曲线曲面积分(习题及解答)
第九章--曲线积分与曲面积分习题解答(详解)

曲线积分与曲面积分习题详解习题9-11 计算下列对弧长的曲线积分:(1)I s=⎰,其中C是抛物线2y x=上点(0,0)O到(1,1)A之间的一段弧;解: 由于C由方程2y x=(01x≤≤)给出,因此1I s x x===⎰⎰⎰123211(14)1)1212x⎡⎤=+=⎢⎥⎣⎦.(2)dCI x s=⎰,其中C是圆221x y+=中(0,1)A到B之间的一段劣弧;解:C AB=的参数方程为:cos,sinx yθθ==()42ππθ-≤≤,于是24cosIππθ-=⎰24cos1dππθθ-==⎰.(3)(1)dCx y s++⎰,其中C是顶点为(0,0),(1,0)O A及(0,1)B的三角形的边界;解: L是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)Cx y ds++⎰(1)OAx y ds=++⎰(1)ABx y ds+++⎰(1)BOx y ds+++⎰,由于OA:0y=,01x≤≤,于是ds dx===,故13(1)(01)2x y ds x dx++=++=⎰⎰OA,而:AB1y x=-,01x≤≤,于是ds==.xyoABC10(1)[(1)ABx y ds x x ++=+-+=⎰⎰同理可知:BO 0x =(01y ≤≤),0ds =,则13(1)[01]2BOx y ds y dy ++=++=⎰⎰. 综上所述33(1)322Cx y ds -+=+=+⎰. (4)22Cx y ds +⎰,其中C 为圆周22x y x +=;解 直接化为定积分.1C 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ=.于是22201cos222Cx y ds d πθθ+=⋅=⎰⎰.(5)2 ds x yz Γ⎰,其中Γ为折线段ABCD ,这里A ,B ,C ,D 的坐标依次为(0,0,0), (0,0,2),(1,0,2),(1,2,3);解 如图所示, 2222ABBCCDx yzds x yzds x yzds x yzds Γ=++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt =,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,则ds ==,故1122012(2))CDx yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222A BB CC Dx y z d s x y z d sx y z d sd s Γ=++⎰⎰⎰⎰(6)2ds y Γ⎰,其中Γ为空间曲线2222,(0),x y z a a x z a ⎧++=>⎨+=⎩. 解: Γ在,x y 平面的投影为:2222()x y a x a ++-=,即22220x y ax +-=,从而2221222a x y a ⎛⎫-+= ⎪⎝⎭.利用椭圆的参数方程得Γ的参数方程为11cos ,22:, 02.11cos ,22x a a y z a x a a θθθπθ⎧=+⎪⎪⎪Γ=≤≤⎨⎪⎪=-=+⎪⎩由于d s θθθ==. 则332π2π2222 01ds sin d sin d 222y a θθθθΓ===⎰⎰2 设一段曲线ln (0)y x a x b =<≤≤上任一点处的线密度的大小等于该点横坐标的平方,求其质量.解 依题意曲线的线密度为2x ρ=,故所求质量为2CM x ds =⎰,其中:ln (0)C y x a x b =<≤≤.则C 的参数方程为ln x xy x =⎧⎨=⎩(0)a x b <≤≤, 故ds ==,所以3221[(1)]3b a aM x ==+⎰3322221[(1)(1)]3b a =+-+.3 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。
(第六部分)曲面积分习题解答

第十章 曲线积分与曲面积分(第六部分)曲面积分习题解答一、对面积的曲面积分1.计算曲面积分⎰⎰∑++dS y x z )342(,其中∑为平面1432=++zy x 在第一卦限中的部分. 分析 因为∑:1432=++z y x ,可恒等变形为∑:y x z 3424--=,又因被积函数y x z 342++与∑形式相同,故可利用曲面方程来简化被积函数,即将4342=++y x z 代入,从而简化计算。
解 平面∑方程的为)321(4yx z --=(如图), ∑在xoy 面上的投影区域xy D :0,0,132≥≥≤+y x yx ;34,2-=∂∂-=∂∂y z x z ,面积元素 dxdy dxdy y z x z dS 361122=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 从而 ⎰⎰⎰⎰⋅=++∑xyD dxdy dS y x z 3614)342( 61432213614=⋅⋅⋅=. 2. 计算曲面积分⎰⎰∑+dS y x |)|(,其中∑为1||||||=++z y x .解 由对称性可知,=⎰⎰∑xdS ,由轮换对称性和代入技巧知,⎰⎰⎰⎰⎰⎰∑∑∑=++=dS dS z y x dS y 31|)||||(|31||,再由曲面积分的几何意义知,34238=⋅=⎰⎰∑dS ,所以,334|)|(=+⎰⎰∑dS y x.y二、对坐标的曲面积分1.计算曲面积分⎰⎰∑dydz x 2.其中∑为球面2222R z y x =++在第一卦限部分的上侧。
分析 由于∑不是封闭曲面,且只是对坐标z y ,的曲面积分,故直接计算即可。
解 因∑:222z y R x --=取前侧,且∑在yoz 面上的投影区域为0 ,0 , :222≥≥≤+z y R z y D yz .于是得 ⎰⎰∑dydz x 2dydz z y R yzD ⎰⎰--=)(222⎰⎰⋅-θ=πRrdr r R d 02220 )( 402228141212R r r R Rπ=⎥⎦⎤⎢⎣⎡-π=. 2. 计算曲面积分⎰⎰∑++=ydzdx xdydz zdxdy I .其中∑是柱面122=+y x 被平面0=z 及3=z 所截得的在第一卦限内的部分的前侧。
曲线曲面积分部分难题解答

曲线曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+l ds yx 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+lsd y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++l ds zy x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰l zds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫⎝⎛+=所以dy y y y xyds l2221..21+=⎰⎰(令t y tan =) tdtt 332arctan 0sec .tan21⎰= ()t td t sec sec .tan21222arctan 0⎰=()()t td t sec sec .1sec21222arctan 0-=⎰()()⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡-=315153155121sec 31sec 5121352arctan35|t t.15135515255315521+=⎥⎦⎤⎢⎣⎡+-=(ⅱ)解:()⎰+l ds yx 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx xds y xOA;,其中:.20,,0:≤≤⎩⎨⎧==x xx y OA()()[]()dy y y ds y xAB21222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y其中:.10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.22212222==++=+⎰⎰⎰dy y dy yds y xBO,其中:.10,,0:≤≤⎩⎨⎧==y y y x BO所以.3535+=++=⎰⎰⎰OAABOBI(ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt at a t a s d y x l2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+π()dt t a⎰+=π202cos 124dt t a⎰=π20222sin2.24dt t a⎰=π2022sin2.22cos 22sin2202202|a t a t d t a=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l 则()().22,s i n .c o s s i n,c o s c o s :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l ()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b aba[].433222222b a b a++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by ax l 上,其密度().,y y x =μ求它的总质量.解:不妨假设.b a >⎰⎰==14l lydsds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l ()()()().cos sincos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=所以dt t b t a t b yds M l 222220cos sinsin 441+==⎰⎰π()dt t b a a t b 222220cos sin 4--=⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 222214---=⎰()du u b a a b 222214--=⎰duu ba aba b ⎰---=22222224π(公式)|102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u ba au ba au ba ab a b ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=21arcsin .2.42222222222ba aab a b a a b a b.arcsin..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b ab a ba ab 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明:()().max .P f L dsP f lP l∈≤⎰证明:由第一型曲线积分的定义()()ini id ls P f dsP f ∆=∑⎰=→.lim1故()()ini id ls P f dsP f ∆=∑⎰=→.lim1()ini id s P f ∆=∑=→.lim1()ini id sP f ∆≤∑=→.lim1()ini lp d sP f ∆≤∑=∈→.m a x lim1().m a x .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分.⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧;(3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解: (1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.1=-=-⎰⎰⋂dxx x ydx xdy OA(2).1~0:,,2:2x x x x y OA ⎩⎨⎧==⋂[].323224.|10312==-=-⎰⎰⋂xdxx x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OBBAOAydx xdy其中,.1~0:,.,0:x x x y OB ⎩⎨⎧==();000.1=-=-⎰⎰dxx ydx xdy OB其中,.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.12=-=-⎰⎰dyy ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a xa y ;(2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解: (1).