高考全国卷1理科数学试题及答案

合集下载

2019年高考全国卷1理科数学试题及参考答案

2019年高考全国卷1理科数学试题及参考答案

2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}42M x x =-<<,{}260N x x x =--<,则M N =A .{}43x x -<<B .{}42x x -<<-C .{}22x x -<<D .{}23x x <<2.设复数z 满足1z i -=,z 在复平面内对应的点为(),x y ,则 A .()2211x y ++= B .()2211x y -+=C .()2211x y +-=D .()2211x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12。

若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165cmB .175cmC .185cmD .190cm5.函数()2sin cos x xf x x x +=+在[],ππ-的图象大致为6.我国古代典籍《周易》用“卦”描述万物的变化。

每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,右图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 A .516B .1132C .2132D .11167.已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为() A .6π B .3π C .23π D .56π 8.右图是求112122++的程序框图,图中空白框中应填入A .12A A =+ B .12A A=+ C .112A A =+D .112A A=+9.记n S 为等差数列{}n a 的前n 项和,已知4=0S ,55a =,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-10.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y +=D .22154x y += 11.关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 ③()f x 在[],ππ-有4个零点④()f x 的最大值为2 A .①②④B .②④C.①④D .①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为A .B .C .D二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学全国卷1(附答案与解析)

2020年高考理科数学全国卷1(附答案与解析)

