第3章高层建筑结构的荷载和地震作用.

合集下载

第3章高层建筑结构的荷载和地震作用(精)

第3章高层建筑结构的荷载和地震作用(精)

第3章 高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030⨯,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。

已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。

已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。

为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。

解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=⨯==222210m s kN 62.19.145.0T w ⋅=⨯=(2)风荷载体型系数:对于矩形平面,由附录1可求得80.01=s μ57040120030480L H 0304802s .....-=⎪⎭⎫ ⎝⎛⨯+-=⎪⎭⎫ ⎝⎛+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。

脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =ϕ,i H 为第i 层标高;H 为建筑总高度。

则由式(3.2.8)可求得风振系数为:HH 478050211H H 11iz i z ⋅⨯+=⋅+=+=μμξνμϕνξβ.. z z z(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:()z z z z ....)z (q βμβμ6624=40×570+80×450=按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。

科学出版社 高层建筑结构设计(第二版)史庆轩 主编 国家级精品课教材 赠课件 第3章-局部修改

科学出版社 高层建筑结构设计(第二版)史庆轩 主编  国家级精品课教材 赠课件  第3章-局部修改

第3章 高层建筑结构的荷载和地震作用 ——局部修改P39:作用在楼面上的活荷载,不可能以标准值的大小布满在所有楼面上,因此在设计梁、墙、柱和基础时,还要考虑实际荷载沿楼面分布的变异情况,对活荷载标准值乘以规定的折减系数。

折减系数的确定比较复杂,目前大多数国家均通过从属面积来考虑,具体可参考《荷载规范》的规定。

P46:表3.2.2 脉动增大系数ξ注:计算201T ω时,对地面粗糙度B 类地区可直接代入基本风压,而对A 类、C 类和D 类地区应按当地的基本风压分别乘以1.38、0.62和0.32后代入。

P47:表3.2.4 振型系数ϕP49:表3.2.5 风荷载作用下各区段合力的计算P50:结构地震动力反应过程中存在着地面扭转运动,而目前这方面的强震实测记录很少,地震作用计算中还不能考虑输入地面运动扭转分量。

为此,《高层规程》规定,计算单向地震作用时应考虑偶然偏心的影响,每层质心沿垂直于地震作用方向的偏移值可按下式采用,即0.05i i e L =± (3.3.1) 式中:i e 为第i 层质心偏移值(m),各楼层质心偏移方向相同;i L 为第i 层垂直于地震作用方向的建筑物总长度(m)。

P51:表3.3.2 时程分析时输入地震加速度的最大值 (cm/s 2)P53:表3.3.5 水平地震影响系数最大值αP59:2)跨度大于24m 的楼盖结构、跨度大于12m 的转换结构和连体结构、悬挑长度大于5m 的悬挑结构,结构竖向地震作用效应标准值宜采用时程分析法或振型分解反应谱方法进行计算。

时程分析计算时输入的地震加速度最大值可按规定的水平输入最大值的65%采用,反应谱分析时结构竖向地震影响系数最大值可按水平地震影响系数最大值的65%采用,但设计地震分组可按第一组采用。

3)高层建筑中,大跨度结构、悬挑结构、转换结构、连体结构的连接体的竖向地震作用标准值,不宜小于结构或构件承受的重力荷载代表值与表3.3.9所规定的竖向地震作用系数的乘积。

高层建筑结构的荷载和地震作用31竖向荷载ss=

高层建筑结构的荷载和地震作用31竖向荷载ss=

第3章 高层建筑结构的荷载和地震作用高层建筑结构主要承受竖向荷载和和水平荷载。

恒荷载 风荷载 1) 竖向荷载 2)水平荷载活荷载 地震作用 本章主要内容z 竖向荷载(简介) z 风荷载(重点)z 地震作用(工程结构抗震课介绍此部分内容) 与多层建筑结构有所不同,高层建筑结构:z 竖向荷载效应远大于多层建筑结构;z 水平荷载的影响显著增加,成为其设计的主要因素; z 对高层建筑结构尚应考虑竖向地震的作用。

3.1 竖向荷载3.1.1 恒荷载1)恒荷载是指各种结构构件自重和找平层、保温层、防水层、装修材料层、隔墙、幕墙及其附件、固定设备及其管道等重量,其标准值可按构件尺寸、和材料密度(单位体积或面积的自重)计算确定。