~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+πcos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a.(2).~:,,0:a a x x x y l -⎩⎨⎧==().00.0=+=+⎰⎰-dxx xdy ydxaal(3).2~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a.6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+lyx dyy x dxy x解:π2~0:,.sin ,cos :t t a y t a x l ⎩⎨⎧==,所以,()()⎰+--+lyx dyy x dxy x 22()()()()dtat a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos.22022ππ-=-=⎰dt aa7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()dy xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()dy y x dx yx l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx zy l ⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l()()dy xy y dx xy xl⎰-+-2222()()[]d x x x x xxx x⎰--+-=1124222..2.2[].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dyyx dx y xL2222-++⎰()()dyyx dx y xOA2222-++=⎰()()dyyx dx y xAB2222-+++⎰其中 .1~0:,,:x x x x y OA ⎩⎨⎧==故()()()()[]d x xxxxdy yx dx y xOA⎰⎰-++=-++1022222222.32322|10312===⎰x dx x ;其中.2~1:,,2:x x x x y AB ⎩⎨⎧=-=故()()()()()()()[]d x x xx xdy yx dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x所以原式.343232=+=(ⅲ)()dz x yzdydx zy l ⎰-+-2222()[]d t t t t t ttt⎰-+-=102232643.2 (2)[].351527323|1571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dttt8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明:()).max ...P L d P f lP l∈≤⎰证明:设()()(){}.,21P f P f P f =由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f rd P f 121..lim.故()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f d P f 121..lim.()()[]∑=→∆+∆≤ni i i iid y P f xP f 121..lim()()()()2212221.limi i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.limi ini id y x P ∆+∆=∑=→)()())⎰∑=→=∆+∆≤li ini d ds P y x P .max .max lim221)P L =m a .9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22yx z +=被圆柱面x y x 222=+截下的那一部分;(ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=2z zx y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此d x d yyx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122bbra a ra a r d r d πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:yx z +=∑,得,22yx x xz +=∂∂,22yx y yz +=∂∂,所以,,2122d x d y d x d y y z x z dS =⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂+=.因此().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz 面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22ya x -=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d zya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此d y d zya a S S yzD ⎰⎰-==22188 ⎰⎰--=22228ya a dz ya a dy .882a a d z a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面;(ⅱ)()dS y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++= 其中,0:1=z S dxdy dS =1,()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++110222111111dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111|()212ln 211ln 2111|1010-=-+=⎪⎭⎫ ⎝⎛-+=⎰x dx x ;,0:2=x S d y d z dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++1102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=102102111211()2ln 11ln 12||110-=+-+-=y y;,0:3=y Sd z d x dS =3,()()()dzx dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++1102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=x x;,1:4y x z S --= d x d ydS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-1011021113113|().212ln 33211ln 321113|110⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x;所以()⎰⎰++Sy x dS21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中,0:1=z S d x d y dS =1,()()r d r r d d x d y y xdS y xaD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2h z S = d x d y dS =2,()()r d r r d d x d y y xdS y xaD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a yx S =+其向yoz面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d z ya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此()()d y d zya a yya dS y xyzD S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz ya dy a22312..2arcsin433|h a ayh a aπ==或者()..22..32232233h a ah a dS a dS y xS S ππ===+⎰⎰⎰⎰所以()⎰⎰++Sy x dS21()++=⎰⎰122S dSyx()++⎰⎰222S yx()dSy xS ⎰⎰+322().22223344h a ah a a a+=++=ππππ (ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dSx SdS y S⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a uf dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则 222cb a cz by ax u ++++=(1)(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为 1222=++w v u (2) (因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)由(2)式可得: ()22221u w v -=+ (3)当u 固定时,(3)式其实就表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -='于是,;112222uw v u E u u u-='+'+'=;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv = (4)故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du cb a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量. 解:由公式 ()dSy xJ S⎰⎰+=22由对称性()dSy x J S ⎰⎰+=1228其中2221:yx a z S--=,则2z z x y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此()d x d yy x a a y x S S xyD ⎰⎰--+==222221.88 r d r ra rd a a.8022220⎰⎰-=πθ极()r d r r a aara a.4022222⎰-+-=πr d r r a a a.4022⎰--=πr d rra aa.140223⎰-+π()22022.2ra d r a a a--=⎰π()220223.12ra d ra a a---⎰π()|232232.2araa -=π|2232.2ara a --π434aπ-=44aπ+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z yx S的下侧,求曲面积分S d r S.⎰⎰,其中{}.,,z y x r =解:⎰⎰⎰⎰++=SSzdxdyydzdx xdydzS d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222yx y yx x z z n y x,所以{}.c o s ,c o s ,c o s21,2,22222γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==yx yyx x n 故⎰⎰⎰⎰++=SSzdxdyydzdx xdydzSd r . ()⎰⎰++=SdSz y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=SdSz yx y yx x222222222⎰⎰⎪⎪⎭⎫ ⎝⎛-+=SdS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .0222222214(P217,第2题)沿椭球面1222222=++cz by ax 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz解:把S 分割为21,S S 两个部分.