运筹学总复习同济资料

合集下载

运筹学复习资料资料讲解

运筹学复习资料资料讲解

运筹学复习一、填空题1、线性规划中,满足非负条件的基本解称为基本可行解,对应的基称为可行基线.2、性规划的目标函数的系数是其对偶问题的右端常数;而若线性规划为最大化问题,则3、对偶问题为最小化问题。

m n个变量构成基变量的充要条件是不含闭回路。

4、在运输问题模型中,15、动态规划方法的步骤可以总结为:逆序求解最优目标函数,顺序求__最优策略、最优路线和最优目标函数值。

6、工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;7、对不定步数问题,用迭代法求解,有函数迭代法和策略迭代法两种方法。

8、在图论方法中,通常用点表示人们研究的对象,用边表示对象之间的某种联系。

9、一个无圈且连通的图称为树。

10、图解法提供了求解只含有两个决策变量的线性规划问题的方法.11、图解法求解生产成本最小线性规划问题时,等成本线越往左下角移动,成本越低.12、如果线性规划问题有有限最优解,则该最优解一定在可行域的边界上上达到。

13、线性规划中,任何基对应的决策变量称为基变量.14、原问题与对偶问题是相互对应的.线性规划中,对偶问题的对偶问题是原问题.15、在线性规划问题中,若某种资源的影子价格为10,则适当增加该资源量,企业的收益将_会 (“会”或“不会”)提高.16、表上作业法实质上就是求解运输问题的单纯形法.17、产销平衡运输问题的基变量共有m+n-1个.18、动态规划不仅可以用来解决和时间有关的多阶段决策问题,也可以处理与时间无关的多阶段决策问题.19、构成动态规划模型,需要进行以下几方面的工作:正确选择阶段(k)变量,正确选择状态(Sk)变量,正确选择_ 决策(UK)变量,列出状态转移方程, 列出_阶段指标函数_,建立函数基本方程.20、动态规划方法可以用来解决和某些与时间有关的问题,但也可以用来解决和某些与时间无关的问题.在图论方法中,图是指由点与边和点与弧组成的示意图.21、网络最短路径是指从网络起点至终点的一条权之和最小的路线.简述单纯形法的计算步骤:第一步:找出初始可行解,建立初始单纯形表。

运筹学 本(复习资料)

运筹学 本(复习资料)

《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。

[ ]3.任何线性规划问题存在并具有惟一的对偶问题。

[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。

[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。

[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。

[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。

[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。

[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。

[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。

[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。

[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。

[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。

[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。

[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。

运筹学期末考试复习资料

运筹学期末考试复习资料

《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。

答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。

答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。

答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。

答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。

答案:对7.LP 问题的可行域是凸集。

答案:对8.动态规划实质是阶段上枚举,过程上寻优。

答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。

答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。

答案:错11.LP问题的基可行解对应可行域的顶点。

答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。

答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。

答案:对14.对偶问题的对偶问题一定是原问题。

答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。

《运筹学总复习》课件

《运筹学总复习》课件
应用领域:物流、供应链管理、路径规划等。
难点:计算复杂度高,难以找到最优解。
生产与存储问题
问题描述:生产与存储问题是指在给定时间内,如何安排生产计划和存储策略,以最小化生产成本和存 储成本。 经典模型:经济批量模型(EOQ)、生产存储模型(P-S模型)、生产存储模型(P-S模型)等。
求解方法:动态规划、线性规划、整数规划等。
非线性规划的求解方法:非线性规划的求解方法包括梯度下降法、牛顿法、遗传算法等。
整数规划
定义:整数规划是一种特殊的线性规划,其中所有变量都必须是整数
目标函数:整数规划的目标函数通常是线性的,表示为决策变量的 线性组合 约束条件:整数规划的约束条件通常是线性的,表示为决策变量的线 性不等式或不等式 求解方法:整数规划的求解方法包括分支定界法、割平面法、遗传 算法等
MATL AB在运筹学中的应 用包括优化问题、决策问题、
排队论等
Python在运筹学中的应用
Python语言简介:一种广泛应用于科学计算、数据分析和机器学习等领域的编程语言 Python在运筹学中的应用:可以用于求解线性规划、整数规划、非线性规划等运筹学问题 Python库介绍:如scipy、numpy、pandas等,可以用于进行运筹学计算和可视化 Python代码示例:展示如何使用Python编写运筹学问题的求解代码
Gurobi优化器介绍与使用
Gurobi优化器是一款功能强大的优化工具,广泛应用于运筹学、数学规划等领域。
Gurobi优化器支持多种编程语言,如Python、C++、Java等,方便用户进行编程实 现。
Gurobi优化器提供了丰富的优化算法,如线性规划、非线性规划、整数规划等,满足 不同问题的求解需求。

