带通滤波器(有源无源)
带通滤波电路带通滤波器

f<f1的信号可从低通滤波器通过
f>f2的信号可从高通滤波器通过
阻带宽度为f2 -fl
频率范围在fl<f<f2的信号被阻断
三、 带阻滤波电路
2. 常用带阻滤波器(BEF)
电路特征:输入信号经过一个由RC元件 组成的双T型选频网络,然后接至集成运 放的同相输入端。
工作原理:当输入信号的频率较高时,可 以认为电容短路,则高频信号从上面由两 个电容和一个电阻构成的T型支路通过;
Ui (s)
1 sC
M
1 sC
P
Uo(s)
UM (s) UP (s) UP (s)
1
R
sC
Ui (s) UM (s) UM (s) UO (s) UM (s) UP (s)
1
R
1
sC
sC
压控电压源二阶HPF电路பைடு நூலகம்
传递函数:
Au
(s)
1
[3
(sRC)2 Aup (s) Aup (s)]sRC (sRC)2
带阻滤波器的作用与带通滤波器相反,即在规定的频带内,信号被 阻断,而在此频带之外,信号能够顺利通过。带阻滤波器也常用于抗干 扰设备中阻止某个频带范围内的干扰及噪声信号通过。
从原理上说,将一个通带截止频率为fl的低通滤波器与一个通带截 止频率为f2的高通滤波器并联在一起,当满足条件fl<f2时,即可组成带 阻滤波器。
1 Q 3 AuP
A u
f f0
A u p 3 A u p
Q A u p
Q是f=f0时的电压放大倍数与通带放大倍数之比
一、高通有源滤波电路
对数幅频特性
有源带通滤波器

10KHz
13KHz
2.0V
带通——5KHz
0V
输出波形和fft
-2.0V 15.0ms 15.5ms 16.0ms V(R31:1) V(U3:OUT) Time
16.5ms
17.0ms
1.5V
1.0V
0.5V
0V 0Hz V(R31:1)
5KHz V(U4:OUT) Frequency
10KHz
有源滤波电路——带通滤波器
实验目的
掌握有源滤波电路的基本概念,了解滤波电路的 选频特性、通频带等概念,加深对有源滤波电路 的认识和理解。 用Pspice仿真的方法来研究滤波电路,了解元件 参数对滤波效果的影响。 根据给定的带通滤波器结构和元件,分析三种不 同中心频率的带通滤波器电路的工作特点及滤波 效果,分析电路的频率特性。 实现给定方波波形的分解和合成。
分别选择三个不同中心频率的带通滤波器: 在示波器上同时观察输入与输出的变化; 对输出信号作fft分析;
5.0V
带通——1KHz
0V
输出波形和fft
-5.0V 15.0ms 15.5ms 16.0ms V(R31:1) V(U1:OUT) Time
16.5ms
17.0ms
1.5V
1.0V
0.5V
0V 0Hz V(R31:1)
记录原始波形分别通过三个带通滤波器后,波形和谐 波成分的变化; 记录三个带通滤波器的输出波形通过反相加法器后的 波形和谐波成分的变化; 记录中心频率为1KHz带通滤波器的幅频特性曲线; 总结带通滤波器对通过的信号的影响,原信号波形和 谐波成分的变化; 根据实验结果,总结你对有源滤波器电路工作特性的 认识。
典型运放:(a) 管脚/引脚图, (b) 电路符号 1. pin 2,反相输入 2. pin 3,同相输入 3. pin 6,输出 4. 供电电源正极性 , pin 7. 5. 供电电源负极性 , pin 4.