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学本试卷共6页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码黏贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷,草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷,草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1i z =+,则22z z -=( )A .0B .1C .2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =( )A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+D .512+4.已知A 为抛物线()2:20C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()()1220i i x y i =,,,…,得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数()432f x x x =-的图像在点()()11f ,处的切线方程为( )A .21y x =--B .21y x =-+毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无------------------效----------------C .23y x =-D .21y x =+7.设函数()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭在[]ππ-,的图像大致如下图,则()f x 的最小正周期为( )A .10π9B .7π6 C .4π3 D .3π28.()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中33x y 的系数为( )A .5B .10C .15D .20 9.已知()0πα∈,,且3cos28cos 5αα-=,则sin α= ( )A .53B .23C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.已知⊙22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 12.若242log 42log aba b +=+则( )A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件2201010x y x y y +-⎧⎪--⎨⎪+⎩≤,≥,≥,则7z x y =+的最大值为 .14.设a ,b 为单位向量,且1+=a b ,则-=a b .15.已知F 为双曲线()2222:100x y C a b a b-=>,>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为 .16.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=,则cos FCB ∠= .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA PBC ⊥平面; (2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知A ,B 分别为椭圆E :()22211x y a a+=>的左、右顶点,G 为E 上顶点,8AG GB ⋅=.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x +≥,求a 的取值范围.(二)选考题:共10分,请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为()cos sin kkx t t y t⎧=⎪⎨=⎪⎩,为参数,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4—5:不等式选讲](10分) 已知函数()3121f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()()1f x f x +>的解集.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答------------------题------------------无------------------效----------------2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学答案解析一、选择题 1.【答案】D【解析】由题意首先求得22z z -的值,然后计算其模即可.由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D .【考点】复数的运算法则,复数的模的求解 2.【答案】B【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的 值.求解二次不等式240x -≤可得:{}22A x x =-≤≤,求解一次不等式20x a +≤可得:2a B x x ⎧⎫=-⎨⎬⎩⎭≤.由于{}21AB x x =-≤≤,故:12a-=,解得:2a =-.故选:B .【考点】交集的运算,不等式的解法 3.【答案】C【解析】设CD a =,PE b =,利用212PO CD PE =⋅得到关于a ,b 的方程,解方程即可得到答案.如图,设CD a =,PE b =,则PO ==212PO ab =,即22142a b ab -=,化简得24210b b a a ⎛⎫-⋅-= ⎪⎝⎭,解得14b a +=(负值舍去). 故选:C .【考点】正四棱锥的概念及其有关计算 4.【答案】C【解析】利用抛物线的定义建立方程即可得到答案. 设抛物线的焦点为F ,由抛物线的定义知122A p AF x =+=,即1292p=+,解得6p =. 故选:C .【考点】利用抛物线的定义计算焦半径 5.【答案】D【解析】根据散点图的分布可选择合适的函数模型.由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D .【考点】函数模型的选择,散点图的分布6.【答案】B【解析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简 即可.()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B .【考点】利用导数求解函图象的切线方程7.【答案】C【解析】由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即 可得解.由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭. 又409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=.所以函数()f x 的最小正周期为224332T πππω===. 故选:C .【考点】三角函数的性质及转化,三角函数周期公式 8.【答案】C【解析】求得()5x y +展开式的通项公式为515r r rr T C x y -+=(r ∈N 且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与()5x y + 展开式的乘积为65rrrC xy -或425r rr C xy-+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.()5x y + 展开式的通项公式为515rrrr T C xy -+=(r ∈N 且5r ≤).所以2y x x ⎛⎫+ ⎪⎝⎭与()5x y +展开式的乘积可表示为:56155rrrr rrr xT xC x y C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项 中33x y 的系数为5.所以33x y 的系数为10515+=. 故选:C【考点】二项式定理及其展开式的通项公式,赋值法 9.【答案】A【解析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0)απ∈,,sin α∴==. 故选:A .【考点】三角恒等变换,同角间的三角函数关系求值 10.【答案】A【解析】由已知可得等边ABC △的外接圆半径,进而求出其边长,得出1OO 的值,根据球截面性质,求出 球的半径,即可得出结论.设圆1O 半径为r ,球的半径为R ,依题意,得24r ππ=,2r ∴=,由正弦定理可得2sin 6023AB r ==,1OO AB ∴==,根据圆截面性质1OO ABC ⊥平面,11OO O A ∴⊥,4R OA =,∴球O 的表面积2464S R ππ==.故选:A .【考点】球的表面积,应用球的截面性质11.【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点A ,P ,B ,M 共圆,且AB MP ⊥,根据22PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==,所以直线l 与圆相离.依圆的知识可知,四点A ,P ,B ,M 四点共圆,且AB MP ⊥, 所以12222PAMPM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA =,当直线MP l ⊥时,min MP =min 1PA =,此时PM AB ⋅最小.()1:112MP y x ∴-=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【考点】直线与圆,圆与圆的位置关系的应用,圆的几何性质的应用 12.【答案】B【解析】设()22log x f x x =+,利用作差法结合()f x 的单调性即可得到答案. 设()22log xf x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+,所以()()()()22222222122log 2log 22log 2log 2log 102a b b b f a f b a b b b -=+-+=+-+==-<,所以()()2f a f b <,所以2a b <.()()()()22222222222222log 2log 2log 2log 22log a b b b b b f a f b a b b b b-=+-+=+-+=--,当1b =时,()()220f a f b -=>,此时()()2f a f b >,有2a b >.当2b =时,()()210f a f b -=-<,此时()()2f a f b <,有2a b <,所以C 、D 错误. 故选:B .【考点】函数与方程的综合应用,构造函数,利用函数的单调性比较大小二、填空题 13.【答案】1【解析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 绘制不等式组表示的平面区域,如图所示,目标函数7z x y =+即:1177y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点 A 的坐标为:()10A ,,据此可知目标函数的最大值为:max 1701z =+⨯=.故答案为:1. 14.