其中,222211:by ax c z S --=(上侧);222221:by ax c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by ax D xy故dxdyby ax c zdxdy xyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.s i n,c o s θθbr y ar x由二重积分的换元法drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D所以=⎰⎰1S zdxdy drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d cab ⎰⎰-=πθ201211dr r rd cab ⎰⎰-=πθ201211所以,().212111|12212πππcab rcabrd rcab =⎥⎦⎤⎢⎣⎡--=---=⎰(1)同理 dxdy by ax c zdxdy xyD S ⎰⎰⎰⎰----=2222112.2112222πcab dxdy by ax c xyD =--=⎰⎰(2)所以=⎰⎰Szdxdy +⎰⎰1S zdxdy .42πcab zdxdy S =⎰⎰(3)由轮换对称性,知:πa bc x dzdy S4=⎰⎰;.4πbac ydzdx S=⎰⎰故⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz +=⎰⎰Szdxdy +⎰⎰Sxdzdy ⎰⎰Sydzdx+=πc ab4πabc4().44222222ac c b b a abc b ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故()()dxdy b y a x R c dxdy zxyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换:⎩⎨⎧+=+=.s i n ,c o sθθr b y r a x由二重积分的换元法()()[]r d r rR c d x d y b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()drr rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R rR c c R⎰-+-+=02222222πrdr r R c rdr c RR⎰⎰-+=0222222ππ()rdr r RR⎰-+0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cRRc πππ++=(1)同理()()dxdy b y a x R c dxdy z xyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221[]rdr rR c D 222⎰⎰'---=()dr r rR c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ20222()rdr rR c R2222⎰---=π()r dr r R rR c c R⎰-+---=02222222πrdr r R c rdr cR R⎰⎰-+-=0222222ππ()rdr r RR⎰--0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cRRc πππ-+-=(2)所以=⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cRdxdy z S π=⎰⎰; (3)由轮换对称性,知:=⎰⎰Sdydz x 2338aRπ;=⎰⎰Sdzdx y 2.383bR π故.222⎰⎰++Sdxdy z dzdx y dydz x⎰⎰=Sdydzx2⎰⎰Sdzdxy 2⎰⎰Sdxdyz2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此=⎰⎰Sxyzdxdy+⎰⎰1S xyzdxdy⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy⎰⎰-xyD dxdyxy 0.c b a yd y x d x c ab.422⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫ ⎝⎛=+12222b ya x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI xxL-+-=⎰cos sin ,(m 为常数)其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆 周.(提示:作辅助线后用格林公式).解:cos ,cos xxP Q e y m e y yx∂∂=-=∂∂.所以,由格林公式:221...428A OO A D DQ P a dxdy m dxdy m m a x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰. 所以,2220.888AOOAma ma ma I πππ⋂==-=-=⎰⎰(因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx xl故有xQ yP ∂∂=∂∂即()()x f x x f x '+=34 化简,得()()241xx f xx f =+' (1)(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214[]()cdx xx c e x e x x +=+=⎰⎰-3ln 2ln 414().1134xcx c xx+=+=(2)代入条件()21=f ,得 .1=c故().13x x x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,= 在闭区域D 上具有连续的二阶偏导数且记 2222yu xuu ∂∂+∂∂=∆证明:⎰⎰⎰∆=∂∂Dludxdy ds nu其中()()y n yu x n xu nu ,cos ,cos ∂∂+∂∂=∂∂表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 故()()y x n ,c o s ,c o s τ=,()().,cos ,cos x y n τ-=()()ds x y u y xu ds nul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yu dy xul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫⎝⎛∂∂∂∂=Ddxdy y u y x u x=⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰Ddxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂证明:仿上题 ()()ds x y uy xu u ds nu ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系) dx yu udy xu ul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u u y u y u x u u x u x u 2222....dxdy y ux u u dxdy y u x u DD⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222udxdyu dxdy y u x u DD∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22移项,即得 .22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: dsvun v n udxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明:我们有 ()()ds x y u y xu v ds nu vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yu vdy xu vl⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDdxdy y u x u v dxdy y v y u x v x u 22.. ...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDudxdy v dxdy y v y u x v x u (1)由轮换对称性,知 dsnv ul⎰∂∂ ...⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DDvdxdy u dxdy y v y u x v x u (2)于是ds n v u n uv ds vun v n ul l⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰DDudxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰DD vdxdy u dxdy y v y u x v x u ..()⎰⎰∆-∆=Ddxdyv u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分 ()(b a I ⎰=,其中l 为简单(光滑)闭合曲线,r 为不在l 上的点()b a ,到l 上动点()y x ,的向量,而n 为l 上动点()y x ,处的法向量.解:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 又设()(){}y n x n n ,cos ,,cos 0= ,{}b y a x r --=,,则()()()()()()().,c o s .,c o s .,c o s ,c o s 2200b y a x y n b y x n a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]ds y n b y x n a x b y a x b a I l ,cos ,cos .1,22-+--+-=⎰()()()()()()[]ds x b y y a x b y a x l,cos ,cos .122ττ----+-=⎰()()()().22⎰-+----=l b y a x dx b y dya x记 ()()(),,22b y a x by y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y yP -+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xo y 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD . 则在'εD 由格林公式可得:)()()()⎰-+----lb y a x dxb y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dya x I 22()()⎰---=εεl dxb y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x .24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式d x d y yx zx yz z y x d x d y d z d x d y d z 2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=n ,.31,33,33⎭⎬⎫⎩⎨⎧-=n ) ()()()dSdxdy dz y x dy z x dx y z I l⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdydz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u(){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -=因为xQ x y y x yP ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos22()dyy x x y sin cos 22-是某一个函数()y x u ,的全微分.故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dyy xx y dx x x yx⎰⎰-+-=0202sin cos 2sin 00cos 2[]||0222c o s c o s yx yx x y x++=()[]2222c o s c o s xy x x yx -++=.cos cos 22y x x y +=则,所求的位势为().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y ex z xef yy--=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xez y x P yy-=-==--。