2)材料容重可从《荷载规范》查取;固定设备由相关专业提供。

3.1.2 活荷载 1. 楼面活载1)高层建筑楼面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可按《荷载规范》的规定取用。

2)在荷载汇集及内力计算中,应按未经折减的活荷载标准值进行计算,楼面活荷载的折减可在构件内力组合时进行。

2. 屋面活载1)屋面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可按《荷载规范》的规定取用。

2)有些情况下,应考虑屋面直升机平台的活荷载:(优于五星级酒店的是,七星级酒店将提供秘书式的“管家服务”,辟有直升机停机坪,用直升机和“大奔”接送客人。

)3. 屋面雪荷载1)屋面水平投影面上的雪荷载标准值k s ,应按下式计算:0r k s s μ= (3.1.1)式中:0s 为基本雪压,系以当地一般空旷平坦地面上统计所得50年一遇最大积雪的自重确定,按《荷载规范》取用;μr为屋面积雪分布系数,屋面坡度α≤25°时,μr取1.0,其它情况可按《荷载规范》取用。

2)雪荷载的组合值系数可取0.7;频遇值系数可取0.6;准永久值系数按雪荷载分区Ⅰ、Ⅱ和Ⅲ的不同,分别取0.5、0.2和0。

3)雪荷载不应与屋面均布活荷载同时组合。

高层建筑设计理论第3章

高层建筑设计理论第3章
❖ 第4.2.2条:基本风压应按照现行国家标准《建筑结构 荷载规范》GB50009 的规定采用。对于安全等级为一 级的高层建筑以及对风荷载比较敏感的高层建筑,承 载力设计时应按基本风压值的1.1倍采用。(强条)
2、风压高度变化系数 μ Z 风速大小不仅与高度有关,一般越靠近地面风速越小,
愈向上风速越大,而且风速的变化与地貌及周围环境有直 接关系。
风压高度变化系数
表 3-7 风压高度变化系数 z
风压的高度变化
单位面积风荷载标准值
(1)当计算主要承重结构时
wk z s z w0
式中 wk ——风荷载标准值(kN/m2); w0 ——基本风压(kபைடு நூலகம்/m2);
s ——风压高度变化系数; z ——风荷载体型系数; z ——z 高度处的风振系数。
(2)当计算围护结构时
wk gz s z w0
式中 gz ——高度 z 处的阵风系数。
基本风压
作用在建筑物上的风压力与风速有关,可表示为:
0

1 2
2
式中 0 ——用于建筑物表面的风压(N/m2); ——空气的密度,取 =1.25k9/m3; ——平均风速(m/s)。
全国l0年、50年和l00年一遇的风压标准值可由《建筑结 构荷载规范》(GB50009--2012)附表中查得。
屋面活荷载
屋面活荷载一般可按下述方法进行取值: 1.房屋建筑的屋面,其水平投影面上的屋面均布活荷载的标准值 及其组合值系数、频遇值系数和准永久值系数的取值,不应小于 表3-3的规定。 2.屋面直升机停机坪荷载应按局部荷载考虑,或根据局部荷载换 算为等效均布荷载考虑,其等效均布荷载不应低于5.0kN/m2。
2.风力受建筑物周围环境影响较大,处于高层建筑群中的高层建筑,有时会 出现受力更为不利的情况。例如,由于不对称遮挡而使风力偏心产生扭转;相邻 建筑物之间的狭缝风力增大,使建筑物产生扭转等等。在这些情况下要适当加大 安全度。

高层建筑结构抗震期末复习题(含答案)

高层建筑结构抗震期末复习题(含答案)

第一章 绪论(一)填空题1.我国《高层建筑混凝土结构技术规程》(JGJ3—2010)规定:把10层及10层以上或房屋高度大于28m的住宅建筑,以及房屋高度大于24m的其他高层民用建筑,称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。

2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。

3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,连体结构以及竖向体型收进结构等。

4.8度、9度抗震烈度设计时,高层建筑中的大跨和长悬臂结构应考虑竖向地震作用。

5.高层建筑结构的竖向承重体系有框架结构体系,剪力墙结构体系,框架—剪力墙结构体系,筒体结构体系等;水平向承重体系有普通肋形楼盖体系,无梁楼盖体系,组合楼盖体系等。