【解析】整理已知可得:()2a b a b +=+,再利用a ,b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.因为a ,b 为单位向量,所以1a b ==,所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=.解得:21a b ⋅=-. 所以()22223a b a b a a b b -=-=-⋅+=.【考点】向量模的计算公式及转化 15.【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.依题可得,3BF AF =,而2bBF a =,AF c a =-,即23ba c a=-,变形得22233c a ac a -=-,化简可得, 2320e e -+=,解得2e =或1e =(舍去).故答案为:2. 【考点】双曲线的离心率的求法,双曲线的几何性质的应用 16.【答案】14-【解析】在ACE △中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.AB AC ⊥,AB 1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF△中,2BC =,BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【考点】利用余弦定理解三角形 三、解答题17.【答案】(1)2-(2)()()11329nn n S -+-=【解析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论.设{}n a 的公比为q ,1a 为2a ,3a 的等差中项,1232a a a =+,10a ≠,220q q ∴+-=,1q ≠,2q ∴=-.(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.设{}n na 的前n 项和为n S ,11a =,()12n n a -=-,()()()211122322n n S n -=⨯+⨯-+⨯-++-,①()()()()()()2312122232122n nn S n n --=⨯-+⨯-+⨯-+--+-,②-①②得,()()()()()()()()()211211323122222123nnn nnn n S n n ----+-=+-+-++---=--=--,()()11329nn n S -+-∴=.【考点】等比数列通项公式基本量的计算,等差中项的性质,错位相减法求和 18.【答案】(1)证明:由题设,知DAE △为等边三角形,设1AE =,则DO =,112CO BO AE ===,所以PO =,PC =,PB ==又ABC △为等边三角形,则2sin60BA OA=,所以BA =22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PAPC ⊥,又PC PB P =,所以PA PBC ⊥平面.(2)5【解析】(1)要证明PA PBC ⊥平面,只需证明PA PB ⊥,PA PC ⊥即可. 由题设,知DAE △为等边三角形, 设1AE =,则DO =,1122CO BO AE ===,所以PO=,4PC ==, 4PB ==,又ABC △为等边三角形,则2sin60BA OA =,所以2BA =,22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PA PC ⊥,又PCPB P =,所以PA PBC ⊥平面. (2)以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的法向量为n ,平面PCE 的法向量为m ,利用公式cos m <,||||n mn n m ⋅=>计算即可得到答案.过O 作ON BC ∥交AB 于点N ,因为PO ABC ⊥平面,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则1002E ⎛⎫- ⎪⎝⎭,,,004P ⎛⎫ ⎪⎪⎝⎭,,,104B ⎛⎫- ⎪⎪⎝⎭,104C ⎛⎫- ⎪⎪⎝⎭,,14PC ⎛=- ⎝⎭,,14PB ⎛=-⎝⎭,102PE ⎛=- ⎝⎭,,,设平面PCB 的一个法向量为()111n x y z =,,,由0n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,得1111110x x ⎧--=⎪⎨-+-=⎪⎩,令1x =得11z =-,10y =,所以()201n =-,,,设平面PCE 的一个法向量为()222m x y z =,,由00m PC m PE ⎧⋅=⎪⎨⋅=⎪⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得2z =2y=,所以 313m ⎛= ⎝,故cos m <,2||||3n m n n m ⋅==⋅⨯,设二面角22143x y +=的大小为θ,则cos θ. 【考点】线面垂直的证明,利用向量求二面角的大小 19.【答案】(1)116(2)34(3)716【解析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率.记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭.(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=.(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=.【考点】独立事件概率的计算20.【答案】(1)2219x y +=(2)证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,.∴直线CD 的方程为: 0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得: ()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭.整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭.故直线CD 过定点302⎛⎫⎪⎝⎭,. 【解析】(1)由已知可得:()0A a -,,()0B a ,,()01G ,,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.依据题意作出如下图象:由椭圆方程()222:11x E y a a +=>可得:()0A a -,,()0B a ,,()01G ,.∴()1AG a =,,()1GB a =-,.∴218AG GB a ⋅=-=,∴29a =.∴椭圆方程为:2219x y +=.(2)设()06P y ,,可得直线AP 的方程为:()039yy x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,,同理可得点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,,即可表示出直线CD 的方程, 整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证. 证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810yx y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,. ∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭. 故直线CD 过定点302⎛⎫ ⎪⎝⎭,. 【考点】椭圆的简单性质,方程思想21.【答案】(1)当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)274e ⎡⎫-+∞⎪⎢⎣⎭, 【解析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)首先讨论0x =的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确 定实数a 的取值范围.由()3112f x x +≥得,23112x e ax x x +-+,其中0x ≥,①当0x =时,不等式为:11≥,显然成立,符合题意;②当0x >时,分离参数a 得,32112x e x x a x----, 记()32112x e x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-,令()()21102x e x x h x x ---=≥,则()'1x h x e x =--,()''10x h x e =-≥,故()'h x 单调递增,()()''00h x h =≥,故函数()h x 单调递增,()()00h x h =≥,由()0h x ≥可得:21102x e x x ---恒成立,故当()02x ∈,时,()'0g x >,()g x 单调递增; 当()2x ∈+∞,时,()'0g x <,()g x 单调递减;因此,()()2max724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是274e ⎡⎫-+∞⎪⎢⎣⎭,. 【考点】导数的几何意义,解析几何,微积分,用导数求函数的单调区间,判断单调性,已知单调性求参数,利用导数求函数的最值(极值),数形结合思想的应用 22.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆(2)1144⎛⎫⎪⎝⎭,【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论.当1k =时,曲线1C 的参数方程为cos sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,0x ≥,0y ≥,曲线1C 的参数方程化为22cos sin tt(t 为参数),两式相加消去参数t ,得1C 普通方程,由cos x ρθ=,sin y ρθ=,将曲线2C 化为直角坐标方程,联立1C ,2C 方程,即可求解.当4k =时,曲线1C 的参数方程为44cos sin x ty t⎧=⎨=⎩(t 为参数),所以数学试卷 第21页(共22页) 数学试卷 第22页(共22页)0x ≥,0y ≥,曲线1C的参数方程化为22cos sin tt(t 为参数),两式相加得曲线1C11,平方得1y x =-,01x ≤≤,01y ≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立1C ,2C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=136(舍去),14x ∴=,14y =,1C ∴,2C 公共点的直角坐标为1144⎛⎫⎪⎝⎭,.【考点】参数方程与普通方程互化,极坐标方程与直角坐标方程互化23.【答案】(1)因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)76⎛⎫-∞- ⎪⎝⎭, 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象.因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)作出函数()1f x +的图象,根据图象即可解出.将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式的解集为76⎛⎫-∞- ⎪⎝⎭,. 【考点】分段函数的图象,利用图象解不等式。

