统计学非参数检验

合集下载

参数检验和非参数检验

参数检验和非参数检验

参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。

参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。

本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。

参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。

然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。

常见的参数检验方法有t检验、F检验和卡方检验等。

以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。

假设我们有两组样本数据,分别服从正态分布。

可以使用t检验来计算两组样本均值的差异是否显著。

t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。

参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。

此外,参数检验通常具有较好的效率和统计性质。

然而,参数检验也有一些限制和缺点。

首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。

另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。

此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。

与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。

它适用于更广泛的数据类型和样本分布。

常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。

以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。

这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。

非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。

此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。

非参数检验方法

非参数检验方法

非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。

二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。

2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。

3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。

4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。

三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。

2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。

3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。

4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。

5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。

【统计分析】非参数检验

【统计分析】非参数检验
α=0.05 2. 计算统计量: T+=62.5,T-=3.5
3. 查表与结论 查T界值表,T0.05(11)=10~56,T=3.5,在界 值范围外,P<0.05,拒绝H0。
符号检验(Sign test)
z n n 1 n
二、两样本比较的秩和检验 (Wilcoxon法)
适用条件:完全随机设计的两个样本比较,若不满足参数 检验的应用条件,则用本法;两个等级资料比较。
-0.45
-1
13
15.20
5.50
9.70
11
14
16.50
9.00
7.50
8.5
步骤
1. 建立假设:H0:差值的总体中位数=0, H1:差值的总体中位数0;
=0.05 2. 计算统计量
计算差值d,由小到大的顺序编秩次,并冠以原d 的正负号,然后分别求正负秩和,得到T+=73, T-=5,取秩和较小者作为检验统计量T=5 3. 查表及结论
1.0
2.5
4
17.00
6.50
10.50
12
5
13.00
5.50
7.50
8.5
6
18.00
13.50
4.50
5
7
17.50
10.00
7.50
8.5
8
10.20
10.20
0.00
-
9
10.00
10.00
0.00
-
10
10.50
9.50
1.00
2.5
11
13.80
6.80
7.00
6
12
3.03
3.48

学术研究中的非参数检验方法

学术研究中的非参数检验方法

学术研究中的非参数检验方法摘要:非参数检验是一种广泛应用于统计学中的统计方法,尤其在处理分类变量和数据缺失时具有独特的优势。

本文旨在介绍非参数检验的基本原理、应用场景以及其在学术研究中的重要性。

通过具体案例分析,展示非参数检验在数据分析和实证研究中的应用,并讨论其与参数检验的区别和联系。

一、非参数检验的基本原理非参数检验是一种基于数据分布不依赖于总体分布的统计方法。

它主要包括卡方检验、秩和检验、二项分布检验等。

这些方法的特点是不需要知道总体分布,也不需要假设数据服从某一特定分布,因此适用于处理不确定的数据分布情况。

二、非参数检验的应用场景非参数检验在学术研究中具有广泛的应用,例如在心理学、医学、经济学、社会学等领域。

它可以用于比较不同组之间的数据分布差异,识别数据中的异常值和趋势,以及评估数据的可靠性和稳定性。

此外,非参数检验还适用于处理缺失数据和分类变量,因为这些数据类型不适合使用参数检验。

三、非参数检验的优势和局限性非参数检验的优势在于它对数据的适用性更广,无需知道或假设数据符合特定的分布。

此外,非参数检验的结果更加稳健,能够更好地处理异常值和组间差异。

然而,非参数检验也具有一定的局限性,例如它可能无法提供精确的参数估计,对于小样本数据可能不够敏感。

四、案例分析为了更好地理解非参数检验的应用,我们以一个实际研究案例为例进行分析。

该案例涉及对一组医学数据的分析,研究人员想知道不同药物治疗效果之间的差异。

通过对两组患者的治疗结果进行非参数检验,研究人员可以比较不同药物治疗效果的数据分布,进而评估哪种药物更有效。

五、结论本文介绍了非参数检验的基本原理、应用场景、优势和局限性,并通过具体案例分析了其在学术研究中的应用。

非参数检验作为一种重要的统计方法,在处理不确定的数据分布和分类变量时具有独特的优势。

尽管它可能无法提供精确的参数估计,但对于小样本数据和异常值具有较强的鲁棒性。

在未来的学术研究中,非参数检验将继续发挥重要作用,为数据分析和实证研究提供有力支持。

统计学中的非参数检验方法介绍

统计学中的非参数检验方法介绍

统计学中的非参数检验方法介绍统计学是一门研究收集、分析和解释数据的科学。

在统计学中,我们经常需要进行假设检验,以确定样本数据是否代表了总体特征。

非参数检验方法是一种不依赖于总体分布假设的统计方法,它在现实世界中的应用非常广泛。

本文将介绍一些常见的非参数检验方法。

一、Wilcoxon符号秩检验(Wilcoxon Signed-Rank Test)Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数检验方法。