6.高层结构平面布置时,应使其平面的质量中心和刚度中心尽可能靠近,以减少扭转效应。

7. 三种常用的钢筋混凝土高层结构体系是指框架结构、剪力墙结构、框架—剪力墙结构。

(二)选择题1.高层建筑抗震设计时,应具有[ a ]抗震防线。

a.多道;b.两道;c.一道;d.不需要。

2.下列叙述满足高层建筑规则结构要求的是[ d ]。

a.结构有较多错层;b.质量分布不均匀;c.抗扭刚度低;d.刚度、承载力、质量分布均匀、无突变。

3.高层建筑结构的受力特点是[ b ]。

a.竖向荷载为主要荷载,水平荷载为次要荷载;b.水平荷载为主要荷载,竖向荷载为次要荷载;c.竖向荷载和水平荷载均为主要荷载;d.不一定。

4.8度抗震设防时,框架—剪力墙结构的最大高宽比限值是[ C ]。

a.2;b.3;c.4;d.5。

5.钢筋混凝土高层结构房屋在确定抗震等级时,除考虑地震烈度、结构类型外,还应该考虑[ A ]。

a.房屋高度;b.高宽比;c.房屋层数;d.地基土类别。

6.随着建筑物高度的增加,变化最明显的是[ C ]。

A. 轴力B. 弯矩C.侧向位移D.剪力7.某高层建筑要求底部几层为大空间商用店面,上部为住宅,此时应采用那种结构体系[ D ]。

风荷载及地震作用

风荷载及地震作用

风荷载的特点
风力作用与建筑物外形有直接关系,圆形与正方形受到的风力较合理
风力受到建筑物周围环境影响较大,处于高层建筑群中的高层建筑,有 时会出现受力更为不利的情况 风力作用具有静力、动力两重性质。 风力在建筑物表面的分布很不均匀,在角区和建筑物内收的局部区域, 会产生较大的风力。 与地震作用相比,风力作用持续时间较长,其作用更接近于静力,但建 筑物的使用期限出现较大风力的次数较多。
高层建筑与抗震设计-风荷载与地震作用
平均风压与波动风压图
高层建筑与抗震设计-风荷载与地震作用
《高层建筑混凝土结构技术规程》(JGJ3-2002)中规 定: 当建筑物高度>30m、高宽比>1.5时,考虑风振 系数:
振型系数
脉动增大系数,按下表采用:
脉动影响系数 按照不同的地面粗糙度A类地形、 B类地形、 C类地 形和D类地形取值。见《高层建筑混凝土结构技术规 程》(JGJ3-2002)中的规定。 风压高度变化系数,按下表采用:
Z
风 压 高 度 变 化 系 数
离地面或海平 面高度(m)
5 15 50
地面粗糙度类别
A 1.17 1.52 2.03 B 1.00 1.14 1.67 C 0.74 0.74 1.25 D 0.62 0.62 0.84
300
3.12
2.97
2.75
2.45
高层建筑与抗震设计-风荷载与地震作用
C Z 0.616
由于有较长期的气象观测,大风的重现期很短,所以风力大小的估计比 地震作用大小的估计较为可靠。而且抗风设计具有较大的可靠性。
高层建筑与抗震设计-风荷载与地震作用
3-1 风荷载
1、高层建筑风荷载的特点

