一次函数复习课导学案1

合集下载

一次函数复习课导学案

一次函数复习课导学案

一次函数复习课导学案知识点系统图一次函数概念一般形式: .正比例函数:性质k >0,y 随x 的增大而k <0,y 随x 的增大而图象是经过 0, 和 ,0 的直线,知识点扫描知识点1 一次函数的意义一次函数从解析式上理解注意两点:(1)y =kx +b 中k ,b 为,(2)k ;从图像上理解其图像一般是一条直线,但不平行于,有时是线段、射线或点。

知识点2 一次函数大致图像与k 、b 的符号关系知识点3 一次函数解析式的确定——待定系数法: ①将一次函数解析式设为y =kx +b (k ≠0);②找出函数图像上的点的坐标代入已设的关系式中,列出方程(组); ③解出方程(组),求出k ,b ;④将所求的值代入所设的函数关系式中。

知识点4 建立函数模型解决实际问题建立一次函数模型解决实际问题时,一般先要判断函数关系是否是一次函数。

焦点一 一次函数的性质例1 一次函数y =(2a +4)x -(3-b ),当a ,b 为何值时: (1)y 随x 的增大而增大;(2)图象经过第二、三、四象限; (3)图象与y 轴的交点在x 轴上方; (4)图象过原点.k_______,b_______k_______,b_______k_______,b_______k_______,b_______k_______,b_______k_______,b_______焦点二 一次函数解析式的确定例2 如图所示,直线l 过A (0,-1)、B (1,0)两点,求直线l 的解析式。

焦点三 根据图像信息解题例3在社会主义新农村建设中,衢州某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?焦点四 一次函数与几何综合例4 如图,在平面直角坐标系中,Rt △OAB 的直角边OA 在x 轴的正半轴上,点B 在第象限,将△OAB 绕点O 按逆时针方向旋转至△OA ′B ′,使点B 的对应点B ′落在y 轴的正半轴上,已知OB =2,∠BOA =30°. (1)求点B 和点A ′的坐标;(2)求经过点B 和点B ′的直线所对应的一次函数解析式,并判断点A 是否在直线BB ′上.例2图例4图课堂作业1.直线y =kx -1一定经过点( ) A .(1,0) B .(1,k ) C .(0, k ) D .(0,-1)2.已知一次函数y =mx +n -2的图象如图所示,则m 、n 的取值范围是( )A .m >0,n <2B .m >0,n >2C .m <0,n <2D .m <0,n >2 3.一条直线y =kx +b 其中k +b =-5,kb =6,那么该直线经过()A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 4.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y =-x +1 B .y =x 2-1 C .y =1xD .y =-x 2+1 5.已知一次函数y =kx +b 的图象经过点A (1,-1),B (-1,3)两点,则( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <06.若实数a 、b 、c 满足a +b +c =0,且a <b <c ,则函数y =cx +a 的图象可能是( )A .B .C .D .7.一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数图象只可能是( )A .B .C .D .8.将直线y =2x 向右平移1个单位后所得图象对应的函数关系式为( )A .y =2x -1B .y =2x -2C .y =2x +1D .y =2x +2 9.如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x <ax +4的解集为( ) A . 32x <B .x <3C . 32x >D .x >310. A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ), B (x ,y ),下列结论正确的是()第2题 第10题 第9题 第12题A .a >0B .a <0C .b =0D .ab <0 11. 下列关于一次函数y =-2x +1的说法:①y 随x 的增大而减小; ②图象与直线y =-2x 平行; ③图象与y 轴的交点坐标是(0,1);④图象经过第一、二、四象限.其中正确的有( )个. A .4B .3C .2 D .1 12.如图,是函数y =3−x (0≤x ≤2)x −1 (2<x ≤4)的图象,请说说这个函数的最小值是A .1B .2C .3D .413.若一次函数y =kx +b ,当x 的值减小1,y 的值就减小2,则当x 的值增加2时,y 的值() A . 增加4 B .减小4 C . 增加2 D .减小2 14.如图,是直线y =x -3的图象,点P (2,m )在该直线的上方,则m 的取值范围是( ) A . m >-3B . m >-1C . m >0D . m <3 15.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 坐标为( )A .(0,0)B .(11,22--)C .(22-D .(22--)16.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系.那么,从关闭进水管起多少分钟时该容器内的水恰好放完.17(1)对于一次函数y =−3x +4,当0≤x ≤2时,求对应函数值y 的取值范围; (2)对于一次函数y =3x −2,当−2≤y ≤4时,求对应的自变量x 的取值范围; (3)对于一次函数y =kx +b ,当0≤x ≤2时,对应函数值y 的取值范围为−2≤y ≤4,求k 、b 的值。