它的原理是将两个相关样本的差值按绝对值大小进行排序,并为每个差值分配一个秩次。

然后,通过比较秩次总和与期望总和的差异来判断两个样本是否具有统计学上的显著差异。

二、Mann-Whitney U检验(Mann-Whitney U Test)Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。

它的原理是将两个样本的所有观测值按大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较两个样本的秩次总和来判断它们是否具有统计学上的显著差异。

三、Kruskal-Wallis检验(Kruskal-Wallis Test)Kruskal-Wallis检验是一种用于比较三个或更多独立样本的非参数检验方法。

它的原理是将所有样本的观测值按大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。

四、Friedman检验(Friedman Test)Friedman检验是一种用于比较三个或更多相关样本的非参数检验方法。

它的原理类似于Kruskal-Wallis检验,但是对于相关样本,它将每个样本的观测值按照相对大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。

五、秩相关系数检验(Rank Correlation Test)秩相关系数检验是一种用于检验两个变量之间相关性的非参数检验方法。

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。

本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。

一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。

它通常要求总体分布服从特定的概率分布,如正态分布。

参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。

2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。

3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。

4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。

参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。

但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。

二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。

非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。

2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。

3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。

非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。

它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。

三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。

2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。

非参数统计(non-parametricstatistics)又称任意分布检验(

非参数统计(non-parametricstatistics)又称任意分布检验(

例11.6(P195)。
(一)建立检验假设
H0:某中药治疗四种病型 的疗效总体分布相同 H1:四个总体的分布不同 或不全同
0.05
(二)计算统计量H值 (1)编秩:a、计算各等级的合计人数 b、确定秩次范围 c、计算平均秩次 (2)求各组秩和
R1 65(139.5) 18(304.0) 30(397.5) 13(504.5)
血浆总皮质醇含量有差别(不同或不全同)。
若还希望分析具体哪些组之间有差别,需进一步两两组 间比较。方法见《卫生统计学》第五版P196,《医学统计学》 第二版P183等。
当相同秩次较多(超过25%)时,需进行如下校正。
例11.4(P193),见表11-4。
(一)建立检验假设
H0:接种三种不同菌型伤 寒杆菌存活日数总体分 布相同 H1:三个总体的位置不同 或不全同
适用于完全随机设计分组的多个样本比较(即不满足参
数统计条件的),目的在于判断多个总体分布是否相同。
例11.3(P192),见表11-3。
(一)建立检验假设
H
:血浆总皮质醇含量的
0
三个总体分布相同
H1:血浆总皮质醇含量的 三个总体分布不同或不 全同
0.05
(二)计算统计量H值
1、编秩
先将各组数据分别由小到大排列,统一编秩,不同组的
注意:等级资料对程度的比较不应选检验。
例11.5(P194)。
(一)建立检验假设
H
:吸烟工人和不吸烟工
0
人的HbCO%含量总体分布位置相

H1:吸烟工人的HbCO%含量高于不吸烟工人 的HbCO%含量
0.0(5 单侧)
(二)计算统计量u值
(1)编秩:a、计算各等级的合计人数

统计学0712非参数检验

统计学0712非参数检验

参见拟合优度检验
基本思路是在总体分布未知的情况下,要求根据样本来检验关于总体分布的假设。

检验统计量为:例3:19世纪,生物学家孟德尔按颜色与形状把豌豆分为四类:黄而圆的、青而圆的、黄而有角的、青而有角的。

孟德尔根据遗传学的理论指出,这四类豌豆个数之比这9:3:3:1。

他在556颗豌豆中,观察到这四类豌豆的个数分别为:315、108、101、32。

检验孟德尔理论是否正确。

显著水平为0.05
由于X 2是表示观察频数n i 和理论频数np i 的相对差异的总和,所以当H 0成立时,X 2的值应比较小。

则H 0的拒绝域为:
但在使用X 2拟合检验时,必须注意几点:
2、每个np i 不能太小,最好np i >5,否则应适当合并以满足要求。

1、n一定要足够大,最好n>50;
r 为待估计的参数个数;n i 为观察频数(实际频数p i 为理论概率;
np i 为理论频数(期望频数 )1(~)(212
2---=∑=r k np np ni k
i i i χχ)
1(12--≥-r k αχχ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档