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。

确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。

都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。

问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。

问题中用一组决策变量来表示一种方案。

3. 线性规划问题标准型的特征。

4. 化标准型的方法。

123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。

6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。

7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。

8. 最优解:函数达到最优的可行解叫做最优解。

9.图解法适合于变量个数为2个的线性规划问题。

10.单纯形法解线性规划问题如何确定初始基本可行解。

(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。

(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。

(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。

运筹学复习资料资料讲解

运筹学复习资料资料讲解

运筹学复习一、 填空题1、线性规划中,满足非负条件的基本解称为基本可行解,对应的基称为可行基线.2、性规划的目标函数的系数是其对偶问题的右端常数;而若线性规划为最大化问题,则3、对偶问题为最小化问题。

4、在运输问题模型中,1m n +-个变量构成基变量的充要条件是不含闭回路。

5、动态规划方法的步骤可以总结为:逆序求解最优目标函数,顺序求__最优策略、最优路线和最优目标函数值。

6、工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;7、对不定步数问题,用迭代法求解,有函数迭代法和策略迭代法两种方法。

8、在图论方法中,通常用点表示人们研究的对象,用边表示对象之间的某种联系。

9、一个无圈且连通的图称为树。

10、图解法提供了求解只含有两个决策变量的线性规划问题的方法.11、图解法求解生产成本最小线性规划问题时,等成本线越往左下角移动,成本越低.12、如果线性规划问题有有限最优解,则该最优解一定在可行域的边界上上达到。

13、线性规划中,任何基对应的决策变量称为基变量.14、原问题与对偶问题是相互对应的. 线性规划中,对偶问题的对偶问题是原问题.15、在线性规划问题中,若某种资源的影子价格为10,则适当增加该资源量,企业的收益将_会 (“会”或“不会”)提高.16、表上作业法实质上就是求解运输问题的单纯形法.17、产销平衡运输问题的基变量共有m+n-1个.18、动态规划不仅可以用来解决和时间有关的多阶段决策问题,也可以处理与时间无关的多阶段决策问题.19、构成动态规划模型,需要进行以下几方面的工作:正确选择阶段(k )变量,正确选择状态(Sk )变量,正确选择_ 决策(UK )变量,列出状态转移方程, 列出_阶段指标函数_,建立函数基本方程.20、动态规划方法可以用来解决和某些与时间有关的问题,但也可以用来解决和某些与时间无关的问题.在图论方法中,图是指由点与边和点与弧组成的示意图.21、网络最短路径是指从网络起点至终点的一条权之和最小的路线.简述单纯形法的计算步骤:第一步:找出初始可行解,建立初始单纯形表。

运筹学复习资料(1)

运筹学复习资料(1)

运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。

其中,可行域无界,并不意味着目标函数值无界。

无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。

有界可行域对应唯一最优解和多重最优解两种情况。

线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。

单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。

换基迭代要求除了进基的非基变量外,其余非基变量全为零。

检验最优性的一个方法是在目标函数中,用非基变量表示基变量。

要求检验数全部小于等于零。

“当x 1由0变到45/2时,x 3首先变为0,故x 3为退出基变量。

”这句话是最小比值法的一种通俗的说法,但是很有意义。

这里,x 1为进基变量,x 3为出基变量。

将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。

单纯型原理的矩阵描述。

在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m 矩阵与其最初的那一列向量的乘积。

最初基变量对应的基矩阵的逆矩阵。

这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。

但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。

解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。

运筹学-总复习(整理全部重点题目)-

运筹学-总复习(整理全部重点题目)-

《管理运筹学》总复习第一天:1)(★★★★★)课本Page59第5题(租赁问题):某公司在今后四个月内需租用仓库堆放物资。

已知各个月所需的仓库面积数字如下所示:设第个月签订的打算租用个月合同仓库面积为,那么这个月共有可能有如下合同:第一个月:第二个月:第三个月:第一个月:因此目标函数为:约束条件为:2)(★★★)讲义Page8例1(人力资源问题):福安商场是个中型百货商场,他对销售员的需求经过统计分析如下表。