八年级数学复习《一次函数》导学案.doc

八年级数学复习《一次函数》导学案.doc

八年级数学复习《一次函数》导学案.doc1、第十四章一次函数复习学习目标:1.了解本章的学问结构;2.把握一次函数的概念、图象和性质;能用待定系数法确定一次函数解析式。

学习重点:一次函数的概念、图象和性质;能用待定系数法确定一次函数解析式学习难点:一次函数学问的运用。

【学问提要】一、函数与函数的图象1.叫变量,叫常量.2.函数定义:在一个改变过程中,假如有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数.3.函数的图象:对于一个函数,假如把自变量与函数的每对对应值分别作为点的,那么坐标平面2、内由这些点组成的图形,就是这个函数的图象。

4、描点法画图象的步骤:5.函数的三种表示方法:6、自变量的取值范围:〔1〕分式类:分母不为0,〔2〕根式类:开偶次方的被开方数大于等于0,〔3〕整式类:全体实数。

〔4〕实际类:使实际问题有意义。

例1、求以下函数中自变量x的取值范围〔1〕;〔2〕;〔3〕;〔4〕。

例2、以下四组函数中,表示同一函数的是〔〕A、y=x与y=B、y=x与y=C、y=x与y=x2/xD、y=x与y=例3、如下图的图象分别给出了x与y的对应关系,其中y是x的函数的是〔〕xyoAxyo3、BxyoDxyoC二、一次函数1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。

当b_____时,函数y=____(k____)叫做正比例函数。

2、正比例函数y=kx(k≠0)的图象是过点〔_____〕,(______)的。

3、一次函数y=kx+b(k≠0)的图象是过点〔0,___),〔____,0)的__________。

4.一次函数y=kx+b的图象是一条直线,其中k确定直线性,b确定直线与轴的交点位置.k和b确定了直线所在的象限,k0时,图象必过象限 4、;k0时,图象必过象限;b0,b0时,图象过象限;k0,b0时,图象过象限;k0k0B0B.yx2时,y1y2,则m的范围是11、直线y=3x+b与y轴的交点的纵坐标为-2,则这条直线肯定不过象限12、一次函数y=(m2-3)x-1和y=(m+2)x+(m2-3)的图像与y轴分别交于P,Q两点,若P、Q点关于x轴对称,则m=。

一次函数复习导学案[1]

一次函数复习导学案[1]

一次函数复习导学案学校:张店中学年级:八年级执笔:张艳丽一:学习目标①结合具体情境体会一次函数的意义,根据条件确定一次函数表达式。

②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(h>0或b<0时,图象的变化情况)。

③理解正比例函数。

④能根据一次函数的图象求二元一次方程组的近似解。

⑤能用一次函数解决实际问题。

二、知识复习1.定义形如y=的函数(其中k,b是常数,且k¹0)叫做一次函数.特别地,当b=0时,一次函数y= (k¹0),这时y叫做x的正比例函数.2.图象一次函数y=kx+b(k¹0)的图象是一条经过( ,0)和(0, )的直线.正比例函数y=kx是一条经过的直线.3.性质(1)当k>0时,y随x的增大而 .(2)当k<0时,y随x的增大而 .(3)函数y=kx+b(k¹0)的图象经过象限的情况:4.用图象法解二元一次方程组(1)将方程组的每个方程都化为一次函数表达式.(2)在同一直角坐标系中画出这两个一次函数的图象.(3)这两条直线的的坐标,就是这个二元一次方程组的解.5.一次函数与一元一次不等式的关系一次一次不等式kx+b>0(或kx+b<0)的解集,就是使一次函数中y>0(或y<0)的 ` 的取值范围.反映在图象上是一次函数图象在x轴上方部分(或x轴下方部分)对应的6.一次函数的应用一次函数的应用主要有:(1)利用一次函数的性质,如增减性等来解决生活中的优化问题等;(2)利用一次函数的图象寻求实际问题中的变化规律解题;(3)利用两个一次函数的图象来解决方案选择问题;也可以把函数问题转化成不等式或方程问题加以解决;(4)与方程或不等式(组)结合解决实际问题.【学法指导】自主探究法三、【自主学习】1 已知一次函数y=-2x-6。