2022年高考全国卷1理科数学试题及参考答案

2022年高考全国卷1理科数学试题及参考答案

普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}42M x x =-<<,{}260N x x x =--<,则M N =A .{}43x x -<<B .{}42x x -<<-C .{}22x x -<<D .{}23x x <<2.设复数z 满足1z i -=,z 在复平面内对应的点为(),x y ,则A .()2211x y ++=B .()2211x y -+=C .()2211x y +-=D .()2211x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-。

若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165cmB .175cmC .185cmD .190cm5.函数()2sin cos x xf x x x+=+在[],ππ-的图象大致为6.我国古代典籍《周易》用“卦”描述万物的变化。

每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,右图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B .1132C .2132D .11167.已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为()A .6π B .3π C .23π D .56π 8.右图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+9.记n S 为等差数列{}n a 的前n 项和,已知4=0S ,55a =,则A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-10.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为A .2212x y += B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 ③()f x 在[],ππ-有4个零点④()f x 的最大值为2 A .①②④B .②④C .①④D .①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为A .86πB .46πC .26πD 6π二、填空题:本题共4小题,每小题5分,共20分。

2020年高考数学(理科)真题试卷(全国Ⅰ卷)

2020年高考数学(理科)真题试卷(全国Ⅰ卷)

2020高考数学(理科)真题试卷(全国Ⅰ卷)注意事项:1 .答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上 .2 .回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑 . 如需改动,用橡皮擦干净后,再选涂其他答案标号 . 回答非选择题时,将答案写在答题卡上。

写在本试卷上无效 .3 .考试结束后,将本试卷和答题卡一并交回 .一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的1.若z=1+ i,则|z 2–2 z|=(______)A.0B.1C.D.22.设集合 A={ x| x 2–4≤0}, B={ x|2 x+ a≤0},且 A∩ B={ x|–2≤ x≤1},则 a =(______) A.–4B.–2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为(______)A. B. C. D.4.已知 A为抛物线 C: y 2=2 px( p>0)上一点,点 A到 C的焦点的距离为12,到 y轴的距离为9,则 p=(______)A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率 y和温度 x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率 y和温度 x的回归方程类型的是(______)A.B.C.D.6.函数的图像在点处的切线方程为(______)A.B.C.D.7.设函数在的图像大致如下图,则 f( x)的最小正周期为(______)A.B. C. D.8.的展开式中 x 3y3的系数为(______)A.5B.10C.15D.209.已知,且,则(______)A.B.C.D.10.已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为(______)A.B.C.D.11.已知⊙ M:,直线:,为上的动点,过点作⊙ M 的切线,切点为,当最小时,直线的方程为(______)A.B.C.D.12.若,则(______)A.B.C.D.二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2001年高考数学(理科)真题及答案[全国卷I]

2001年高考数学(理科)真题及答案[全国卷I]

2001年全国普通高等学校招生全国统一考试数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点A(1,-1),B(-1,1)且园心在直线x+y-2=0上的圆珠笔的方程是 (A)(x-3)2+(y+1)2=4 (B)(x+3)2+(y-1)2=4 (C)(x-1)2+(y-1)2=4 (B)(x+1)2+(y+1)2=4(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6(4)若定义在区间(-1,0)内的函数f (x )= log 2a (x + 1)满足f (x )> 0,则 a 的取值范围是(A)(0,21) (B) (0,21] (C) (21,+∞) (D) (0,+∞)(5)极坐标方程)4sin 2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A) )20)(1arccos(≤≤--=x x y (B) )20)(1arccos(≤≤--=x x y π (C) )20)(1arccos(≤≤-=x x y (D) )20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为(A) 43(B) 32 (C) 21 (D) 41(8)若ba =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a <b (A)a >b(A)ab <1(D)ab >2(9)在正三棱柱ABC -A 1 B 1C 1中,若AB =2BB 1,则AB 与C 1B 所成的角的大小为(A)60°(B)90°(C)105°(D)75°(10)设f(x)、g(x)都是单调函数,有如下四个命题:①若f(x)单调速增,g(x)单调速增,则f(x)-g(x))单调递增;②若f(x)单调速增,g(x)单调速减,则f(x)-g(x))单调递增;③若f(x)单调速减,g(x)单调速增,则f(x)-g(x))单调递减;④若f(x)单调速减,g(x)单调速减,则f(x)-g(x))单调递减;其中,正确的命题是(A)①③(B)①④(C)②③(D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则(A)P3>P2>P1 (B) P3>P2=P1(C) P3=P2>P1(D) P3=P2=P1(12)如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A)26(B)24(C)20(D)19二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是_________.(14)双曲线116922=+yx的两个焦点为F1、F2,点P在双曲线上.若PF⊥PF2,则点P到x轴的距离为_________。