高层建筑结构设计水平地震作用

高层建筑结构设计水平地震作用
高层建筑结构设计
水平荷载与结构计算简化原则
第二节 地震作用
一、特点
地震时,地震波产生地面运动,通过房屋基础使上部结构产生振动, 这就是地震作用。地震作用使结构产生的运动称为地震反应,包括位移、 速度、与加速度,加速度将使结构产生惯性力,过大的惯性力将会影响 结构的正常使用,甚至造成结构的破坏。 地震波使建筑房屋产生竖向振动和水平振动,一般对房屋的破坏主要 由水平振动造成。设计中主要考虑水平地震作用,只有震中附近的高烈 度区域才考虑竖向地震作用。 地震动三要素: 1、强度:反应地震波的幅值,烈度大,强度大。 2、频谱:反应地震波的波形,1962年墨西哥地震时,墨西哥市a=0.05g, 但由于地震卓越周期与结构接近,从而破坏严重。 3、持时:反应地震波的持续时间,短则对结构影响不大。
动速度和位移可能对结构的破坏具有更大影响,但振型反应谱法或底部剪力尚无 法对此作出估计。出于结构安全的考虑,《高层规程》规定了结构各楼层水平地 震剪力最小值的要求,给出了不同烈度下的楼层地震剪力系数(即剪重比),结 构的水平地震作用效应应据此进行相应的调整。 水平地震作用计算时,结构各楼层对应于地震作用标准值的剪力应符合下式要 求:
1、计算范围: 水平地震作用:
• 6度区 (除甲类建筑和IV类场地上的较高房屋
外)可不算 • 7-9度区 (除可不进行上部结构抗震验算的房 屋外)均算
竖向地震作用:
•8、9度大跨度结构和长悬臂结构 •9度的高层建筑
2、水平地震作用的计算原则: – 一般正交布置抗侧力构件的结构,可沿纵横主轴方向分别计算 – 斜交布置抗侧力构件的结构,宜按平行于抗侧力构件方向计算 – 质量和刚度明显不均匀、不对称的结构,应考虑水平地震作用的 扭转影响
5、动力时程分析法

[整理版]科学出版社高层建筑结构设计(第二版)史庆轩主编国家..

[整理版]科学出版社高层建筑结构设计(第二版)史庆轩主编国家..

第3章 高层建筑结构的荷载和地震作用——局部修改P39:作用在楼面上的活荷载,不可能以标准值的大小布满在所有楼面上,因此在设计梁、墙、柱和基础时,还要考虑实际荷载沿楼面分布的变异情况,对活荷载标准值乘以规定的折减系数。

折减系数的确定比较复杂,目前大多数国家均通过从属面积来考虑,具体可参考《荷载规范》的规定。

P46:表3.2.2 脉动增大系数ξ注:计算201T ω时,对地面粗糙度B 类地区可直接代入基本风压,而对A 类、C 类和D 类地区应按当地的基本风压分别乘以1.38、0.62和0.32后代入。

P47:表3.2.4 振型系数ϕP49:表3.2.5 风荷载作用下各区段合力的计算P50:结构地震动力反应过程中存在着地面扭转运动,而目前这方面的强震实测记录很少,地震作用计算中还不能考虑输入地面运动扭转分量。

为此,《高层规程》规定,计算单向地震作用时应考虑偶然偏心的影响,每层质心沿垂直于地震作用方向的偏移值可按下式采用,即0.05i i e L =± (3.3.1)式中:i e 为第i 层质心偏移值(m),各楼层质心偏移方向相同;i L 为第i 层垂直于地震作用方向的建筑物总长度(m)。

P51:表 3.3.2 时程分析时输入地震加速度的最大值 (cm/s 2)P53:表3.3.5 水平地震影响系数最大值αP59:2)跨度大于24m 的楼盖结构、跨度大于12m 的转换结构和连体结构、悬挑长度大于5m 的悬挑结构,结构竖向地震作用效应标准值宜采用时程分析法或振型分解反应谱方法进行计算。

时程分析计算时输入的地震加速度最大值可按规定的水平输入最大值的65%采用,反应谱分析时结构竖向地震影响系数最大值可按水平地震影响系数最大值的65%采用,但设计地震分组可按第一组采用。

3)高层建筑中,大跨度结构、悬挑结构、转换结构、连体结构的连接体的竖向地震作用标准值,不宜小于结构或构件承受的重力荷载代表值与表3.3.9所规定的竖向地震作用系数的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章高层建筑结构的荷载和地震作用
[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m,室外地面至檐口的高度为120m,平面尺寸为30m⨯40m,地下室采用筏形基础,埋置深度为12m,如图3.2.4(a)、(b)所示。

已知基本风压为
w0=0.45kNm,建筑场地位于大城市郊区。

已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN。

为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。

2
解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: T1=0.05n=0.05⨯38=1.90s
w0T12=0.45⨯1.92=1.62kN⋅s2m2
(2)风荷载体型系数:对于矩形平面,由附录1可求得
μs1=0.80
H⎫120⎫⎛⎛
⎪=- 0.48+0.03⨯⎪=-0.57 L40⎝⎭⎝⎭
(3)风振系数:由条件可知地面粗糙度类别为B类,由表3.2.2可查得脉动增大系数ξ=1.502。