(1)当x=-4时,则y= ,当y=-2时,则x= ;(2)画出函数图象;(3)不等式-2x-6>0解集是_____,不等式-2x-6<0解集是_____;(4)函数图像与坐标轴围成的三角形的面积为;(5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;(6)如果y 的取值范围-4≤y≤2,则x的取值范围__________;(7)如果x的取值范围-3≤x≤3,则y的最大值是________,最小值是_______.2 。

19.2.2一次函数导学案(1)

19.2.2一次函数导学案(1)

三、思考探究 1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.这些函数解析式 有哪些共同特征? (1)有人发现,在 20℃~25℃时,蟋蟀每分鸣叫次数 c 与温度 t(单位:℃)有关,即 c 的值是 t 的 7 倍与 35 的差.____________________________________ (2) 一种计算成年人标准体重 G (单位: kg) 的方法是: 以厘米为单位量出身高值 h, 再减常数 105, 所得差是 G 的值.____________________________________ (3)某城市的市内电话的月收费额 y(单位:元)包括月租费 22 元和拨打电话 x min 的计时费(按 0.1 元/min 收取). ________________________________ (4)把一个长 10 cm、宽 5 cm 的长方形的长减少 x cm,宽不变,长方形的面积 y(单位:cm)随 x 的变化而变化. _____________________________________ 思考:上面这些函数解析式有什么共同特征? 共同特征:_________________________________________ 2、概念学习 一次函数的概念:___________________________________ 问题探究:当 b=0 时,y=kx(k≠0)是不是一次函数呢?______________________ 四、课堂练习
ห้องสมุดไป่ตู้
x
(5)y=-0.5x-1(6)y = 2(x + 3) (7)y=4-3x 2、若函数y = b − 3 x + b2 − 9是正比例函数,则 b = b = _________ 3、下列说法正确的是( A、y = kx + b是一次函数 )

一次函数复习课导学案一

一次函数复习课导学案一

第十九章《一次函数》复习课导学案
班级________________ 姓名__________________
一、学习目标:
1、知道什么是函数,能判断一个函数是不是一次函数和正比例函数;
2、理解一次函数的性质,会运用一次函数图像及性质解决简单的问题;
3、能会用待定系数法确定一次函数的解析式;
4、能利用函数的知识解一元一次方程(组)和一元一次不等式。

二、重点:一次函数的图象与性质,待定系数法
三、难点:函数与方程(组)不等式的关系
四、教学过程:(一)知识点梳理
时,y=(k—3)x—5是
5x+6,y的值随x值、已知直线y=x+6与x轴,y
一个三角形面积为___________
y=4x向_______平移______单位得到直线y=4x+2。

、一次函数图象如右图,当x<3时y。

一次函数复习导学案

一次函数复习导学案

教学课题一次函数综合复习--导学案教学目标考点分析1、掌握一次函数、正比例函数的概念、图象及其性质、表达式的求法;2、掌握一次函数及其图象的应用;3、掌握一次函数关于坐标轴及原点对称后的一次函数表达式。

重点难点重点:一次函数、正比例函数的概念、图象及其性质、表达式的求法;难点:一次函数及其图象的应用,关于坐标轴及原点对称后的一次函数表达式求法。

教学方法讲练结合法、启发式教学教学过程知识要点梳理1、一次函数的定义一次函数的一般形式:y=kx+b (k ,b为常数k≠0)当b=0时y=kx (k为常数k≠0)也叫正比例函数。