曲线曲面积分练习答案

第十一章 曲线曲面积分一、填空1、L 为下半圆21y x =--,则22()L x y ds +=⎰___π_______。
2、L 为222x y R +=,则3(2)L x y ds +=⎰____0____。
3、L 为圆22(2)(2)2x y -+-=的逆时针一周,则L ydx xdy +⎰=_0_。
4、设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,L 所围的平面闭区域D 的面积为A ,(2)(43)8L x dx x y dy -++=-⎰,则A=___2_______。
5、分片光滑闭曲面Σ所围成的空间区域Ω的体积为V ,则沿曲面Σ外侧的积分()()()z y dxdy y x dxdz x z dzdy ∑-+-+-⎰⎰= 3V 。
二、选择题1、设是一光滑曲线,为了使曲线积分(,)(,)L yF x y dx xF x y dy +⎰与积分路径无关,则可微函数 应满足条件( A )。
A 、B 、C 、D 、2、OM 是从(0,0)(1,1)O M 到的直线段,则22x y OM e ds +⎰不等于(D )。
A 、1202x e dx ⎰B 、1202y e dy ⎰C 、20r e dr ⎰D 、102r e dr ⎰ 3、∑:2221x y z ++=外侧,1∑:上半面上侧,则正确的是(B )。
A 、12zds zds ∑∑=⎰⎰⎰⎰ B 、12zdxdy zdxdy ∑∑=⎰⎰⎰⎰ C 、1222z dxdy z dxdy ∑∑=⎰⎰⎰⎰ D 、zdxdy ∑⎰⎰=0 4、∑:222(),0z x y z =-+≥,则ds ∑⎰⎰等于( C )。
A 、220014r d r rdr πθ+⋅⎰⎰ B 、2220014d r rdr πθ+⋅⎰⎰ C 、2220014d r rdr πθ+⋅⎰⎰ D 、2 5、∑:222,12x y R z +=≤≤外侧,则下列不正确的是等于(B )。
曲线积分与曲面积分习题答案.pdf

解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr
数学分析22曲面积分总练习题(含参考答案)

第二十二章 曲面积分总练习题1、设P=x 2+5λy+3yz, Q=5x+3λxz-2, R=(λ+2)xy-4z.(1)计算⎰++L Rdz Qdy Pdx , L 为螺旋线x=acost, y=asint, z=ct(0≤t ≤2π); (2)设A=(P ,Q,R), 求rotA;(3)问在什么条件下A 为有势场?并求势函数.解:(1)⎰++L Rdz Qdy Pdx =⎰-++πλ2022)sin )(sin 3sin 5cos (dt t a t act t a t a +⎰-+πλ20)cos )(2cos 3cos 5(dt t a t act t a +⎰-+πλ202]4cos sin )2[(cdt ct t t a =⎰++-πλ20222223)sin 3sin 5sin cos (dt t ct a t a t t a +⎰-+πλ202222)cos 2cos 3cos 5(dt t a t ct a t a +⎰-+πλ2022]4cos sin )2[(dt t c t t c a =-5πλa 2-3π2a 2c+5πa 2+3π2λa 2c-8π2c 2=πa 2(-5λ-3πc+5+3πλc)-8π2c 2 =πa 2[5(1-λ)-3πc(1+λ)]-8π2c 2=πa 2(1-λ)(5-3πc)-8π2c 2. (2)rotA=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,=((λ+2)x-3λx,3y-(λ+2)y,5+3λz-5λ-3z) =(2(1-λ)x,(1-λ)y,(1-λ)(5-3z)).(3)当(2)知,当λ=1时,rotA=0,此时A 为有势场,其势函数为: u(x,y,z)=⎰-+-++++),,()0,0,0(2)43()235()35(z y x dz z xy dy xz x dx yz y x +C=⎰⎰⎰-+++z y x dz z xy dy x dx x 0002)43()25(+C=31x 3+5xy-2y+3xyz-2z 2+C.2、证明:若△u=22x u ∂∂+22yu ∂∂+22z u∂∂, S 为包围区域V 的曲面外侧, 则:(1)⎰⎰⎰∆Vudxdydz =⎰⎰∂∂SdS nu;(2)⎰⎰∂∂SdS n uu=⎰⎰⎰∇∙∇V udxdydz u +⎰⎰⎰∆∙Vudxdydz u , 其中u 在区域V 及界面S 上有二阶连续偏导数, nu∂∂为沿曲面S 外法线方向的方向导数. 证:(1)⎰⎰∂∂SdS n u =⎰⎰⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂S dS z n z uy n y u x n x u ),cos(),cos(),cos( =⎰⎰∂∂+∂∂+∂∂外S dxdy z udzdx y u dydz x u =⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V dxdydz z u y u x u 222222=⎰⎰⎰∆V udxdydz . (2)⎰⎰∂∂SdS n u u=⎰⎰∂∂+∂∂+∂∂外Sdxdy z uu dzdx y u u dydz x u u =⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂V dxdydz z u u z u y u u y u x u u x u 222222222=⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂V dxdydz z u y u x u 222+⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V dxdydz z u y u x u u 222222 =⎰⎰⎰∇∙∇Vudxdydz u +⎰⎰⎰∆∙Vudxdydz u .3、设S 为光滑闭曲面,V 为S 所围的区域. 函数u(x,y,z)在V 与S 上具有二阶连续偏导数, 函数ω(x,y,z)偏导连续. 证明: (1)⎰⎰⎰∂∂Vdxdydz x u ω=⎰⎰Sdydz u ω-⎰⎰⎰∂∂V dxdydz x u ω; (2)⎰⎰⎰∆Vudxdydz ω=⎰⎰∂∂SdS n uω+⎰⎰⎰∇∙∇Vdxdydz u ω. 证:(1)由高斯公式:⎰⎰⎰∂∂Vdxdydz x P=⎰⎰SPdydz , 令P=u ω, 有 ⎰⎰⎰⎪⎭⎫ ⎝⎛∂∂+∂∂V dxdydz x w u x uω=⎰⎰S dydz u ω, 即 ⎰⎰⎰∂∂Vdxdydz x u ω=⎰⎰Sdydz u ω-⎰⎰⎰∂∂V dxdydz x u ω.(2)由(1)式用x u ∂∂代替u 有:⎰⎰⎰∂∂V dxdydz x u22ω=⎰⎰∂∂S dydz x u ω-⎰⎰⎰∂∂∂∂V dxdydz x x u ω. 同理可得:⎰⎰⎰∂∂Vdxdydz y u22ω=⎰⎰∂∂S dzdx y u ω-⎰⎰⎰∂∂∂∂V dxdydz y y u ω; ⎰⎰⎰∂∂Vdxdydz z u22ω=⎰⎰∂∂S dxdy z u ω-⎰⎰⎰∂∂∂∂V dxdydz z z u ω; 三式相加可得: ⎰⎰⎰∆Vudxdydz ω=⎰⎰∂∂SdS n uω+⎰⎰⎰∇∙∇Vdxdydz u ω. 4、设A=3||r r, S 为一封闭曲面, r=(x,y,z). 证明当原点在曲面S 的外、上、内时,分别有⎰⎰∙SdS A =0、2π、4π.证:设n 0=(cos α,cos β,cos γ)为曲面S 的单位法向量, 则ds=n 0ds, 当原点在S 的外面时,由奥高公式可得:⎰⎰∙SdS A =⎰⎰SdS An 0=⎰⎰++SdS r z y x 3||cos cos cos γβα=⎰⎰⎰⎪⎪⎭⎫⎝⎛-+-+-V dxdydzr z r r y r r x r 523523523||3||1||3||1||3||1=⎰⎰⎰⎪⎪⎭⎫⎝⎛-Vdxdydz r r 33||3||3=0. 当原点在S 上时,则所给曲面积分变为广义的. 如果曲面S 在原点处有一确定的切面,则⎰⎰∙SdS A =2π.当原点在S 内时,作一个以原点为中心,以r 为半径的小球面σ, 在S 和σ之间的区域V 1上应用奥高公式,则有⎰⎰⎰⎰∙-外外S AdS σ=⎰⎰⎰⎰-外外S dS An σ0=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛-133||3||3V dxdydz r r =0,∴⎰⎰∙外S AdS =⎰⎰∙外σdS A =⎰⎰外σdS An 0=⎰⎰⋅外σdS r r r r ||||3=⎰⎰外σdS r 21=4πr 2·21r =4π.5、计算I=⎰⎰++Szydxdy yxdzdx xzdydz , 其中S 是柱面x 2+y 2=1在-1≤z ≤1和x ≥0的部分. 曲面侧的法向与x 轴正向成锐角. 解:∵曲面S 在xOy 平面上的投影曲线为x 2+y 2=1, ∴⎰⎰Szydxdy =⎰⎰≤+122y x zydxdy =0;∵曲面S 在yOz 平面上的投影区域D 为-1≤y,z ≤1, 曲面的则的法向与x 轴正向成锐角, 是正侧,x=21y -, ∴⎰⎰Sxzdydz =⎰⎰Dxzdydz =⎰⎰---112111dy y zdz =0;∵曲面在zOx 平面上的投影区域Ω为0≤x, -1≤z ≤1,记S 1: y=21x -, 它与y 轴正向夹角为锐角,是曲面的侧的正侧; S 2: y=-21x -, 它与y 轴正向夹角为钝角,是曲面的侧的负侧; 根据对称性,有⎰⎰Syxdzdx =2⎰⎰Ω-dzdx x x 21=2⎰⎰--102111dx x x dz =⎰⎰--1023210)1()1(32x d x dz =34. ∴I=⎰⎰++Szydxdy yxdzdx xzdydz =0+0+34=34.6、证明公式:⎰⎰++Dd d p n m f ϕθϕϕθϕθϕsin )cos sin sin cos sin (=2πdu p n m u f ⎰-++11222)(,其中D={(θ,φ)|0≤θ≤2π, 0≤φ≤π}, m 2+n 2+p 2>0, f(t)在|t|<222p n m ++时为连续函数.证:设S 为球面x 2+y 2+z 2=1, 则有.P=⎰⎰++Dd d p n m f ϕθϕϕθϕθϕsin )cos sin sin cos sin (=⎰⎰++Sds pz ny mx f )(.建立新坐标系O-uv ω, 与原坐标系O-xyz 共原点,且 O-v ω平面为O-xyz 坐标系的平面.mx+ny+pz=0, ou 轴过原点且垂直于O-v ω, 于是有u=222pn m pz ny mx ++++.在新坐标系O-uv ω中,P=ds p n m u f S⎰⎰++)(222. 球面S 可表示为:u=u, v=21u -cos ω, ω=21u -sin ω, (-1≤u ≤1, 0≤ω≤2π), 则ds=dud ω. ∴P=⎰⎰-++1122220)(du p n m u f d πω=2πdu p n m u f ⎰-++11222)(, 得证!。
曲线曲面积分部分难题解答43页word文档