2021年高考理科数学全国新课标卷1(附答案)

2021年高考理科数学全国新课标卷1(附答案)

2021年高考理科数学全国新课标卷1(附答案)2021年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2021课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B2.(2021课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B.?A.500π3866π3cm B.cm 3344 C.4 D. 557.(2021课标全国Ⅰ,理7)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( ).A.3 B.4 C.5 D.68.(2021课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).3.(2021课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样x2y254.(2021课标全国Ⅰ,理4)已知双曲线C:2?2=1(a>0,b>0)的离心率为,则C的渐近线方程为( ).ab211A.y=?x B.y=?x341C.y=?x D.y=±x25.(2021课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.16+8π B.8+8π C.16+16π D.8+16π+9.(2021课标全国Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m1展开式的二项式系数的最大值为b.若13a=7b,则m=( ).A.5 B.6 C.7 D.8x2y210.(2021课标全国Ⅰ,理10)已知椭圆E:2?2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两ab点.若AB的中点坐标为(1,-1),则E的方程为( ).x2y2x2y2?=1 B.?=1 A.45363627x2y2x2y2?=1 D.?=1 C.2718189A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]6.(2021课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).??x2?2x,x?0,11.(2021课标全国Ⅰ,理11)已知函数f(x)=?若|f(x)|≥ax,则a的取值范围是( ).?ln(x?1),x?0.A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]12.(2021课标全国Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=A.{Sn}为递减数列cn?anb?an,cn+1=n,则( ). 22 第 1 页共 1 页B.{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2021课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b・c=0,则t=__________. 14.(2021课标全国Ⅰ,理14)若数列{an}的前n项和Sn?21an?,则{an}的通项公式是an=__________. 3315.(2021课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2021课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2021课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°.19.(2021课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质品相互独2(1)若PB=1,求PA; 2(2)若∠APB=150°,求tan∠PBA.18.(2021课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2021课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.第 2 页共 2 页21.(2021课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(2021课标全国Ⅰ,理22)(本小题满分10分)选修4―1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈???a1?,?时,f(x)≤g(x),求a的取值范围. ?22?(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.23.(2021课标全国Ⅰ,理23)(本小题满分10分)选修4―4:坐标系与参数方程?x?4?5cost,已知曲线C1的参数方程为?(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,y?5?5sint?曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2021课标全国Ⅰ,理24)(本小题满分10分)选修4―5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.第 3 页共 3 页感谢您的阅读,祝您生活愉快。

