第7章 逐步聚合

合集下载

高分子化学 公式推导

高分子化学 公式推导

浙江大学材化学院高分子化学公式推导第一章绪论(Introduction)(1)分子量的计算公式:M0:重复单元数的分子量M1:结构单元数的分子量(2)数均分子量:N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。

x i表示相应的分子所占的数量分数。

(3)重均分子量:m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量W i表示相应的分子所占的重量分数(4)Z均分子量:(5)粘均分子量:α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在 0.5~0.9之间(6)分布指数:分布指数第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学:引发剂的分解速率:引发剂的浓度引发剂分解一般属于一级反应,因而分解速率为的一次方。

将上式积分得:进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有:半衰期(2)自由基聚合微观动力学链引发速率:链增长速率:链终止速率:式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。

推导如下:链引发反应由以下两个基元反应组成:式中:为初级自由基;为单体自由基。

若第二步的反应速率远大于第一步反应(一般均满足此假设),有:引入引发剂效率后,得引发速率的计算式如下:一般用单体的消失速率来表示链增长速率,即:链增长反应如下式:引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等,kp1=kp2=kp3=…kp x=kp推得:自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:偶合终止:歧化终止:终止总速率:式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率常数。

在以上公式的基础上,引入处理自由基动力学的三个假设,得到以单体消耗速率表示的总聚合速率,其计算公式为:以及单体浓度随时间的变化关系为:若引发剂浓度可视为常数,则上式还原为:以上公式推导如下:自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学的第二个假定——稳态假定,假定体系中自由基浓度在经过一段很短的时间后保持一个恒定值,或者说引发速率和终止速率相等, Ri=Rt即:解出:再引入处理自由基动力学的第三个假定:大分子的聚合度很大,用于引发的单体远少于增长消耗的单体, Ri <<Rp由此,用单体消失速率来表示的聚合总速率就等于链增长速率代入引发速率的表达式得:代入引发剂浓度随时间的变化关系得到:积分得:两边同时变号当引发剂的浓度可看作常数时即:即:此时:可略去高阶无穷小量得:(3)动力学链长及平均聚合度1)不考虑链转移反应自由基聚合过程中双基终止有两种方式,一种为双基偶合终止,另一种为双基歧化终止,二者所占的分率的不同将会引起平均聚合度的改变,但两种终止方式不会改变动力学链长的大小,二者的计算公式为:式中:Rtc为双基偶合终止的反应速率;Rtd为双基歧化终止的反应速率;Rp为链增长速率。

10年高分子复习题

10年高分子复习题

2010高分子化学复习题第一章绪论1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)结构单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反应,缩聚反应(7)加聚物,缩聚物,低聚物2.与低分子化合物比较,高分子化合物有什么特征?3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。

4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。

5. 各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子。

6. 写出下列单体的聚合反应式和单体、聚合物的名称(1) CH2=CHF (2) CH2=CH(CH3)2CH3|(3) CH2=C |COO CH3 (4) HO-( CH2)5-COOH7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?(1) -[- CH2- CH-]n-|COO CH3(2) -[- CH2- CH-]n-|OCOCH3(3) -[- CH2- C = CH- CH2-]n-| CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反应式:(1) 聚苯乙烯 (2) 聚丙烯 (3) 聚四氟乙烯 (4) 丁苯橡胶 (5) 顺丁橡胶 (6) 聚丙烯腈 (7) 涤纶 (8) 尼龙6,10 (9) 聚碳酸酯 (10) 聚氨酯9. 写出下列单体形成聚合物的反应式。

指出形成聚合物的重复单元、结构单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反应。

第二章自由基聚合1.举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。

名词解释 1

名词解释 1

第五章离子聚合(Ionic Polymerization)活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。

化学计量聚合(Stoichiometric calculation Polymerization):阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。

开环聚合(Ring-Opening Polymerization):环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。

第六章配位聚合(Coordination Polymerization)配位聚合(Coordination Polymerization):单体与引发剂经过配位方式进行的聚合反应。

具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。

配位聚合又有络合引发聚合或插入聚合之称。

定向聚合(Stereo-regular Polymerization):任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。

