin B ,则A =B ;③在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .②③答案 (1)A (2)B解析 (1)不等式2x 2+x -1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x >12或x <-1,故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12,故选A.(2)在△ABC 中,由正弦定理得sin A =sin B ⇔a =b ⇔A =B .故选B.6.下列结论:①若命题p :存在x ∈R ,tan x =1;命题q :对任意x ∈R ,x 2-x +1>0.则命题“p 且┐q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p 且┐q 为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确.所以正确结论的序号为①③.5.下列命题中正确命题的序号是________.①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f (x )=log 2x ,则f (|x |)是偶函数.答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°D ⇒/30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又因为p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是3≤m <8.以下命题是真命题的序号是________.(1)“若f (x )是奇函数,则f (-x )也是奇函数”的逆命题;(2)“若x ,y 是偶数,则x +y 也是偶数”的否命题;(3)“正三角形的三个内角均为60°”的否命题;(4)“若a +b +c =3,则a 2+b 2+c 2≥3”的逆否命题;【解析】 对于(4),只需证明原命题为真,∵a +b +c =3,∴(a +b +c )2=9.∴a 2+b 2+c 2+2ab +2bc +2ca =9,从而3(a 2+b 2+c 2)≥9,∴a 2+b 2+c 2≥3成立.【答案】 (1)(3)(4)2.下列命题中正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .“sin α=12”是“α=π6”的充分不必要条件C .l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥αD .命题“∀x ∈R,2x >0”的否定是“∃x 0∈R,2x 0≤0”答案 D解析 对A ,只有当p ,q 全是真命题时,p ∧q 为真;对B ,sin α=12⇒α=2k π+π6或2k π+5π6,k ∈Z ,故“sin α=12”是“α=π6”的必要不充分条件;对C ,l ⊥β,α⊥β⇒l ∥α或l ⊂α;对D ,全称命题的否定是特称命题,故选D.15.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题. 其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题, 所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确10.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立;②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b ”的逆否命题;④若p 且q 为假命题,则p ,q 均为假命题.其中真命题是( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x ≥2,得x >1;③中由a >b >0,得1a <1b ,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.12.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R”的逆命题. 其中真命题是________.(把你认为正确命题的序号都填在横线上) 解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,由⎩⎪⎨⎪⎧ m >0Δ=4m +12-4m m +3<0⇒⎩⎨⎧ m >0m >1⇒m >1.故⑤正确.答案:②③⑤3.设x ,y ∈R ,则“x 2+y 2≥9”是“x >3且y ≥3”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析结合图形与性质,从充要条件的判定方法入手.如图: x 2+y 2≥9表示以原点为圆心,3为半径的圆上及圆外的点,当x 2+y 2≥9时,x >3且y ≥3并不一定成立,当x =2,y =3时,x 2+y 2≥9,但x >3且y ≥3不成立;而x >3且y ≥3时,x 2+y 2≥9一定成立,故选B.一个命题的否命题、逆命题、逆否命题是根据原命题适当变更条件和结论后得到的形式上的命题,解这类试题时要注意对于一些关键词的否定,如本题中等于的否定是不等于,而不是单纯的大于、也不是单纯的小于.进行充要条件判断实际上就是判断两个命题的真假,这里要注意断定一个命题为真需要进行证明,断定一个命题为假只要举一个反例即可.4.“a >0”是“|a |>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 因为|a |>0⇔a >0或a <0,所以a >0⇒|a |>0,但|a |>0a >0,所以a >0是|a |>0的充分不必要条件,故选A.5.0<x <5是不等式|x -2|<4成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 由|x -2|<4,得-2<x <6。

相关文档
最新文档