思考:y=(m-1)X 是一次函数,则m=___________2、一次函数的图象与性质(1)一次函数y=kx+b (k ,b为常数k≠0) 的图象是一条直线,与x轴的交点是______,(2)与y轴的交点是_______思考:画一次函数图象的常用方法?如何画y=2x+3的图像?(2)正比例函数y=kx (k为常数k≠0)的图象是经过点_______和(1,k)的一条直线。

(3)一次函数y=kx+b (k ,b为常数k≠0)的性质:当k>0时,图象过_______象限,y随x的增大而______当k<0时,图象过_______象限,y随x的增大而_____当b>0时,图象与y轴交于_____半轴, 当b<0时,图象与y轴交于_____半轴, 当b=0时呢?3、一次函数解析式的求法:常用方法:待定系数法一、选择题1、下列函数关系中表示一次函数的有()①12+=xy②xy1=③xxy-+=21④ts60=⑤xy25100-=A.1个B.2个C.3个D.4个2、下列函数中,图象经过原点的为( )A.y=5x+1 B.y=-5x-1 C.y=-5xD.y=51-x3、下列各函数中,y是x的正比例函数的是()A、y=3x2B、y=3xC、y=3xD、y=113x+4、下列语句不正确的是A、所有的正比例函数都是一次函数B、一次函数的一般形式是y=kx+bC、正比例函数和一次函数的图象都是直线D、正比例函数的图象是一条过原点的直线5.下列函数(1)y=2xπ (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=12-x中,是一次函数的有()A、 4个 B、 3个 C、 2个 D、 1个6.点P关于x轴的对称点1P的坐标是(4,-8),则P点关于原点的对称点2P的坐标是()A、(-4,-8)B、(4,8)C、(-4,8)D、(4,-8)1O OO O7.下面哪个点不在函数32+-=x y 的图像上( )A 、(-5,13)B 、(0.5,2)C 、(3,0)D 、(1,1) 8.下面函数图象不经过第二象限的为 ( )(A) y=3x+2 (B) y=3x -2 (C) y=-3x+2 (D) y=-3x -2 9.已知P (x ,y )在第四象限,且|x|=3,|y|=5,则P 点坐标为( ) A 、 (3,5) B 、 (-3,5) C 、 (3,-5) D 、 (-3,-5) 10、若y=(m-2)x+(m 2-4)是正比例函数,则m 的取值是A 、2B 、-2C 、±2D 、任意实数 11、y=28(3)m m x--是正比例函数,则m 的值为 ( )A 、±3B 、3C 、﹣3D 、任意实数 12、若23y x b =+-是正比例函数,则b 的值是 ( )A. 0B.23C. 23-D. 32- 13、下列给出的四个点中,不在直线y =2x-3上的是 ( )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) 14、直线b kx y +=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( )(A)32+=x y (B)232+-=x y (C)23+=x y (D)1-=x y15、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个16、 一次函数b ax y -=中,0,0><b a ,则它的图像可能是( )17、如图,线段AB 对应的函数表达式为( ) A .y=-32x+2 B .y=-23x+2 C .y=-23x+2(0≤x ≤3) D .y=-23x+20(0<x<3)18、若m <0, n >0, 则一次函数y=mx -n 的图象不经过 ( )A.第一象限B. 第二象限C.第三象限D.第四象限 19、已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( ) A.3m +1 B.3m C.m D.3m -120下面图象中,关于x 的一次函数y =-mx -(m -3)的图象不可能是( ) 21、 一次函数b kx y +=与k bx y +=在同一坐标系中的图象大致是 ( )yyyy22、一次函数y=ax+b ,ab <0,则其大致图象正确的是( )23、一次函数y =kx +b 的图象经过(m ,1)、(-1,m),其中m>1,则k 、b ( ) A .k>0且b<0 B .k>0且b>0 C .k<0且b<0 D .k<0且b>024、两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图象可能是下图中的 ( )二、填空题25、在函数① y=2x ②y=-3x+1 ③ y= x 2中, x 是自变量, y 是x 的函数, 一次函数有_______ 正比例函数有______, 26.某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y 的值随x 值的增大而增大。