什么是滤波器及其分类

什么是滤波器及其分类滤波器是一种用于处理信号的电子设备或电路,它可以通过改变信号的频率特性来实现信号的滤波作用。
滤波器的分类主要根据其频率特性、传递函数或滤波方式等方面进行。
下面将详细介绍滤波器的分类。
一、基本滤波器分类1. 低通滤波器(Low-Pass Filter,LPF)低通滤波器主要用于通过滤除高于截止频率的信号成分,而保留低于截止频率的信号成分。
它常用于去除高频噪音,使信号更加平滑。
2. 高通滤波器(High-Pass Filter,HPF)高通滤波器主要用于通过滤除低于截止频率的信号成分,而保留高于截止频率的信号成分。
它常用于去除低频杂音,提取出信号的高频部分。
3. 带通滤波器(Band-Pass Filter,BPF)带通滤波器主要用于通过滤除低于截止频率和高于截止频率的信号成分,而保留在截止频率范围内的信号成分。
它常用于对特定频带的信号进行提取和处理。
4. 带阻滤波器(Band-Stop Filter,BSF)带阻滤波器主要用于通过滤除在截止频率范围内的信号成分,而保留低于和高于截止频率范围的信号成分。
它常用于去除特定频带的干扰信号。
二、进一步分类1. 无源滤波器和有源滤波器无源滤波器是指由被动元件(如电阻、电容、电感)构成的滤波器,它不能放大信号。
有源滤波器是指由有源元件(如晶体管、运算放大器)与被动元件相组合构成的滤波器,它可以放大信号。
2. 数字滤波器和模拟滤波器数字滤波器是指基于数字信号处理技术实现的滤波器,它对信号进行采样和离散化处理。
模拟滤波器是指直接对连续信号进行滤波处理的滤波器。
3. 激励响应滤波器和无限冲激响应滤波器激励响应滤波器是指根据滤波器被激励时的响应特性进行分类。
无限冲激响应滤波器是指滤波器的冲激响应为无限长序列的滤波器。
总结滤波器是一种用于调节信号频率特性的重要电子设备或电路。
根据滤波器的频率特性、传递函数或滤波方式的不同,可以将滤波器分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
无源滤波器与有源滤波器的区别

无源滤波器与有源滤波器的区别滤波器是一种电子设备,用于从信号中选择性地滤除或放大特定频率的部分。
根据滤波器的结构和特性,可以将其分为两大类:无源滤波器和有源滤波器。
本文将探讨无源滤波器与有源滤波器之间的区别。
一、无源滤波器简介无源滤波器是一种由被动器件(如电阻、电容、电感)组成的电路,不需要外部电源进行工作。
无源滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型,根据其滤波特性选择适合的滤波器类型。
无源滤波器的特点如下:1.通过无源组件实现滤波功能,不需要额外的功率供应。
2.无源滤波器的频率响应通常有固定的衰减特性,无法对输入信号进行放大。
3.无源滤波器的设计相对简单,成本低廉。
4.无源滤波器对信号源的影响较小,适用于对输入信号幅度要求不高的场合。
二、有源滤波器简介有源滤波器是一种使用有源器件(如运放、晶体管)的电路,在滤波器中引入了额外的电源。
有源滤波器可以实现更为复杂的滤波功能,包括低通、高通、带通、带阻和全通等滤波方式。
有源滤波器的特点如下:1.通过有源器件实现滤波功能,可以实现信号的放大和滤波。
2.有源滤波器的频率响应可以调整和调节,使其更加灵活适应不同的应用需求。
3.有源滤波器的设计相对复杂,需要引入额外的电源和相关电路,成本较高。
4.有源滤波器对信号源的影响较大,适用于对输入信号幅度要求较高的场合。
三、无源滤波器和有源滤波器虽然都可以实现滤波功能,但在结构和特性上存在一些区别:1.电源需求:无源滤波器不需要外部电源供电,而有源滤波器需要引入外部电源以提供功率。
2.信号放大:无源滤波器无法对信号进行放大,只能对特定频率的信号进行滤波;而有源滤波器可以实现信号的放大和滤波。
3.频率响应:无源滤波器的频率响应通常具有固定的衰减特性,而有源滤波器的频率响应可以调整和调节,更加灵活。
4.设计复杂度:无源滤波器的设计相对简单,成本较低;而有源滤波器的设计相对复杂,需要引入额外的电源和相关电路,成本较高。
rc 元器件组成的无源滤波器和有源滤波器的工作原理

rc 元器件组成的无源滤波器和有源滤波器的工作原理无源滤波器和有源滤波器是电子电路中常见的两种滤波器,它们利用不同的元器件和工作原理来实现对特定频率信号的滤波。
其中,无源滤波器是由无源元件(如电阻和电容)组成的滤波器,而有源滤波器则是由有源元件(如放大器)与无源元件组成的滤波器。