曲线、曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+lds y x 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+l s d y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++lds z y x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰lzds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫ ⎝⎛+=dy y y y xyds l 22201..21+=⎰⎰(令t y tan =)()()t td t sec sec .1sec 21222arctan 0-=⎰|2arctan 035sec 31sec 5121⎥⎦⎤⎢⎣⎡-=t t .151355+=(ⅱ)解:()⎰+lds y x 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx x ds y x OA;.20,,0:≤≤⎩⎨⎧==x xx y OA ()()[]()dy y y ds y x AB 210222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y .10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.02102222=++=+⎰⎰dy y ds y xBO,.10,,0:≤≤⎩⎨⎧==y y y x BO .3535+=++=⎰⎰⎰OA AB OB I (ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt a t a t a s d y x l 2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+πdt t a ⎰=π20222sin 2.24dt t a ⎰=π2022sin 2.22cos 22sin 2202202|a t a t d t a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l ()().22,sin .cos sin ,cos cos :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds 22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l 2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b a b a[].433222222b a b a ++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by a x l 上,其密度().,y y x =μ求它的总质量. 解:不妨假设.b a >⎰⎰==14l lyds ds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l()()()().cos sin cos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=dt t b t a t b yds M l 222220cos sin sin 441+==⎰⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 2222014---=⎰()du u b a a b 222214--=⎰du u ba a ba b ⎰---=202222224π(公式) |102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u b a a u b a au b a a b a b .arcsin ..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b a b a b a a b 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明: ()().max .P f L ds P f lP l ∈≤⎰证明:由第一型曲线积分的定义()()i ni i d l s P f ds P f ∆=∑⎰=→.lim 1故 ()()i n i i d ls P f ds P f ∆=∑⎰=→.lim 1()i ni i d s P f ∆=∑=→.lim 1()i n i i d s P f ∆≤∑=→.lim 1()i ni lp d s P f ∆≤∑=∈→.max lim 1().max .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分 .⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧; (3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解:(1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.10=-=-⎰⎰⋂dx x x ydx xdy OA(2).1~0:,:x xx OA ⎩⎨=[].323224.|10312==-=-⎰⎰⋂x dx x x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OB BAOAydx xdy.1~0:,.,0:x x x y OB ⎩⎨⎧== ();000.10=-=-⎰⎰dx x ydx xdy OB.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.120=-=-⎰⎰dy y ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a x a y ; (2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解:(1) .~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l ⎰⎰+-=+π0cos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a .(2).~:,,0:a a x xx y l -⎩⎨⎧== ().00.0=+=+⎰⎰-dx x xdy ydx a al(3).2~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a .6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+ly x dy y x dx y x解:π2~0:,.sin :t t a y l ⎩⎨=,所以,()()⎰+--+l y x dy y x dx y x 22()()()()dt a t a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos .22022ππ-=-=⎰dt aa 7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()d y xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()d y y x dx y x l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx z y l⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l ()()d y xy y dx xy x l⎰-+-2222 ()()[]d x x x x x x x x⎰--+-=1124222..2.2 [].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dy y x dx y xL2222-++⎰()()dy y x dx y xOA2222-++=⎰()()dy y x dx y xAB2222-+++⎰.1~0:,,:x x x x y OA ⎩⎨⎧==()()()()[]321022222222=-++=-++⎰⎰dx x x x x dy y x dx y x OA;.2~1:,,2:x x x x y AB ⎩⎨⎧=-=()()()()()()()[]d xx x x x dy y x dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x 原式.343232=+=(ⅲ)()dz x yzdy dx z y l⎰-+-2222 ()[]d t t t t t t t t ⎰-+-=102232643.2 (2)[].351527323|10571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dt t t 8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明: ())....P L P f lP l ∈≤⎰证明:设()()(){}.,21P f P f P f = 由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i i i d l y P f x P f d P f 1210..lim .故 ()()()[]∑⎰=→∆+∆=ni i i i i d ly P f x P f P f 1210..lim .()()[]∑=→∆+∆≤n i i i i i d y P f x P f 1210..lim ()()()()22122210.lim i i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.lim i i ni i d y x P ∆+∆==→)()())⎰∑=→=∆+∆≤li i ni d ds P y x P ..lim 221)P L =.9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22y x z +=被圆柱面x y x 222=+截下的那一部分; (ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=则dS dxdy ==.dxdy yx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122b br a a ra ardrd πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:y x z +=∑,得,2122dxdy dxdy y z x z dS =⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=.().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22y a x -=,则,22y a y yx--=∂∂,0=∂∂zx,所以,dydzya a dydz z x y x dS 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.dydz y a a S S yzD ⎰⎰-==22188 ⎰⎰--=2202208y a a dz y a a dy .8820a adz a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面; (ⅱ)()d S y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++=其中 ,0:1=z S dxdy dS =1, ()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++1010222111111dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111| 212ln -=; ,0:2=x S dydz dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++10102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=y y ; ,0:3=y S dzdx dS =3,()()()dz x dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++10102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||101-=+-+-=x x ;,1:4y x z S --= dxdy dS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-10101021113113| ().212ln 33211ln 321113|1010⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x ;()⎰⎰++S y x dS 21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中 ,0:1=z S dxdy dS =1,()()rdr r d dxdy y x dS y x aD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ 24a π=;,:2h z S = dxdy dS =2,()()rdr r d dxdy y x dS y x aD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a y x S =+其向yoz 面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22y a y yx --=∂∂,0=∂∂zx,所以, dydz ya a dydz z x y x dS 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+= ()()dydz ya a y y a dS y x yz D