脉动影响系数ν根据H/B和建筑总高度H由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得ν=0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z与房屋高度H的比值,即ϕz=Hi/H,Hi为第i层标高;H为建筑总高度。

则由式(3.2.8)可求得风振系数为:
ξ ν ϕzξνHi1.502⨯0.478Hi
βz=1+=1+⋅=1+⋅
μzμzHμzH
(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:
q(z)=0.45×(0.8+0.57)×40μzβz=24.66μzβz
μs2=- 0.48+0.03
按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。

表3.2.4 风荷载作用下各区段合力的计算
在风荷载作用下结构底部一层的剪力为
V1=800+1384.8+1262.2+1123.8+971.0+788.6+522.8=6853.2kN
筏形基础底面的弯矩为
M=800⨯132+1384.8⨯122+1262.2⨯102+1123.8⨯82
+971.0⨯62+788.6⨯42+522.8⨯22=600266.4kN⋅m
小结
(1)作用于高层建筑结构上的荷载可分为两类:竖向荷载,包括恒载和楼、屋面活荷载以及竖向地震作用;水平荷载,包括风荷载和水平地震作用。

(2)计算作用在高层建筑结构上的风荷载时,对主要承重结构和围护结构应分别计算。

对高度大于30m且高宽比大于1.5的高层建筑结构,采用风振系数考虑脉动风压对主要承重结构的不利影响。

(3)计算高层建筑结构水平地震作用的基本方法是振型分解反应谱法,此法适用于任意体型、平面和高度的高层建筑结构。

当建筑物高度不大且体型比较简单时,可采用底部剪力法计算。

对于重要的或复杂的高层建筑结构,宜采用弹性时程分析法进行多遇地震作用下的补充计算。

思考题
(1)高层建筑结构设计时应主要考虑哪些荷载或作用?
(2)高层建筑结构的竖向荷载如何取值?进行竖向荷载作用下的内力计算时,是否要考虑活荷载的不利布置?为什么?
(3)结构承受的风荷载与哪些因素有关?
(4)高层建筑结构计算时,基本风压、风载体型系数和风压高度变化系数分别如何取值?
(5)什么是风振系数?在什么情况下需要考虑风振系数?如何取值?
(6)高层建筑地震作用计算的原则有哪些?
(7)高层建筑结构自振周期的计算方法有哪些?
(8)计算地震作用的方法有哪些?如何选用?地震作用与哪些因素有关?
(9)底部剪力法和振型分解反应谱法在计算地震作用时有什么异同?
(10)在计算地震作用时,什么情况下应采用动力时程分析法?计算时有哪些要求?
(11)在什么情况下需要考虑竖向地震作用效应?
(12)突出屋面小塔楼的地震作用影响如何考虑?
习题
1、某高层建筑筒体结构,其质量和刚度沿高度分布比较均匀,建筑平面尺寸为40m⨯40m的方形,地面以上高度为150m,地下埋置深度为13m。

已知基本风压为0.40kNm2,建筑场地位于大城市市区,已计算求得作用于突出屋面塔楼上的风荷载标准值为1050结构的基本自振周期为T1=2.45s。

kN,
为简化计算,将建筑物沿高度划分为五个区段,每个区段为30m,并近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部的剪力和基础底面的弯矩值。

2、某12层高层建筑剪力墙结构,层高均为3.0m,总高度为36.0m,抗震设防烈度为8度,Ⅲ类场地,设计地震分组为第二组。

已计算各质点的重力荷载代表值如图所示,第1和第2振型如图所示,对应的自振周期分别为T1=0.75s,
T2=0.20s。

试采用振型分解反应谱法,考虑前两个振型计算水平地震作用下结构的底部剪力和弯矩值。

kN,基本自振周期为T1=1.34s,采用底部剪地震分组为第二组,总重力荷载代表值为∑Gi=286000
力法计算底部剪力值。

4、某高层建筑结构,地震设防烈度为8度,Ⅱ类场地,设计地震分组为第一组,结构的基本自振周期为1.36s。

按底部剪力法计算水平地震作用时,计算顶部附加水平地震作用系数δn。

3。

相关文档
最新文档