本文将从深度和广度两个方面探讨这两种滤波器的工作原理,以帮助读者更好地理解它们在电子电路中的应用。
一、无源滤波器的工作原理1. 无源滤波器的基本结构无源滤波器由电容和电感组成,通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
其中,电容和电感分别对应频率响应的不同特性,通过它们的组合可以实现对不同频率信号的滤波。
2. 无源滤波器的工作原理在无源滤波器中,由于没有放大器或其他有源元件来提供能量,因此滤波器的输出信号不能比输入信号的幅度更大。
它们的工作原理是基于电容和电感的频率特性,利用不同频率信号在电容和电感上的响应来实现滤波效果。
在低通滤波器中,高频信号通过电容而被阻断,而低频信号可以通过电感并输出。
3. 无源滤波器的优点和局限性无源滤波器可以实现简单的电路结构和低成本的滤波效果,但也存在着频率范围受限、无法增益信号和难以调节的局限性。
二、有源滤波器的工作原理1. 有源滤波器的基本结构有源滤波器在无源滤波器的基础上加入了放大器或其他有源元件,使得滤波器不仅能够对信号进行滤波,还能够对信号进行放大或衰减。
常见的有源滤波器包括运算放大器滤波器、晶体管滤波器和集成电路滤波器等。
2. 有源滤波器的工作原理有源滤波器利用放大器的放大和反馈作用来实现对信号的滤波效果。
在有源滤波器中,放大器提供了增益,并利用反馈网络来调节放大器的频率响应,从而实现对特定频率信号的滤波。
3. 有源滤波器的优点和局限性有源滤波器具有灵活的频率范围、可调的增益和滤波效果好等优点,但也存在着电路结构复杂、成本较高和对放大器性能要求较高的局限性。
总结回顾通过本文的介绍,我们可以更全面、深刻地理解无源滤波器和有源滤波器的工作原理。
滤波器的分类

滤波器的分类
————————————————————————————————作者:————————————————————————————————日期:
滤波器的分类
按所处理的信号分为模拟滤波器和数字滤波器两种。
按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。
1.低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声;
2.高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量;
3.带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声;
4.带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。
按所采用的元器件分为无源和有源滤波器两种。
(实验二)无源和有源滤波器

(实验二)无源和有源滤波器实验目的:1.了解无源滤波器和有源滤波器的基本原理2.熟练掌握RC、RL、RCL、LPF、HPF、BPF、BSF等滤波器的设计与实现3.通过实验掌握电容和电感的电气特性及其滤波器的设计和制作实验仪器:示波器、信号发生器、电容测试仪、电阻测试仪、电感测试仪实验内容:一、无源滤波器1.RC滤波器(1)低通滤波器:从信号发生器输出的正弦波接到电路的输入端,同时连接示波器探头,把探头分别接到电容器C和电阻R两端,调整信号发生器的频率,观察示波器上正弦波的振幅与频率变化,得到RC滤波器的减频特性曲线。
(2)高通滤波器:同样连接电路并调整信号发生器频率,示波器上高通滤波器输出电压的振幅随着频率的变化而发生变化,得到高通滤波器的增频特性曲线。
2.RL滤波器仿照RC滤波器的示范,再借助于电感L,设计和实现一个低通RL滤波器,同样测试示波器的输出特性曲线。
3.RCL滤波器结合RC和RL滤波器的经验,接入电容C和电感L以及电阻R,基本组合形式有π型/△型/串联型/并联型。
并分别实现和调试它们的滤波器特性。
二、有源滤波器1.甲类和乙类滤波器分别设计和实现比较典型的甲类和乙类无源滤波器。
将信号发生器的正弦波接入有源滤波器的输入端,选择并连接合适的电容和电阻,再选择一个适当的放大器反馈电路,经过放大器的功率放大和滤波器的频谱滤波,输出筛选后的高清正弦波到示波器。
2.低通/高通/带通/带阻滤波器设计从理论上推导出差分放大器电路的频率响应函数,根据函数形式选择合适的电容和电阻,设计并制作差分放大器,最后通过实测数据检验其频率响应的有效性和准确性。