S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz y a dy a 022312..2arcsin4303|h a a y h a aπ== 或者()..22..32232233h a ah a dS a dS y x S S ππ===+⎰⎰⎰⎰()⎰⎰++S y x dS21()++=⎰⎰122S dS y x ()++⎰⎰222S y x()d S y xS ⎰⎰+322().22223344h a a h a a a +=++=ππππ(ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dS x SdS y S ⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a u f dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面0=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有 其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则222cb a cz by ax u ++++=(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则 ()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为1222=++w v u(因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)得: ()22221uw v -=+当u 固定时,1222=++w v u 表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -=' ;112222u w v u E u u u-='+'+'= ;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv =故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du c b a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量.解:由公式 ()d Sy x J S⎰⎰+=22由对称性 ()d S y x J S ⎰⎰+=1228其中 2221:y x a z S --=,则z z x y ∂∂==∂∂,所以,dS ==.因此 ()dxdy yx a a y x S S xyD ⎰⎰--+==222221.88rdr ra r d a a.8022220⎰⎰-=πθ极()rdr ra a a ra a .4022222⎰-+-=πrdr r a a a.4022⎰--=πrdr ra a a.140223⎰-+π()22022.2r a d r a a a--=⎰π()220223.12r a d ra a a ---⎰π()|232232.2a r a a -=π|02232.2ar a a --π434a π-=44a π+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z y x S 的下侧,求曲面积分d S.⎰⎰,其中{}.,,z y x =解:⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz S d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222y x y y x x z z yx ,所以{}.cos ,cos ,cos 21,2,222220γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==y x y y x x n 故⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz d .()⎰⎰++=SdS z y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=S dS z y x y yx x 222222222 ⎰⎰⎪⎪⎭⎫ ⎝⎛-+=S dS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .02222222 14(P217,第2题)沿椭球面1222222=++cz b y a x 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫⎝⎛++S z dxdy y dzdx x dydz解:把S 分割为21,S S 两个部分.其中,222211:b y a x c z S --=(上侧);222221:by a x c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by a x D xy故 dxdy b ya x c z dxdyxyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.sin ,cos θθbr y ar x由二重积分的换元法 dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y r yxrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D 所以=⎰⎰1S zdxdy dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d c ab ⎰⎰-=πθ2010211dr r rd c ab ⎰⎰-=πθ2010211所以, ().212111|1022102πππcab r c ab r d r c ab =⎥⎦⎤⎢⎣⎡--=---=⎰ 由轮换对称性,知: πa bc x dzdy S4=⎰⎰; .4πb ac y dzdx S=⎰⎰ 故⎰⎰⎪⎪⎭⎫⎝⎛++Sz dxdy y dzdx x dydz +=⎰⎰S z dxdy +⎰⎰S x dzdy⎰⎰Sy dzdx+=πc ab 4πa bc 4().44222222a c c b b a abcb ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故 ()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换: ⎩⎨⎧+=+=.sin ,cos θθr b y r a x由二重积分的换元法()()[]rdr r R c dxdy b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y r yxrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D 所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()dr r rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R r R c c R⎰-+-+=02222222πrdr r R c rdr c R R ⎰⎰-+=02202222ππ()rdr r R R⎰-+0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cR R c πππ++=(1)同理()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221()dr r r R c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ200222()rdr r R c R 20222⎰---=πrdr r R c rdr cRR⎰⎰-+-=0222222ππ()r dr r R R⎰--0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cR R c πππ-+-= =⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cR dxdy z S π=⎰⎰ ; 由轮换对称性,知: =⎰⎰Sdydz x 2338aR π; =⎰⎰Sdzdx y 2.383bR π 故.222⎰⎰++Sdxdy z dzdx y dydz x ⎰⎰=Sdydz x 2⎰⎰Sdzdxy 2⎰⎰Sdxdy z2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分 ⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中 ()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此 =⎰⎰Sxyzdxdy +⎰⎰1S xyzdxdy ⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy ⎰⎰-xyD dxdy xy 0.c b a ydy xdx c ab.40022⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫⎝⎛=+12222b y a x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI x xL-+-=⎰cos sin ,(m 为常数) 其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆周.(提示:作辅助线后用格林公式). 解:cos ,cos x x P Qe y m e y y x∂∂=-=∂∂. 所以,由格林公式:221...428AO OA D DQ P a dxdy mdxdy m ma x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰.所以,2220.888AO OAma ma ma I πππ⋂==-=-=⎰⎰ (因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l故有xQ y P ∂∂=∂∂即 ()()x f x x f x '+=34 化简,得 ()()241x x f xx f =+' (1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214().1134xc x c x x +=+=代入条件()21=f ,得 .1=c故 ().13xx x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,=在闭区域D 上具有连续的二阶偏导数且记2222yux u u ∂∂+∂∂=∆证明: ⎰⎰⎰∆=∂∂Dl udxdy ds n u其中()()yu x u n u ,cos ,cos ∂∂+∂∂=∂∂ 表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos 、()y ,cos ,则有 ()()y x ,,τ=,()().,,x y τπ-=故 ()()y x ,cos ,cos τ=,()().,cos ,cos x y τ-=()()ds x y uy xu ds n u l l ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx y udy x u l ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=D dxdy y u y x u x =⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰D dxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 证明:仿上题 ()()ds xy uy x u u ds n u ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yuu dy x u ul ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u u y u y u x u u x u x u 2222....dxdy y u x u u dxdy y u x u D D ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222 udxdy u dxdy y u x u D D ∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22 移项,即得 .22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: ds vu n v n u dxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明: ()()ds x y u y xu v ds n u vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yuv dy x u vl ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=D D dxdy y u x u v dxdy y v y u x v x u 22.....⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DD udxdy v dxdy y v y u x v x u (1)由轮换对称性,知 ds nv ul⎰∂∂...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DD vdxdy u dxdy y v y u x v x u(2)于是ds n v u n uv ds vun vnul l ⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂ ⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰D D udxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰D D vdxdy u dxdy y v y u x v x u .. ()⎰⎰∆-∆=Ddxdy v u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分()(b a I =,其中l 为简单(光滑)闭合曲线,为不在l 上的点()b a ,到l 上动点()y x ,的向量,而为l 上动点()y x ,处的法向量.解:设为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有 ()()y x ,,τ=,()().,,x y τπ-= 又设()(){}y x n ,cos ,,cos 0= ,{}b y a x --=,,则()()()()()()().,cos .,cos .,cos ,cos 2200b y a x y b y x a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]d s y b y x a x b y a x b a I l,cos ,cos .1,22-+--+-=⎰()()()()()()[]d s x b y y a x b y a x l,cos ,cos .122----+-=⎰ ()()()().22⎰-+----=lb y a x dx b y dy a x 记 ()()(),,22b y a x b y y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y y P-+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xoy 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD .则在'εD 由格林公式可得:()()()()⎰-+----l b y a x dx b y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dy a x I 22()()⎰---=εεldx b y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x . 24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式dxdy yx zx yz z y x dxdy dzdx dydz2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=,.31,33,330⎭⎬⎫⎩⎨⎧-=n )()()()dS dxdy dz y x dy z x dx y z I l ⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdy dz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u (){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -= 因为xQx y y x y P ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈ 所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos 22()dy y x x y sin cos 22-是某一个函数()y x u ,的全微分. 故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dy y x x y dx x x yx ⎰⎰-+-=0202sin cos 2sin 00cos 2.cos cos 22y x x y +=则,所求的位势为 ().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y e x z xe f y y --=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xe z y x P y y -=-==--x Q xe y P y ∂∂=-=∂∂-2;y R z z Q ∂∂=-=∂∂sin ;.0zP x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,{}z y e x z xe f y y sin ,cos ,22--=--为定义在全空间上的保守场.所以,+-dx xe y 2()zdz y dy e x z y sin cos 2---是某一个函数()z y x u ,,的全微分.(二)现取()()()()zdz y dy e x z dx xe z y x u y z y x y sin cos 2,,2,,0,0,0--+=--⎰取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是()()⎰⎰⎰-+-+=--z yyxzdz y dy ex dx xe z y x u 00200sin 0cos 2,,[]|||022cos zy yx z y e x y x+++=-()[]()y z y x e x y x y-+-++=-cos 222.cos 2z y e x y +=-则,所求的位势为 ().cos ,,2c z y e x c z y x u y ++=+- 26(P238第2题)证明式(14-31),并由此求下面的曲线积分: ()();).1(2,11,22⎰-xxdyydx ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx解:(一)要证式(14-31)成立,即要证若平面区域D 内保守力场()(){}y x Q y x P f ,,,=有位势()y x u ,,则对D 内的任意两点()()222111,,,y x M y x M ,有 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰事实上,因为()(){}y x Q y x P f ,,,=为保守力场,故()()dy y x Q dx y x P l ,.+⎰在D 内与路径无关,而只取决于路径的起点、终点.令()()()()()dy y x Q dx y x P y x v y x y x ,.,,,11+=⎰(1)则可证明()y x v ,也是f 在D 内的一个势函数.故 ()()C y x v y x u ≡-,, ,对任意()D y x ∈,成立(2)取()()11,,y x y x =,并注意到()0,11=y x v (因为沿闭合曲线的积分为零),得()()()111111,,,y x u y x v y x u C =-=(2)式中再取()()22,,y x y x =,并注意到(),0,11=y x v 得()()C y x v y x u =-2222,, 即 ()()()()().,,3,,11222222y x u y x u C y x u y x v --============Θ又由(1)式,注意到()y x v ,的记号,得 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰(二)()()⎰-2,11,22).1(x xdyydx 中,()2,x y y x P =,().1,2x xx y x Q -=-= 因为 xQx y P ∂∂==∂∂21,().0,,2≠∈x R y x 所以,2xxdyydx -是某一个函数()y x u ,的全微分. 故可取()()()⎰-=y x x xdy ydx y x u ,0,12,dy x dx y x ⎰⎰⎪⎭⎫ ⎝⎛-+=0110.x y -=所以 ()()()().2321121,22,12,11,22-=⎪⎭⎫ ⎝⎛---=-=-⎰u u x xdyydx()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx 中,()()().,,,,,,,,xy z y x R zx z y x Q yz z y x P ===因为x Q z y P ∂∂==∂∂;y R x z Q ∂∂==∂∂;.zPy x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,+yzdx xydz zxdy +是某一个函数()z y x u ,,的全微分. (二)现取()()()xydz zxdy dx yz z y x u z y x ++=⎰,,0,0,0,,取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是 ()⎰⎰⎰++=zyxxydz dy x dx z y x u 000.00,, .xyz =所以 ()()()().03,2,11,1,61,1,63,2,1=-=++⎰u u xydz zxdy yzdx 27(P238第5题)验证下列方程我全微分方程,并求通解:()();04332).1(=-++dy y x dx y x ()().03223).2(2222=+-++-dy y xy x dx y xy x解:()();04332).1(=-++dy y x dx y x这里,()()y x y x Q y x y x P 43,,32,-=+=.因为,xQy P ∂∂==∂∂3,是全微分方程.故:()()()()()dyy x dx y x y x u y x 4332,,0,0-++=⎰ ()()dy y x dx x yx ⎰⎰-++=004302[]||02223yx y xy x-+=.2322y xy x -+=通解为:c y xy x =-+2223.()().03223).2(2222=+--+-dy y xy x dx y xy x这里,()().32,,23,2222y xy x y x Q y xy x y x P -+-=+-=. 因为,xQ y x y P ∂∂=+-=∂∂22,所以方程是全微分方程. 故:()()()()()dy y xy x dx y xy x y x u y x 22,0,0223223,+--+-=⎰()()dy y xy x dx x yx⎰⎰-+-+=022023203[]||03223yx yxy y xx-+-+=.3223y xy y x x -+-=因此,所求方程的通解为:.3223c y xy y x x =-+-.28(P238第6题)设函数()y x u u ,=在凸区域(即包含区域内任意两点间的连线)2R ⊂Ω内连续可微分且K gradu ≤(常数).证明:对于Ω内任意两点B A ,,都有 ()()().,.B A d K B u A u ≤- 其中()B A d ,表示点B A ,之间的距离.证明:由于Ω为凸区域,故线段AB 整个属于Ω.设点B 的坐标为()000,,z y x ,点A 的坐标为()111,,z y x ,且令.,,010101z z z y y y x x x -=∆-=∆-=∆ 考虑一元函数()()z t z y t y x t x u t f ∆+∆+∆+=000,, ().10≤≤t (1) 显然,()()()().1,0A u f B u f ==(2)且()t f 在[]1,0上可微,并且 ()()x z t z y t y x t x u t f x ∆∆+∆+∆+'='.,,000 ()y z t z y t y x t x u y ∆∆+∆+∆+'+.,,000()z z t z y t y x t x u z ∆∆+∆+∆+'+.,,000 (3)于是,由微分学中值定理知()()()()()ξf f f B u A u '=-=-01()()=3Θ()x z z y y x x u x ∆∆+∆+∆+'.,,000ξξξ ()y z z y y x x u y ∆∆+∆+∆+'+.,,000ξξξ()z z z y y x x u z ∆∆+∆+∆+'+.,,000ξξξ ()..,,000z z y y x x gradu ∆+∆+∆+=ξξξ (4)由(4)式可知 ()()(z z y y x x gradu B u A u ,,000∆+∆+∆+=-ξξξ()().,..,,000B A d K z z y y x x gradu ≤∆+∆+∆+≤ξξξ29(P238第7题)求向量场⎪⎭⎫ ⎝⎛=x y grad f arctan 沿下列曲线l 的环量: (ⅰ)l 为圆周()()12222=-+-y x ;l 为圆周422=+y x (分为左、右半圆周分别计算).