定向聚合等同于立构规整聚合(Stereo-specific Polymerization)。

Ziegler-Natta聚合(Ziegler –Natta Polymerization):采用Zigler-Natta引发剂的任何单体的聚合或共聚合。

立体异构(Stereo-isomerism):分子中的原子的不同空间排布而产生不同的构型。

可分为光学异构体和几何异构体。

构型(Configuration):是由原子(或取代基)在手性中心或双键上的空间排布顺序不同而产物的立体异构。

构象(Conformation):构象则是对C-C单键内旋转异构体的一种描述,有伸展型、无规线团、螺旋型和折叠链等几种构象。

第七章逐步聚合反应

第七章逐步聚合反应
低分子副产物
6
第七章 逐步聚合反应
(2)逐步加成聚合 重键加成聚合:含活泼氢功能基的亲核化合物与含亲电 不饱和功能基的亲电化合物间的聚合。如聚氨酯的制备。
nO C N R N C [ C O O + n HO N H R N R' C OH O R' O ] n
H O
含活泼氢的功能基:-NH2, -NH, -OH, -SH, -SO2H, -COOH, -SiH等 亲电不饱和功能基:主要为连二双键和三键,如:-C=C=O, -N=C=O,-N=C=S,-C≡C-,-C≡N等
7—1
对二元酸与二元醇的缩聚反应来说,初始的羧基数和羟 基数N0等于二元酸和二元醇的分子总数,t 时刻的羧基数或 羟基数N等于 t 时刻的聚酯分子数。
44
第七章 逐步聚合反应
聚合体系中任何两分子(单体或聚合物分子) 间都能相互反应生成聚合度更高的聚合物分子。
22
第七章 逐步聚合反应
2—2官能度体系聚合得到线型聚合物; 2—f(f>2)官能度体系聚合得到支链型 或体型聚合物。
23
第七章 逐步聚合反应
缩聚反应的单体转化率、产物聚合度与反应时间关系 示意图: 产 物 聚 合 度 反应时间
单 体 转 化 率
25
比较自由基聚合、逐步聚合、阴离子聚合的 (1)转化率与时间关系 (2)聚合物相对分子量与时间关系
26
27
28
29
30
31
32
33
34
表2-25
H st S st

69.90kJ m ol1 K 1 104.60J m ol1 K 1 73.0kJ m ol1 K 1 89.0 J m ol1 K 1

高分子化学名词翻译和解释

高分子化学名词翻译和解释

第一章绪论(Introduction)高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

单体(Monomer):合成聚合物所用的-低分子的原料。

如聚氯乙烯的单体为氯乙烯。

重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。

如聚氯乙烯的重复单元为。

单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。

结构单元(Structural Unit):单体在大分子链中形成的单元。

聚氯乙烯的结构单元为。

聚合度(DP、Xn)(Degree of Polymerization) :衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以Xn表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以DP表示。

聚合物是由一组不同聚合度和不同结构形态的同系物的混合物所组成,因此聚合度是一统计平均值,一般写成、。

分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。

多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。

分布指数(Distribution Index) :重均分子量与数均分子量的比值。

即。

用来表征分子量分布的宽度或多分散性。

连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。

烯类单体的加聚反应大部分属于连锁聚合。

高分子第7章 逐步聚合1

高分子第7章 逐步聚合1

3) 著名的聚酯涤纶:
7.3 线型缩聚反应的机理
7.3.1. 线型缩聚与成环倾向
缩聚
1、成环反应可以看作为线型缩聚的副反应:环化物
成环
缩聚物
• 2-2,或2官能度体系是线型缩聚的必要条件,但不是充分条件, 还必须考虑成环倾向。 2、 热力学和动力学因素分析成环稳定性结论: 1)五、六元环最稳定,不易形成线型聚合物。 2)三、四、八~十一元环都不稳定,难以成环,易形成线型聚合物。 3)七元环有一定的稳定性,但以线型聚合物为主,伴有少量环状物, 两者构成平衡。 4)十二元以上的成环倾向与七元环相近,但实际较少遇到。 即,3,4,8~1 1< 7,12 < 5,6
例如,羟基酸
合成聚酯。
1) n=1时,双分子缩合,形成六元环:
2) HOCH2CH2COOH CH2=CHCOOH + H2O CH2 CH2 CH2
3)n=3、4 时,分子内缩合,形成较稳定的五、六元环内酯: CH2 HOCH2CH2CH2COOH CH2 CH2 4)n = >5 时,则主要形成线型聚合物: 羧基酸、
回 顾:转化率 C 的概念 某时刻的转化率是指转变成聚合物的单体占起始单体量的百分率:
C =(M0 -M)/ M0
注意:转化率的概念在逐步聚合反应中无意义;必须用反应程 度来描述反应的深度。
(1) 反应程度的概念:
t =0
t
N0
N
N0
N 体系中的分子数 体系中的OH数 体系中的COOH数
0
N0 - N
二聚体
2)二聚体同二元醇、二元酸或二聚体进一步反应,形成三聚体、四聚体;
二聚体 二元醇
二元酸 二聚体
二聚体