3.低通/高通/带通/带阻滤波器实验在购买好的AD623差分放大器芯片的基础上,结合理论计算和模拟仿真结果,选择合适的电容和电阻参数,将芯片安装在面包板上,经过电阻电容网络的选取和调试,制作出低通/高通/带通/带阻滤波器,逐一测试滤波器的性质和曲线特性。
带通滤波器的设计报告

带通滤波器的设计报告1.引言带通滤波器是一种电子电路,用于通过一定频率范围内的信号,而抑制超过该范围的信号。
在很多应用中,带通滤波器被用于选择或加强特定频率范围的信号,从而起到信号处理和频率分析的作用。
本报告将介绍带通滤波器的设计原理和步骤,并通过实际设计一个示例电路,进一步说明带通滤波器的应用和效果。
2.带通滤波器的基本原理带通滤波器通过将一个中心频率附近一定范围内的频率信号传递,而阻止低于和高于该频率范围的信号。
常见的带通滤波器包括:无源滤波器(如LC滤波器)、有源滤波器(如运算放大器滤波器)和数字滤波器(如数字信号处理器滤波器)等。
本报告将重点介绍一种常用的无源滤波器,即LC带通滤波器。
3.带通滤波器的设计步骤(1)确定中心频率和通带宽度:根据实际需求确定所需传递的频率范围,确定带通滤波器的中心频率和通带宽度。
例如,选择中心频率为10kHz,通带宽度为2kHz。
(2)计算所需的滤波器元件数值:根据所选中心频率和通带宽度的数值,结合滤波器设计公式,计算所需的电感(L)和电容(C)数值。
以LC带通滤波器为例,计算出所需电感和电容的数值。
(3)电路设计和模拟:根据计算结果,设计一个示例电路,并进行模拟分析和调试,以确认设计的有效性和滤波器的性能。
(4)电路实现和测试:根据设计的电路图,选择合适的元件进行实现,并进行测试,以验证实际效果和满足设计要求。
4.示例电路设计在本示例中,选择中心频率为10kHz,通带宽度为2kHz的带通滤波器。
根据计算结果,选择电感1mH和电容39nF。
示例电路图如下:```_______L_______Vin --- R1 --- C1_____L___________C_____R2_______L_______GND---R3---C2_____L_____GND```5.模拟分析和调试通过使用电路模拟软件,对示例电路进行分析和调试。
根据实际测试要求,选择合适的信号源输入和测量设备,并对电路的频率响应和增益进行分析和调整,以确保实际满足设计要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
带通滤波器(有源、无源)
一、实验目的
1、熟悉带通滤波器构成及其特性。
2、学会测量带通滤波器幅频特性的方法。
二、实验原理说明
滤波器是一种能使有用频率信号通过而同时抑制(或大为衰减)无用频率信号的电子装置。
工程上常用它作信号处理、数据传送和抑制干扰等。
这里主要是讨论模拟滤波器。
以往这种滤波电路主要采用无源元件R 、L 和C 组成,60年代以来,集成运放获得了迅速发展,由它和R 、C 组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。
此外,由于集成运放的开环电压增益和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但是,集成运放的带宽有限,所以目前有源滤波电路的工作频率难以做得很高,这是它的不足之处。
2.1基本概念及初步定义
滤波电路的一般结构如2—1所示。
图中的V i (t)表示输入信号,V 0(t )为输出信号。
假设滤波器是一个线形时不变网络,则在复频域内其传递函数(系统函数)为
A (s )=
)
()
(0s V s V i
式中A (s )是滤波电路的电压传递函数,一般为复数。
对于频率来说(s=j ω)则有
A (j ω)=│A (j ω)│e
j φ(ω)
(2-1)
这里│A (j ω)│为传递函数的模,φ(ω)为其相位角。
此外,在滤波电路中关心的另一个量是时延τ(ω),它定义为
τ(ω)=- (2-2)
通常用幅频响应来表征一个滤波电路的特性,欲使信号通过滤波器的失真很小,则相位和时延响应亦需考虑。
当相位响应φ(ω)作线性变化,即时延响应τ(ω)为常数时,输出信号才可能避免失真。
2.2滤波电路的分类
对于幅频响应,通常把能够通过的信号频率范围定义为通带,而把受阻或衰减的信号频率范围称为阻带,通带和阻带的界限频率叫做截止频率。
理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减(│A (j ω)│=0)。