2020高考理数全国卷一 试题及答案解析

2020高考理数全国卷一 试题及答案解析

2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若1z i =+,则22z z -=A .0B .1C 2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514B .512-C .514D .512+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i = 得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x=+6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109πB .76πC .43πD .32π8.25()()y x x y x++的展开式中33x y 的系数为A .5B .10C .15D .209.已知(0,)απ∈,且3cos 28cos 5αα-=,则sin α=A .53B .23C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知22:2220M x y x y +---= ,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a b a b +=+,则A .2a b>B .2a b<C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.14.设,a b 为单位向量,且1+=a b ,则-=a b ________.15.已知F 为双曲线2222:1x y C a b -=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______.16.如图,在三棱锥P ABC -的平面展开图中1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,6PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅= .P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-.(1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.参考答案一、选择题1【答案】D .【解析】∵()()2221212z z i i -=+-+=-,∴2222z z -=-=,故选D .2.【答案】.B 【解析】{}240A x x =-≤{}22x x =-≤≤,{}20B x x a =+≤2a x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a-=,∴ 2.a =-故选.B 3.【答案】.C 【解析】如图,设金字塔对应的正四棱锥的高为h ,金字塔斜面上的高为'h ,金字塔底面边长为a ,则有22221'2'2h a h h h h ⎧=⋅⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩化简得22''4210h h a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,解得'14h a =.故选.C 4.【答案】.C 【解析】设点(),A x y ,由点A y 轴的距离为9得9x =,根据抛物线定义,由A 到C 的焦点的距离为12得122p x +=,即6122p+=,解得 6.p =故选.C 5.【答案】.D 【解析】由题中散点图可知,大致分布在一条递增的对数型函数图象附近,故选.D 6.【答案】.B 【解析】∵()32'46f x x x =-,∴()'12k f ==-,又∵()1121f =-=-,∴由点斜式方程可得所求切线方程为()()121y x --=--,即21y x =--.故选.B 7.【答案】.C 【解析】根据函数图象得409f π⎛⎫-= ⎪⎝⎭,∴4cos 096ππω⎛⎫-+= ⎪⎝⎭,∴()4962k k Z πππωπ-+=+∈,解得()394kk Z ω+=-∈,又∵22T T π<<,∴242πππωω<<,解得12ω<<,∴32ω=,∴最小正周期243T ππω==.故选.C 8.【答案】.C 【解析】∵()5x y +的通项为()5150,1,,5r r r r T C x y r -+== ,h 'h a∴1r =时,2143355y C x y x y x=;3r =时,32333510xC x y x y =.∴33x y 项的系数为51015+=.故选.C 9.【答案】.A 【解析】根据余弦倍角公式,3cos 28cos 5αα-=可化为23cos 4cos 40αα--=,解得cos 2α=(舍)或2cos 3α=-.∵()0,απ∈,∴sin 3α=.故选.A 10.【答案】.A 【解析】不妨设AB a =,1O 的半径为r ,球O 的半径为R ,依题意有24r ππ=,∴2r =,又1r O A ==,∴a =222114R OO O A =+=,∴球O 的表面积为2464R ππ=.故选.A 11.【答案】.D 【解析】M 方程化为标准方程得:()()22114x y -+-=,∵四边形PAMB 的面积112222PAM S PM AB S PA AM ∆⎛⎫=⋅==⨯ ⎪⎝⎭2PA ==∴当且仅当PM 最小时AB PM ⋅最小,此时PM l ⊥,又∵:220l x y ++=,∴11:22PM y x =+,易得PM 与直线l 的交点坐标()1,0P -,∴过()1,0P -作M 的切线所得切点所在直线方程为210x y ++=,故选.D 12.【答案】.B 【解析】22422log 42log 2log a b b a b b +=+=+,∵2222222log 2log 221log b b b b b b +<+=++∴2222log 2log a b a b +<+,构造函数()22log x f x x =+,易知()f x 在()0,+∞单调递增,∴由()()2f a f b <得2a b <,故选.B 二、填空题13.【答案】1.【解析】如图,易知当直线7z x y =+经过直线220x y +-=与10x y --=的交点()1,0时,z 取最大值,max 1701z =+⨯=.14..xy10y +=220x y +-=10x y --=()1,0O【解析】∵()222221+=+=++⋅=a b a b a b a b ,∴12⋅=-a b ,∴()()22243-=-=+-⋅=a b a b a b a b,∴-=a b .15.【答案】2.【解析】由题意得()(),0,,0A a F c ,∵BF 为通径长的一半,∴2,b B c a ⎛⎫⎪⎝⎭,又()2213b b c a a k e c a a c a a+====+=--,∴离心率2e =.16.【答案】1.4-【解析】根据题意得BD ==,,D E F 三点重合,∴AE AD ==BF BD ==在ACE ∆中,由余弦定理得2222cos CE AC AE AC AE ACE=+-⋅⋅∠13211=+-⨯︒=∴1CE CF ==,在BCF ∆中,根据余弦定理得2221cos 24BC CF BF FCB BC CF +-∠==-⋅三、解答题17.解:(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q =+∴220q q +-=,解得1q =(舍去)或2q =-.∴{}n a 的公比为2-.(2)记n S 为{}n na 的前n 项和,由(1)及题设可知()12n n a -=-,∴()()11222n n S n -=+⨯-++⨯- ①()()()2222212nn S n -=-+⨯-++-⨯- ②由①②得()()()()21312222n nn S n -=+-+-++--⨯- ()()1223nnn --=-⨯-∴()()312199nn n S +-=-18.解:(1)设DO a =,由题设可得,,63PO a AO AB a ===,2PA PB PC ===,∴222PA PB AB +=,∴PA PB ⊥,又222PA PC AC +=,∴PA PC ⊥,∴PA ⊥平面PBC(2)以O 为坐标原点,OE方向为y 轴正方向,OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得()()10,1,0,0,1,0,22E A C ⎛⎫--⎪⎝⎭,0,0,2P ⎛ ⎝⎭,∴1,,0,0.1,222EC EP ⎛⎫⎛=--=- ⎪ ⎝⎭⎝⎭。