第七章聚合物化学反应

第七章聚合物化学反应

第七章聚合物化学反应一、名称解释1. 聚合物化学反应:研究聚合物分子链上或分子链间官能团相互转化的化学反应过程。

聚合物的化学反应根据聚合物的聚合度和基团的变化(侧基和端基)可分为相似转变、聚合物变大的反应及聚合物变小的反应。

2. 功能高分子:是指具有传递、转换或储存物质、能量可信息的高分子,其结构特征是聚合物上带有特殊功能基团,其中聚合物部份起着载体的作用,不参与化学反应。

按功能的不同,可分为化学功能高分子、物理功能高分子和生物功能高分子。

3. 高分子试剂:也叫反应性高分子,即高分子试剂上的基团起着化学试剂的作用,它是各类高分子的化学试剂的总称。

4. 高分子催化剂:将能起催化剂作用的基团接到高分子母体上,高分子本身不发生变化,但能起催化低分子反应。

这种催化剂称作高分子催化剂,5. 低分子基质:低分子反应物中的特定基团与保护试剂作用后受到保护不再参与主反应,这种受到保护的低分子反应物称作低分子基质。

6. 高分子基质:将要准备反应的低分子化合物以共价键形式结合到聚合物载体上,得到高分子基质。

7. 接枝:通过化学反应,在某些聚合物主链上接上结构、组成不同的支链,这一过程称为接枝,形成的产物称为接枝共聚物。

8. 嵌段:形成嵌段共聚物的过程。

9. 扩链:分子量不高的聚合物,通过适当的方法,使多个大分子连接在一起,分子量因而增大的过程称为扩链。

10. 交联:聚合物在光、热、辐射、或交联剂作用下,分子链间形成共价键,产生凝胶或不溶物,这一过程称为交联。

交联有化学交联和物理交联。

交联的最终目的是提高聚合物的性能。

如橡胶的硫化等。

11. 交联剂:使聚合物交联的试剂。

12. 降解:降解是聚合度分子量变小的化学反应的总称。

它是高分子链在机械力、热、超声波、光、氧、水、化学药品、微生物等作用下,发生解聚、无规断链及低分子物脱除等反应。

13. 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。

高分子物理化学 第七章

高分子物理化学 第七章

2)2-2功能度体系 每个单体都有两个相同的功能 基或反应点,可得到线形聚合物, 如:
n HOOC(CH2)4COOH + n HOCH2CH2OH
HO CO(CH 2)4COOCH 2CH 2O
n
H + (2n-1) H2O
缩聚反应是缩合反应多次重复 结果形成聚合物的过程。
3)2功能度体系
同一单体带有两个不同 (或相同)且能相互反应的官 能团,得到线形聚合物,如:
按聚合产物分子链形态的不 同分类 线形逐步聚合反应 其单体为双功能基单体, 聚合产物分子链只会向两个方 向增长,生成线形高分子。
非线形逐步聚合反应 非线形逐步聚合反应的聚 合产物分子链不是线形的,而 是支化或交联的,即聚合物分 子中含有支化点,要引入支化 点,必须在聚合体系中加入含 三个以上功能基的单体。
n HO n HO
R COOH H O R CO n OH + (n-1) H2O R OH H O R n OH + (n-1) H2O
4) 2-3、2-4功能度体系
当功能度大于2时,分子链将向 多个方向增长,这样的话将得到支化 甚至是交联的聚合物。 例如: 通过苯酚和甲醛制备酚醛树脂时, 当反应程度较高时,可以得到支化甚 至交联的聚合物。
H (OROCOR`CO )m HO (COR`COORO)q ( OROCOR`CO)n OH ( COR`COORO)p H
+
既不增加又不减少功能基数目,不影响反应程度 特 不影响体系中分子链的数目,使分子量分布更均一 点 不同聚合物进行链交换反应,可形成嵌段缩聚物
线形缩聚动力学
1. 功能基等活性理论 缩聚反应在形成大分子的过程中 是逐步进行的,若每一步都有不同的 速率常数,研究将无法进行。Flory提 出了功能基等活性理论: 不同链长的端基功能基,具有相 同的反应能力和参加反应的机会,即 功能基的活性与分子的大小无关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 2-3、2-4官能度体系 如:苯酐和甘油反应 苯酐和季戊四醇反应
体形缩聚物
双官能度体系的成环反应
2-2或 2 官能度体系是线形缩聚的必要条件,但不 是充分条件。
在生成线形缩聚物的同时,常伴随有 成环反应。
• 成环是副反应,与环的大小密切相关 环的稳定性如下: 5, 6 > 7 > 8 ~ 11 > 3, 4 环的稳定性越大,反应中越易成环。 五元环、六元环最稳定,故易形成,如
由反应程度 P = 1 N - 羧基数用羧基浓度C代替
N0
C = Co (1-P),代入上式
1 = 2C02 k t+ 1 2 (1 P ) -
1 Xn = 代入 1 P -
P~t关系式
(Xn ) = 2C k t+ 1
2 2 0
表明 (Xn)2与反应时间 t呈线性关系
Xn ~t关系式
讨 论
聚合度随反应时间缓慢增加,要获得高分子量,需要较长的时 间
•不可逆条件下的缩聚动力学
在不断排出低分子副产物时符合不可逆条件 以聚酯化反应为例,聚酯是酸催化反应。
O C OH + HA
OH C OH + HO +
O C O
k1 k2
慢 k3
OH C OH + A
+ -
OH C OH OH
+
k4
k5
+ H2O + H
+
k3是最慢的一步反应,由于不可逆, k4暂不考虑 聚酯反应速率用羧基消失速率来表示:
HOROH + HOOCR`COOH HOROCOR`COOH + H2O
HOROH
2
HOOCR`COOH
HOROCOR`COOROH
三聚体(trimer)
HOOCR`COOROCOR`COOH
三聚体 四聚体(tetra)
三聚体和四聚体可以相互反应,也可自身反应, 也可与单体、二聚体反应。
• 含羟基的任何聚体和含羧基的任何聚体都可以进 行反应,形成如下通式: n-聚体 + m-聚体 (n + m)-聚体 + 水