为了保证售货人员充分的休息,售货人员每周工作5天,休息2天,并且要求休息的两天是连续的。

问如何安排售货人员的工作作息,才能做到既满足工作需要,又使配备的工作人员最少?解:设在星期开始休息的人数为,表示星期一到星期日那么,目标函数为:约束条件为:周一:周二:周三:周四:周五:周六:周日:非负约束:3)(★)【据说出题时会和整数规划相融合】讲义Page10例5(投资问题):某部门现有资金200万,今后五年内考虑给以下项目投资。

已知,项目A:从第一年到第五年都每年年初都可以投资,当年末能收回本利110%;项目B:从第一年到第四年都每年年初都可以投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万;项目C:需在第三年初投资,第五年末收回本利140%,但规定最大投资额不能超过80万;项目D:须知第二年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万;据测定每万元每次投资的风险指数如下表:1)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大?2)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万的基础上使得其投资总的风险系数最小?解:设第年初投资在项目上的金额为,其中,。

第一年初:,,不能浪费资金,所以有,第一年年末收回:第二年初:,,,用第一年年末的收回投资,所以有:,第二年年末收回:第三年初:,,,用第二年年末收回投资,所以有:,第三年年末收回:第四年初:,,用第三年年末收回进行投资,所以有:,第四年年末收回:第五年初:用第四年年末回收进行投资,所以有:,第五年年末收回:同时,根据项目的要求,有:第(1)问答如下:目标函数为:约束条件为:第(2)问答如下:目标函数为:约束条件为:4)(★★★★)讲义Page11分析讨论题3(工厂布局问题):设有某种原料产地A1,A2,A3,把这种原料经过加工,制成成品,再运往销地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