一次函数的复习导学案

一次函数的复习导学案

中考第一轮复习《一次函数》导学案复习目标 :1. 清楚一次函数的意义及其图像的性质;会利用函数图象解决实际问题; 2.会求一次函数的解析式;3.理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系.复习重点:掌握一次函数的图象及性质,会利用待定系数法求一次函数的解析式.复习难点:1. 会利用函数图象解决实际问题.2. 理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系.数学思想方法:数形结合的思想方法,转化的思想方法,函数与方程的思想复习过程:一. 自主复习(知识梳理)1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质4. 如果要求两条直线的交点坐标,你会采用的方法是 .5. 如果两条直线y =k 1x +b 1和y =k 2x +b 2平行,可以得到 .6. 求一次函数的解析式: (1)、设函数解析式为 (2)、代入已知两点的坐标或者x,y 的两组对应值,得到 (3)、解 (4)、写出函数解析式。

7. 求一次函数的图象与坐标轴围成的三角形或四边形的面积;一次函数在解决实际问题中的应用;用函数观点看方程(组)和不等式。

二.合作交流k >0,b >0k >0,b <0k <0,b >01.(2008重庆)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )2.(2007重庆) 已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 。

一次函数复习课导学案

一次函数复习课导学案

学习目标:1.使学生巩固一次函数的概念、图象及性质,引导学生对一次函数的重点知识有一个整体把握,2.进一步体会数学来源于生活又服务于生活,提高学生数学知识的应用意识。

3.通过学生亲自参与合作学习,锻炼其概括总结能力、分析能力、识图能力。

一.一次函数的定义一次函数的概念:如果函数______=y (b 、k 为常数,且k ______),那么y 叫做x 的一次函数。

特别地,当b _____时,函数______=y (k ______)叫做正比例函数。

练习:求m 为何值时,关于x 的函数()312++=m x m y 是一次函数,并写出其函数关系式。

二.一次函数的图像a. 正比例函数()0≠=k kx y 的图象是过点(_____),(______)的_________。

b 。

一次函数()0≠+=k b kx y 的图象是过点(0,___),(____,0)的__________。

c 。

一次函数()0≠+=k b kx y 的图象与b 、k 符号的关系:k___0,b___0 k___0,b___0 k___0,b___0 k___0,b___0练习:一次函数2-3x y +=的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2.已知一次函数y=kx+b ,y 随着x 的增大而减小,且kb 〈0,则在直角坐标系内它的大致图象是( )(A) (B) (C) (D )三.一次函数的性质一次函数()0≠+=k b kx y 的性质:⑴当k 〉0时,y 随x 的增大而_________.⑵当k <0时,y 随x 的增大而_________。

练习:点A (5,1y )和B(2,2y )都在直线1+-=x y 上,则1y 与2y 的关系是( )A 、1y ≥2yB 、1y =2yC 、1y <2yD 、1y >2y 2。

已知一次函数()m x m y -+-=34,当m 为何值时,①y 随x 值增大而减小; ②直线过原点; ③ 直线与y 轴交于点(0, 1)四.一次函数表达式的确定:待定系数法:用待定系数法求一次函数y=kx+b 的解析式,可由已知条件给出的两对x 、y 的值,列出关于k 、b 的二元一次方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数复习课导学案(1)
学习目标:
1、知道什么是函数,并能判断某变化过程中两个变量之间的关系是否函数关系;
2、知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数;
3、会运用一次函数图像及性质解决简单的问题;
4、会用待定系数法确定一次函数的解析式。

基本知识点突破:
1、(1)函数的概念:一般地,在某个变化过程中,有两个 变量x 和 y,如果给定一个x 值, 相应地就唯一确定了一个y 值,那么就 是_____ 的函数;
(2).函数的图象:对于一个函数,如果把自变量与函数的每对对应值分别作为点的 ,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

(3)、描点法画图象的步骤: (4).函数的三种表示方法: (5)、自变量的取值范围: (1)分式类:分母不为0,
(2)根式类:开偶次方的被开方数大于等于0, (3)整式类:所有实数。