如此进行下去,分子量随时间延长而增加,显示 出逐步的特征。
2. 线型缩聚的可逆特性
大部分线型缩聚反应是可逆反应,但可逆程度有差别 可逆程度可由平衡常数来衡量,如聚酯化反应:
k1 k
1
OH +
COOH
OCO
k1 [OCO ][ H 2O] K k - 1 [OH ][ COOH ]
根据平衡常数K的大小,可将线型缩聚大致分为三类:
K值小, 如聚酯化反应,K 4, 副产物水对分子量影响很大 K值中等,如聚酰胺化反应,K 300~500 水对分子量有所影响 K值很大,在几千以上,如聚碳酸酯、聚砜 可看成不可逆缩聚 对所有缩聚反应来说,逐步特性是共有的,而可 逆平衡的程度可以有很大的差别。
3. 反应程度(extent of reaction)
聚酰胺等醇解、酸解、水解:
醇解 酸解 水解 降解反应使分子量降低,在聚合和加工中都可能发生。
•链交换反应 聚酯、聚酰胺、聚硫化物的两个分子可在任何地方 的酯键、酰胺键、硫键处进行链交换反应
H (OROCOR`CO )m HO (COR`COORO)q
+
( OROCOR`CO)n OH ( COR`COORO)p H
H(CH 2)n COOH + HOCH2CH 3
25 C
HCl
H(CH 2)n COOC2H5 + H O 2
1 2 3 4 5 · · 17
22.5 15.3 7.5 7.4 7.4
7.60.2
Flory对此进行了如下解释:
(1) 端基(官能团)的活动能力远远大于整个分子链的 活动能力;粘度上升后,大分子运动受限后,官能团仍 具有相当高的活动能力; (2) 粘度上升会使官能团的碰撞机率下降,但粘度大,也 会使官能团之间的接触时间变长,不易分开,有效碰撞 机率上升。 因此,Flory提出了官能团等活性理论: 不同链长的端基官能团,具有相同的反应能力和参加 反应的机会,即官能团的活性与分子的大小无关。
代入反应程度关系式
N0-N N P= =1 - N0 N0
300 250 200 150 Xn 100 50 0 0.0 0.2 0.4 0.6 0.8 1.0
1 P=1 - Xn 1 Xn = 1 P -
反 度P 应程
当P=0. 9,Xn = 10 一般涤纶聚酯的Xn = 100 ~ 200,P要提高到 0. 99 ~ 0. 995 (P20表2-3)
COOH + HO
起始 1 1 C
k1 k -1
O C O
0 1-C 0 1-C
+ H2O
t 时水未排出 C
水部分排出 C
C
1-C
nw
聚酯反应速率是正、逆反应速率之差
水未排出时
dC - k1C 2-k 1 1-C 2 - dt
在缩聚反应中,常用反应程度来描述反应的深度。 •反应程度与转化率根本不同
转化率:参加反应的单体量占起始单体量的分数。 反应程度:则是指已经反应的官能团数占起始官能团 数的分数,用P表示。
例如: 一种缩聚反应,单体间双双反应很快全部变成二 聚体,就单体转化率而言,转化率达100%;而官能团 的反应程度仅50%。因此转化率不能有效地表示反应 的深度。 ☆反应程度可以对任何一种参加反应的官能团而言。
对于等物质量的二元酸和二元醇的缩聚反应, 设: 体系中起始二元酸和二元醇的分子总数为N0 等于起始羧基数或羟基数
t 时的聚酯分子数为N,等于残留的羧基或羟基数
N0-N N P= =1 - N0 N0
•反应程度与平均聚合度的关系
聚合度是指一个聚合物分子中含有的结构单元的数目
结构单元数目 N0 Xn = = 大分子数 N
2. 缩聚反应分类