2019年全国统一高考数学试卷(理科)以及答案(全国1卷解析版)

2019年全国统一高考数学试卷(理科)以及答案(全国1卷解析版)

2019年全国统一高考数学试卷(理科)(全国1卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1 B.+=1C.+=1 D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高等学校招生全国统一考试理科数学注意事项:1.答卷前, 考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时, 选出每小题答案后, 用铅笔把答题卡对应题目的答案标号涂黑。

如需改动, 用橡皮擦干净后, 再选涂其它答案标号。

回答非选择题时, 将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后, 将本试卷和答题卡一并交回。

一、选择题:本题共12小题, 每小题5分, 共60分。

在每小题给出的四个选项中, 只有一项是符合题目要求的。

1.设1i2i 1iz -=++, 则||z = A .0 B .12C .1D .22.已知集合{}220A x x x =-->, 则A =R ð A .{}12x x -<< B .{}12x x -≤≤C .}{}{|1|2x x x x <->UD .}{}{|1|2x x x x ≤-≥U3.某地区经过一年的新农村建设, 农村的经济收入增加了一倍, 实现翻番, 为更好地了解该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后, 种植收入减少B .新农村建设后, 其他收入增加了一倍以上C .新农村建设后, 养殖收入增加了一倍D .新农村建设后, 养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和, 若3243S S S =+, 12a =, 则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+, 若()f x 为奇函数, 则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中, AD 为BC 边上的中线,E 为AD 的中点, 则EB =u u u rA .3144AB AC-u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r7.某圆柱的高为2, 底面周长为16, 其三视图如图.圆柱表面上的点M 在正视图上的对应点为A , 圆柱表面上的点N 在左视图上的对应点为B , 则在此圆柱侧面上, 从M 到N 的路径中, 最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F , 过点(–2, 0)且斜率为23的直线与C 交于M , N 两点, 则FM FN ⋅u u u u r u u u r=A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点, 则a 的取值范围是 A .[–1, 0)B .[0, +∞)C .[–1, +∞)D .[1, +∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成, 三个半圆的直径分别为直角三角形ABC 的斜边BC , 直角边AB , AC .△ABC 的三边所围成的区域记为I, 黑色部分记为II, 其余部分记为III .在整个图形中随机取一点, 此点取自I, II,III 的概率分别记为p 1, p 2, p 3, 则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=, O 为坐标原点, F 为C 的右焦点, 过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形, 则|MN |= A .32B .3C .3D .412.已知正方体的棱长为1, 每条棱所在直线与平面α所成的角相等, 则α截此正方体所得截面面积的最大值为 A 33B 23C 32D 3 二、填空题:本题共4小题, 每小题5分, 共20分。

13.若x , y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩, 则32z x y =+的最大值为_____________.14.记n S 为数列{}n a 的前n 项和, 若21n n S a =+, 则6S =_____________.15.从2位女生, 4位男生中选3人参加科技比赛, 且至少有1位女生入选, 则不同的选法共有_____________种.(用数字填写答案)16.已知函数()2sin sin2f x x x =+, 则()f x 的最小值是_____________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题, 每个试题考生都必须作答。

第22、23题为选考题, 考生根据要求作答。

(一)必考题:60分。

17.(12分)在平面四边形ABCD 中, 90ADC ∠=o , 45A ∠=o, 2AB =, 5BD =.(1)求cos ADB ∠;(2)若22DC =, 求BC .18.(12分)如图, 四边形ABCD 为正方形, ,E F 分别为,AD BC 的中点, 以DF 为折痕把DFC △折起, 使点C 到达点P 的位置, 且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.19.(12分)设椭圆22:12x C y +=的右焦点为F , 过F 的直线l 与C 交于,A B 两点, 点M 的坐标为(2,0).(1)当l 与x 轴垂直时, 求直线AM 的方程; (2)设O 为坐标原点, 证明:OMA OMB ∠=∠. 20.(12分)某工厂的某种产品成箱包装, 每箱200件, 每一箱产品在交付用户之前要对产品作检验, 如检验出不合格品, 则更换为合格品.检验时, 先从这箱产品中任取20件作检验, 再根据检验结果决定是否对余下的所有产品作检验, 设每件产品为不合格品的概率都为)10(<<p p , 且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件, 结果恰有2件不合格品, 以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元, 若有不合格品进入用户手中, 则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验, 这一箱产品的检验费用与赔偿费用的和记为X , 求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据, 是否该对这箱余下的所有产品作检验? 21.(12分)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x , 证明:()()12122f x f x a x x -<--.(二)选考题:共10分。