(4)实际类:使实际问题有意义。

练习:1、求下列函数中自变量x 的取值范围
(1)y= x (x+3);(2)y= (3)y= (4)y=
2、下列四组函数中,表示同一函数的是( )
8
43+x 12-x 5
32-+x x
5、一次函数y=kx+b 的图象是一条直线,其中k 决定直线增减性,b 决定直线与y 轴的交点位置. k 和b 决定了直线所在的象限.
6.两直线的位置关系:若直线L 1和L 2的解析式为y=k 1X+b 1和y=k 2X+b 2,它们的位置关系可由其系数确定
k 1 ≠ k 2 L 1和L 2相交( L 1和L 2有且只有一个交点) k 1 = k 2 b 1 ≠ b 2 L
1和
L 2
平行( L
1和L 2
没有交点)
k
1 = k
2 b 1 = b 2 L 1和L 2重合
练习:1.下列函数关系式中,那些是一次函数?哪些是正比例函数?
(1)y= - x - 4
(2)y=x
2
(3)y=x/2 (4)y=4/x
(5)y=5x-3 (6)y=6x
2
-2x-1
2、如图,在同一坐标系中,关于x 的一
次函数y = x+ b 与 y = b x+1的图象只可能是( )
3、已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
4、一次函数y=ax+b 与y=ax+c(a>0)在同一坐标系中的图象可能是( )
5、如图,已知一次函数y=kx+b 的图像,当x<0 ,y 的取值范围是( ) A.y>0 B.y<0 C.-2<y<0 D. y<-2
6、已知函数y=-x+2.当-1<x ≤1时,y 的取值范围_________.
7、一次函数y=b-3x ,y 随x 的增大而
8、一次函数y=-2x+b 图象过(1,-2),则b=
9、一次函数y= -x+4的图象经过 象限
10、直线y=kx+b 经过一、二、三象限,那么y=bx-k 经过 象限 11、函数y=(m-2)x 中,已知x1>x2时,y1<y2,则m 的范围是
A B C D
12、直线y=3x+b 与y 轴的交点的纵坐标为-2,则这条直线一定不过 象限
13、一次函数y=(m 2
-4)x+(1-m)和y=(m+2)x+(m 2
-3)的图像与y 轴分别交于P ,Q 两点,若P 、Q 点关于x 轴对称,则m= 。

1、甲、乙两地相距S 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足vt=S ,在这个变化过程中,下列判断中错误的是 ( )
A .S 是变量
B .t 是变量
C .v 是变量
D .S 是常量
2、如图所示的图象分别给出了x 与y 的对应关系,其中y 是x 的函数的是( )
3. 已知函数y = ( m+1) x 是正比例函数,并且它的图象经过二,四象限,则这个函数的解析式
为 .
4. 如果一次函数y=kx+b 的图象经过第一、三、四象限,则k 0,b 0
5、若正比例函数y=(m-1)x m -3
的图象经过第二、四象限,则m=
6、若一次函数y=- x 2m -7
+m-2的图象经过第三象限,则m=
7、已知m 是整数且一次函数y=(m+4)x+m+2的图象不经过第二象限,则m= 8、若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是 9、(1) 有下列函数:① ②λ=π ③ ④ 其中过原点的直线是 ;函数y 随x 的增大而增大的是 ;函数y 随x 的增大而减小的是 ;图象在第一、二、三象限的是 。

(2)、如果一次函数y=kx-3k+6的图象经过原点,那么k 的值为________。

(3)、已知y-1与x 成正比例,且x=-2时,y=4,那么y 与x 之间的函数关系式为_________________ 10、求下图中直线的函数解析式
11、已知一次函数的图象经过点(2,1)和(-1,(1)求此一次函数解析式
(2)求此图象与x 轴、y 轴的交点坐标。

12、已知y=y 1+y 2,y 1与x 2成正比例,y 2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4,求x=3时,y 的值
13、已知:函数y = (m+1) x+2 m ﹣6 ①若函数图象过(﹣1 ,2),求此函数的解析式。

56-=x y 4+=x y 34+-=x y ---
--
o

②若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式。

③求满足②条件的直线与此同时y = ﹣3 x + 1 的交点,并求这两条直线与y 轴所围成的三角形面积。

相关文档
最新文档