max z = cx s.t. Ax ≤ b
x≥ 0
标准化
max z = cx + 0xs s.t. Ax + Ixs = b
x, xs ≥ 0
20
(标准化)原问题的初始单纯形表
cB
cN
0
cB xB b
xB
xN
xS
0 xS b
B
N
I
检验数行
cB
cN
0
经过若干次迭代
cB
cB xB b
xB
cB xB B-1b
对偶问题(原问题)
min w = yb n 个约束
a1jy1 + a2jy2 + … + a2jym ≥ cj a1jy1 + a2jy2 + … + a2jym ≤ cj
a1jy1 + a2jy2 + … + a2jym = cj
m 个变量
yi ≥ 0
yi ≤ 0
yi 无约束
18
(1) max z 3x1 x2 x3
定理2.4 (互补松弛定理)
若X*,Y*为最优解,Xs,Ys为原问题和对偶问题的松弛 变量,则有YsX*=0,Y*Xs=0
也即,在(LP)和(DP)的最优解中: (1) 如果对应某一约束的对偶变量取值非零,则该约 束取严格等式; (2) 如果某一约束取严格不等式,则其对应的对偶变 量必取零。
10
可行解
基解
基可行解
可行解,基可行解,基解的关系
11
§3.3.线性规划基本性质(单纯形法理论基础)
定理1.1:若线性规划问题有可行解,则其可行 域{x | Ax = b, x ≥ 0} 是凸集(凸多面体)。
引理1.1:线性规划的可行解x = (x1, x2, …., xn) 为基可行解的充分必要条件是x的正分量所对应 的系数列向量是线性无关的。
标准形式:用向量和矩阵表述
max z cx
s.t. Ax b
x0
其中 :
x x1, x2 , , xn T ,
a11
A
a21
am1
a12 a22
am 2
a1n
a2n
,
amn
b b1, b2 , , bm T , c c1, c2 ,
, cn .
5
小结
一般线性规划化为标准型
I
检验数行
0
cN xN B-1N cN – cBB-1N
0 xS B-1 – cBB-1
21
对偶规划的性质和原理
定理2.0 (对称性) 对偶规划的对偶规划是原规划
定理2.1 (弱对偶定理) 若 x, y 分别为(LP)和(DP)的可行解,则
cx ≤ yb
22
推论 若(LP)具有无界解,则(DP)无可行解。
x1 2x2 x3 4
x1 2x2 4x3 1
x1
x2
3x3
1
x1 0, x2 0, x3无约束
19
原问题的最优单纯形表中关于对偶问题 的最优解的信息:
(LP) max z = cx s.t. Ax ≤ b x≥ 0
(DP) min w =y b s.t. yA ≥ c y≥ 0
12
定理1.2:线性规划问题的基可行解对应于可 行域的顶点
定理1.3:若线性规划有最优解,则最优解必 在可行域的顶点达到。
13
小结
线性规划可行解的全体构成一个凸集,每个可行 解都对应这个凸集中的一点
每个基可行解对应于可行域的一个顶点。若可行 域非空则必有顶点存在,从而基可行解一定存在 。
一个基可行解对应着约束方程组系数矩阵中一组
(DP) min w = y b s.t. y A ≥ c y≥ 0
注意: x为列向量, y为行向量。
17
非对称形式的对偶规划
原问题(对偶问题)
max z = cx n 个变量
xj ≥ 0 xj ≤ 0
xj 无约束
m 个约束
ai1x1 + ai2x2 + … + ainxn ≤ bi ai1x1 + ai2x2 + … + ainxn ≥ bi ai1x1 + ai2x2 + … + ainxn = bi
注:反之则不一定成立。 (DP)无可行解,对应(LP)或有无 界解,或无可行解
定理2.2 (最优性定理) 若x*, y*分别(LP)和(DP)的可行解,且
cx* = y*b, 那么x*, y*分别为(LP)和(DP)的最优解。
23
定理2.3 (强对偶定理)
若(LP)和(DP)均可行,那么(LP)和(DP)均有最优解, 且最优值相等。
线性无关的向量,基解的个数不超过
Cnm
m! n!(n m)!
若最优解存在,目标函数的最优值必在可行域的某个 顶点上达到
14
初始可行解的获取 一般情况下初始基本可行解不明显。
通常用以下两种方法求初始可行解: 大M方法; 两阶段法。
15
单纯形法计算步骤小结
16
对偶问题的定义
对称形式:互为对偶
(LP) max z = c x s.t. Ax ≤ b x ≥0
9
基:设A是约束方程组的m×n 阶系数矩 阵(设n>m),秩为m。B= (P1, P2, …, Pm) 是A中m阶非奇异子矩阵,则称B是线性 规划问题的一个基矩阵,简称基。B中的 列向量Pj 称为基向量,与基向量Pj对应 的变量xj称为基变量,其它变量称为非基 变量。令非基变量为0,则由Ax=b可求出 一个解,这个解x称为基解。满足非负条 件的基解称为基可行解。
期末复习
1
线性规划 对偶规划 整数规划 运输问题 动态规划 图与网络 网络规划技术
2
线性规划数学模型的构成三要素
决策变量 目标函数
目标可以是最大化或最小化
约束条件
由不等式组或方程组构成
3
标准形式
目标最大化、约束为等式、决策变 量均非负、右端项非负。
max z = c1x1 + c2x2 + … + cnxn
6
续表
7
求解方法: 图解法 单纯形法
8
解的定义:
称如条件x果=。x(1x,1x, 2x,…2, …, x,nx满n)足为该线线性性规规划划的的一所个有可约行束解, 一个线性规划的全体可行解构成的集合,称 为该线性规划的可行域(集)。 在一个线性规划的可行域中,使得目标函数 达x的n*到解)称最)为大。该(线最性小规)划的的可最行优解解x(* =即( x该1*线, x性2*,规…划, 一个线性规划的最优解所对应的目标函数的 值z* = c1x1* +c2x2* +…+cnxn* 称为该线型规划 的最优值。
Subject to
a11 x1 + a12 x2 + … + a1n xn a21 x1 + a22 x2 + … + a2n x x1 + am2 x2 + … + amn xn = bm
x1, x2, …, xn ≥ 0
其中bi ≥0 ,i = 1, 2, …, m 4
相关文档
最新文档