通常通带和阻带的相互位置不同,滤波电路通常可分为以
V i 图2-1 滤波电路的一般结构 )()
(s d d ω
ωϕ
实验二 滤波器(有源、无源)
8
下几类:
低通滤波电路 其幅频响应如图3-2a 所示,图中A 0表示低频增益│A │增益的幅值。
由图可知,它的功能是通过从零到某一截止角频率ωH 的低频信号,而对大于ωH 的所有频率完全衰减,因此其带宽BW =ωH 。
高通滤波电路 其幅频响应如图3-2b 所示,由图可以看到,在0<ω<ωL 范围内的频率为阻带,高于ωL 的频率为通带。
从理论上来说,它的带宽BW =∞,但实际上,由于受有源器件带宽的限制,高通滤波电路的带宽也是有限的。
带通滤波电路 其幅频响应如图3-2c 所示,图中ωL 为低边截止角频率,ωH 高边截止角频率,ω0
为中心角频率。
由图可知,它有两个阻带:0<ω<ωL 和ω>ωH ,因此带宽BW =ωH -ωL 。
带阻滤波电路 其幅频响应如图3-2d 所示,由图可知,它有两个通带:在0<ω<ωH 和ω>ωL ,和一个阻带:ωH <ω<ωL 。
因此它的功能是衰减ωL 到ωH 间的信号。
同高通滤波电路相似,由于受有源器件带宽的限制,通带ω>ωL 也是有限的。
带阻滤波电路抑制频带中点所在角频率ω0也叫中心角频率。
图2-2 各种滤波电路的幅频响应
(a )低通滤波电路(LPF) (b )高通滤波电路(HPF) (c )带通滤波电路(BPF) (d )带阻滤波电路(BEF)
2.3带通滤波电路(HPF)
由图2-3b
所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较,不难发现低
9
通与高通滤波电路相串联如图2-3所示,可以构成带通滤波电路,条件是低通滤波电路的截止角频率ωH 大于高通滤波电路的截止角频率ωn ,两者覆盖的通带就提供了一个带通响应。
图2-3带通滤波电路构成示意图
图2-4所示为二阶压控电压源带通滤波电路。
图中R 、C 组成低通网络, C 1、R 3组成高通网络,两者串联就组成了带通滤波电路。
为了计算简便,设R 2=R ,R 3=2R ,则由KCL 列出方程,可导出带通滤波电路的传递函数为
(2-3)
式中A VF =1+R f /R 1为同相比例放大电路的电压增益,同样要求A VF <3,电路才能稳定地工作。
令
(2-4)
2)()3(1)(sCR sCR A sCR A s A VF VF +-+=
⎪
⎪
⎪
⎪⎭
⎪⎪
⎪
⎪⎬⎫
-==-=
)3/(1)/(13VF O VF
VF
o A Q RC A A A ω
实验二 滤波器(有源、无源)
10 则有
(2-5)
式(2-5)为二阶带通滤波电路传递函数的典型表达式,其中ω0=1/(RC ),即是特征角频率,也是带通滤波电路的中心角频率。
图2-5 图2-4所示电路的幅频响应
令s=j ω代入式(2-5),则有
(2-6)
式(2-6)表明,当ω=ω0时,图2-4所示电路具有最大电压增益,且∣A(j ω0)∣= A O = A VF /
2
)
(
1)(o
o
o
o s
Q s
Q s
A s A ωωω++
=
图2-4 二阶压控电压源带通滤波电路
)
(1)(11)(2ω
ωωωωωωωωω
ωO
O O
o o o
O
jQ A Q j j Q A j A -+=+-⋅=
11
(3 - A VF ),这就是带通滤波电路的通带电压增益。
根据式(2-6),不难求出其幅频响应,如图2-5所示,Q 值越高,通带越窄。
当式(2-6)分母虚部的绝对值为1时,有∣A(j ω)∣=A O /2;因此,利用取正根,可求出带通滤波电路的两个截止角频率,从而导出带通滤波电路的通带宽度BW=ωO /(2πQ)=F O /Q O 。
三、实验内容与步骤
实验电路布局如图2-6。
比较与测量两种带通滤波器的频响特性 1、 图示2-7为带通滤波器
图2-7(a )无源带通滤波器
图2-6实验电路布局图
实验二 滤波器(有源、无源)
12
2、逐点测量其幅频响应,填入表2-1
3、扫频法测量(示波器工作于XY 状态)
①将S402的“1-2”连接,S401接于“3”,S402接于“Sin ”; ②TP402接示波器CH1; ③SG401与SG201连接; ④TP201接示波器CH2。
五、实验设备
1、双踪示波器
1台 2、信号与系统实验箱
1台
注:测试参考波形
图注-1 TP205 无源带通
图2-7(b )有源带通滤波器。