请考生在第22、23题中任选一题作答, 如果多做, 则按所做的第一题计分。

22.[选修4–4:坐标系与参数方程](10分)在直角坐标系xOy 中, 曲线1C 的方程为||2y k x =+.以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点, 求1C 的方程. 23.[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时, 求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立, 求a 的取值范围.普通高等学校招生全国统一考试理科数学参考答案:1 2 3 4 5 6 7 8 9 10 11 12 CBABDABDCABA13.6 14.63- 15.16 16.2- 17.(12分)解:(1)在ABD △中, 由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB=︒∠, 所以sin 5ADB ∠=.由题设知, 90ADB ∠<︒, 所以cos ADB ∠==(2)由题设及(1)知, cos sin BDC ADB ∠=∠=在BCD △中, 由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠25825=+-⨯⨯25=.所以5BC =. 18.(12分)解:(1)由已知可得, BF ⊥PF , BF ⊥EF , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF , 垂足为H .由(1)得, PH ⊥平面ABFD .以H 为坐标原点, HF u u u r 的方向为y 轴正方向, ||BF uuu r为单位长, 建立如图所示的空间直角坐标系H −xyz.由(1)可得, DE ⊥PE .又DP =2, DE =1, 所以PE 3又PF =1, EF =2, 故PE ⊥PF . 可得332PH EH ==. 则3333(0,0,0),),(1,,0),(1,22H P D DP --=u u u r 3HP =u u u r 为平面ABFD 的法向量. 设DP 与平面ABFD 所成角为θ, 则334sin ||||||3HP DP HP DP θ⋅===⋅u u u r u u u ru u u r u u u r .所以DP 与平面ABFD 3. 19.(12分)解:(1)由已知得(1,0)F , l 的方程为x =1.由已知可得, 点A 的坐标为2(1,2或2(1,2-. 所以AM 的方程为22y x =+22y x =.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时, OM 为AB 的垂直平分线, 所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时, 设l 的方程为(1)(0)y k x k =-≠, 1221(,),(,)A y x y x B ,则12x x << 直线MA , MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以, 21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=, 故MA , MB 的倾斜角互补, 所以OMA OMB ∠=∠. 综上, OMA OMB ∠=∠. 20.(12分)解:(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=, 得0.1p =.当(0,0.1)p ∈时, ()0f p '>;当(0.1,1)p ∈时,()0f p '<.所以()f p 的最大值点为00.1p =. (2)由(1)知, 0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数, 依题意知(180,0.1)Y B :,20225X Y =⨯+, 即4025X Y =+.所以(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验, 则这一箱产品所需要的检验费为400元. 由于400EX >, 故应该对余下的产品作检验. 23.[选修4-5:不等式选讲](10分)【解析】(1)当1a =时, ()|1||1|f x x x =+--, 即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤, 则当(0,1)x ∈时|1|1ax -≥; 若0a >, |1|1ax -<的解集为20x a <<, 所以21a≥, 故02a <≤. 综上, a 的取值范围为(0,2].21.(12分)解:(1)()f x 的定义域为(0,)+∞, 22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤, 则()0f x '≤, 当且仅当2a =, 1x =时()0f x '=, 所以()f x 在(0,)+∞单调递减.(ii )若2a >, 令()0f x '=得,x =或x =.当)x ∈+∞U 时, ()0f x '<;当(22a a x ∈时,()0f x '>.所以()f x在(0,),()22a a ++∞单调递减,在()22a a -+单调递增.(2)由(1)知, ()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=, 所以121x x =, 不妨设12x x <, 则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----,所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+, 由(1)知, ()g x 在(0,)+∞单调递减, 又(1)0g =, 从而当(1,)x ∈+∞时, ()0g x <.所以22212ln 0x x x -+<, 即1212()()2f x f x a x x -<--. 22.[选修4-4:坐标系与参数方程](10分)【解析】(1)由cos x ρθ=, sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -, 半径为2的圆.由题设知, 1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l , y 轴左边的射线为2l .由于B 在圆2C 的外面, 故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点, 或2l 与2C 只有一个公共点且1l 与2C 有两个公共点. 当1l 与2C 只有一个公共点时, A 到1l 所在直线的距离为2,2=, 故43k =-或0k =.经检验, 当0k =时, 1l 与2C 没有公共点;当43k =-时, 1l 与2C 只有一个公共点, 2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时, A 到2l 所在直线的距离为2,所以2=, 故0k =或43k =. 经检验, 当0k =时, 1l 与2C 没有公共点;当43k =时, 2l 与2C 没有公共点. 综上, 所求1C 的方程为4||23y x =-+.。

相关文档
最新文档