按反应热力学的特征分类
平衡缩聚反应
指平衡常数小于 103 的缩聚反应 聚酯 K 4;聚酰胺 K 400 不平衡缩聚反应 平衡常数大于 103 采用高活性单体和相应措施
• 按生成聚合物的结构分类 线形缩聚 体型缩聚 •按参加反应的单体种类 均缩聚:只有一种单体进行的缩聚反应,2 体系 混缩聚: 两种分别带有相同官能团的单体进行的缩 聚反应,即 2-2体系,也称为杂缩聚
2 HOCH2COOH
H2O
H2O
HOCH2COOCH2COOH
CH2 O C O O CH2
O C
• 环的稳定性与环上取代基或元素有关。
八元环不稳定,取代基或元素改变,稳定性增加
如,二甲基二氯硅烷水解 缩聚制备聚硅氧烷,在酸性 条件下,生成稳定的八元环
通过这一方法,可纯化单 体。
CH3 CH3 Si O CH3 Si CH3 O CH3 Si CH3 O O Si CH3 CH3
4. 缩聚过程中的副反应
除环化反应外,还可能发生如下副反应
•官能团的消去反应
包括羧酸的脱羧、胺的脱氨等反应,如:
己二酸 庚二酸 HOOC(CH2)nH + CO2 辛二酸 • 化学降解 壬二酸 低分子醇、酸、水可使聚酯、 癸二酸
HOOC(CH2)nCOOH
二元酸脱羧温度(℃)
300~320 290~310 340~360 320~340 350~370
特 点
既不增加又不减少官能团数目,不影响反应程度 不影响体系中分子链的数目,使分子量分布更均一 不同聚合物进行链交换反应,可形成嵌段缩聚物
7.3 线型缩聚动力学
1. 官能团等活性理论
单官能团分子之间的缩合反应的速率常数在一定的反应 条件下是固定的。 但缩聚反应在形成大分子的过程中是逐步进行的,其每 一步都有不同的速率常数是否相等? 原先认为:官能团的活性是随着分子链长度的增加而降低的, 即反应速率常数随着反应的进行而减小,因为分子量增大 后,体系粘度增加,分子活动减慢,活性端基可能被包埋。 n k×104 但实验结果推翻了这种观点。

催化用酸HA:可以是二元酸本身,但反应较慢 也可以是外加酸,如H2SO4,大大加速
•自催化缩聚反应 无外加酸,二元酸单体作催化剂,[HA] = [COOH] 羧基与羟基浓度相等,以C表示,将式中的所有 常数及[A-]合并成 k。
dC 3 - = kC dt
表明自催化的聚酯反应呈 三级反应
1 1 积分 2- 2 = 2 k t C C0
d [ COOH ] k 1k 3[ COOH ][ OH ][ HA ] - = - dt k 2[ A ]
考虑催化用酸HA的离解平衡

HA
H
+
+ A
-
[ H ][ A ] KHA = [ HA ]
+

[ HA ] [ H ] = - [A ] KHA
+
代入式
d [ COOH ] k 1k 3[ COOH ][ OH ][ H+ ] - = dt k 2 KHA
以(Xn)2对 t 作图,直线的斜率可求得速率常数 k
(p26表2-6,p25图2-3)

外加酸催化缩聚反应
为了加速反应,常外加酸作为聚酯化反应的催化剂 反应速率将由自催化和酸催化两项组成:
dC 3 + 2 - = kC + ka [ H ] C dt dC + 2 - = ( kC + ka [ H ])C dt
1. 缩聚反应单体体系
• 官能度的概念 是指一个单体分子中能够参加某一反应的官能团的数目。 单体的官能度一般容易判断, 个别单体,反应条件不同,官能度不同,如
OH
进行酰化反应,官能度为 1 与醛缩合,官能度为 2 or3
相关文档
最新文档