解: ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛=x y y x y x x y grad f arctan ,arctan arctan.,2222⎭⎬⎫⎩⎨⎧++-=y x x y x y (ⅰ) 2222.y x xdyy x ydx d f l l +++-=⎰⎰(格林公式)dxdy y x y y y x x x D⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂=2222()().022********=⎥⎥⎦⎤⎢⎢⎣⎡+--+-=⎰⎰dxdy y x x y y x x y D (ⅱ)⎰⎰+-=ll y x ydx xdy d f 22.[].22.241412ππ==-=⎰l ydx xdy 30(P238第8题)求,f rot 其中().2,3,32x y z x y z f ---= 解:⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R f rot ,,{}.6,4,2= 31(P238第9题)证明: ()f gradu f urot f u rot ⨯+=. 解:设()()(){}z y x R z y x Q z y x P f ,,,,,,,,=,则()()(){}.,,,,,.,,,z y x uR z y x Q u z y x uP uf =()()()()()()⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y uP x uQ x uR z uP z uQ y uR f rot ,, ,,{⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=x u R x R u z u P z P u z u Q z Q u y u R y R u },⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂y u P y P u x u Q xQu⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R u ,,⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+y u P x u Q z u P x u R z u Q y u R ,.f gradu f urot ⨯+= 31(P246第1题)利用奥-高公式计算下列各曲面积分:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz ,沿球面()()()2222R c z b y a x =-+-+-外侧;(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333,沿正方体()10,10,10≤≤≤≤≤≤z y x 外表面;(ⅲ)()()()[]d S z z y y x x S⎰⎰++,cos ,cos ,cos 222,沿锥面()h z y x S ≤=+22的下侧;(ⅳ),3dxdy z S⎰⎰沿上半球面222y x a z --=的上侧.解:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz (奥-高公式)()()()⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=dv z z y y x x .434.3333R R dv ππ===⎰⎰⎰Ω(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333(奥-高公式)()()()xdydz d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=333()⎰⎰⎰Ω++=dxdydz z y x 2223=3(ⅲ)若取h z S =:1(上侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥-高公式,便得:()()()[]d S z n z y n yx n x S S ⎰⎰+++1,cos ,cos ,cos 222dxdy z dzdx y dydz xS S 2221++=⎰⎰+ (奥-高公式)()()()xdydz d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=222()⎰⎰⎰Ω++=dxdydz z y x 2⎰⎰⎰Ω=zdxdydz 2(=⎰⎰⎰Ωxdxdydz 0=⎰⎰⎰Ωydxdydz )dz z rdr d h h r⎰⎰⎰=πθ202()dr r h r d h⎰⎰-=πθ20022212 .24πh = 所以 ()()()[]d S z n z y n y x n x S⎰⎰++,cos ,cos ,cos 222dxdy z dzdx y dydz x h S 222212++-=⎰⎰π=-=⎰⎰dxdy h h xyD 222π.2.22222πππh h h h =-=(ⅳ),3dxdy z S⎰⎰沿上半球面222y x a z --=的上侧.若取0:1=z S (下侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥—高公式,便得:。
第九章_曲线积分与曲面积分习题解答(详细讲解)

曲线积分与曲面积分习题详解1计算下列对弧长的曲线积分: (1)/ = J c 7ydy. 是抛物线y = x 2±.点0(0,0)到 A(l,l)之间的一段弧:解:由于C 由方程y = x 2 (0<x<l )给出,因此/ =+=卜』+ 4耳」1>心2[詁(5俣])•解:C = AB 的参数方程为:其中C 是圆X + y 2 = 1中A(0J)到“5"0-討誇),于是[\ cos & J(-sin &),+ cos ,(3) 切.Cr + y + l)d.其中C 是顶点为0(0,0)/(1・0)及B(0J)的三角形的边界:解:厶是分段光滑的闭曲线,如图9一2所示,根据积分的可加性, 则有(^(x + y + \)c/s=L (x + y + \)ds + J# (x + y + \)cls +1。
(x + y + V)ds ,由于 OA: y = 0 0<x< 1,于是ds = J(—)2+(—)2dx = W+0认=dx , V dxdxL (x + y + l)tZy = £(x + 0 + \)dx =寸,而AB: y = l-x, OSSI,于是 + (-厅dx = dlx ・之间的一段劣弧;ds =[^(x + y + l)cls= [ [x + (\-x) + \]y/2dx = 2y/2 »同理可知BO:x = 0(0<y<l), ds = 1(—)2 + (—)2 Jv = Vo2 + l2c/y = Jv > 则Y ay dyL(x+y + l)〃$= (JO+y + lk/y = [・综上所述df r(x-y + l)J5 = - + 2V2 + - = 3 + 2>/2 ・( 2 2(4)y/x2 + y2ds ,其中C 为圆周x2 + y2 = x :解直接化为左积分.C』勺参数方程为JC =1+J>COS&, y = -sin& ( Q<0<2TT ),2 2 - 2且ds =加⑹ F +[y(e)F〃e=”& •于是(5)[r x\yzds,英中T为折线段ABCD.这里A,3・C\D的坐标依次为(0,0.0), (0,0,2), (1,0,2), (1,2,3):解如图所示,^x2yzcls = \_x2yzds+ \_x2yzJs+ [_・线段殛的参数方程为x = 0,.y = 0,z = 2r(0<r<l),则T份+%+(少= V0:+02 +22Jr = 2r/r,= J 0 • 0 • 2/ • 2clt = 0线段BC 的参数方程为x = /,y = 0,z = 2(0<r<l),则ds = jF+O'+oTud?,故f _Fyzd$ = f ・0・2d/ = 0, J RC - J o线段丽的参数方程为x = l,y = 2/,z = 2 + r (0<r<l),则 ds = Jo, +2, + Fdf = yj5dt , 故J-x 2yzds = f 'l 2-2t (2 + t)-甌=2x/5j ;⑵ +12= |点所以L 疋 gds = |*_x 2 yzcls + [—yzds + J 而yzjds = ->j5 .2 2 2 2(6)f rds,其中「为空间曲线广+ G/>o ).JrX + z =",»解:F 在x,y 平而的投影为:x 2+y 2+(a-x)2=a 2 ,即 2x 2 + y 2-2t/x = 0 ,从而利用椭圆的苓奴方程得F 的参数二x = —a + — acos 0. 2 22设一段曲线y = lnx (0<a<x<b)上任一点处的线密度的大小等于该点横坐标的 平方,求其质量.解 依题意曲线的线密度为p = x 2,故所求质疑为M=\(X 2ds,英中0 <(9 < 2^.由于则ds = y]x ,2 + y t2 +z t2d0 =d&.sin 2 ede = ^=.2V2/ c 2nC :y = \nx (Q<a<x<b)・则C 的参数方程为片=片(0 < < x < b) > y = In x所以M = £—V1 + A -\Z Y = [*(1 + d = *[(1 +戻);一(1 + “2)訂3求八分之一球面x 2 + r + z 2=l(x>0,y>0.z>0)的边界曲线的重心,设曲线的密 度 ° =解 设曲线在xOy^yOz^Ox 坐标平而的弧段分别为厶、L 「厶,曲线的重心坐标为2「xdx _ 2 _ 4 =A/JoTf-x 2=A/=3^'故所求重心坐标为[二.二、学.\37T 3龙 3〃 丿4. 径为川 中心角为加的圆弧C 对于它的对称轴的转动惯応/ (设线密度解:如右图建立坐标系,则I = J c y 2^ •为了便于计算,利用c 的参数方程C :x = Rcost,y = Rsint (-a <t <a).于是I = Jc y 2(^s =「R‘ sin 2 tyj(-Rsinty +(/?cos/)2dr =R 、[a sin 2 tdt = /?'(a-sintzcostz).J-ajv=HS Jv=(订习lx — — \l\ + x 2dx , X由对称性可得重心坐标则曲线的质量为出=j ds诂卩严+o+J 严卜為严习题9・21设L为xOy直线y = b (b为常数),证明J g, y)dy=o。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 曲线曲面积分§10.1对弧长的曲线积分一、选择题1. 设曲线弧段»AB 为,则曲线积分有关系( ).(A)»»(,)d (,)d ABBA f x y s f x y s =-⎰⎰; (B)»»(,)d (,)d ABBAf x y s f x y s =⎰⎰;(C)»»(,)d (,)d 0AB BAf x y s f x y s +=⎰⎰;(D)»»(,)d (,)d ABBAf x y s f x y s =--⎰⎰. 答(B).2. 设有物质曲线23:,,(01),23t t C x t y z t ===≤≤其线密度为ρ=,它的质量M =( ).(A)10t ⎰; (B)10t t ⎰;(C)t ⎰; (D)t ⎰. 答(A).3.设OM 是从(0,0)O 到(1,1)M 的直线段,则与曲线积分OMI s=⎰不相等的积分是( ).(A)10x ⎰; (B)10y ⎰;(C)d r r ⎰; (D)1e r ⎰答(D).4 .设L 是从(0,0)A 到(4,3)B 的直线段,则曲线积分()d Lx y s -=⎰( ).(A)403d 4x x x ⎛⎫- ⎪⎝⎭⎰; (B)303d 4y y y ⎛⎫- ⎪⎝⎭⎰;(C)3034y y y ⎛- ⎝⎰; (D)4034x x x ⎛- ⎝⎰. 答(D).5. 设L 为抛物线2y x =上从点(0,0)到点(1,1)的一段弧,则曲线积分s =⎰( ).(A)x ⎰; (B)y ⎰;(C)10x ⎰; (D)y ⎰. 答(C).6. 设L 是从(1,0)A 到(1,2)B -的直线段,则曲线积分()d Lx y s +=⎰( ).(A); (B)2; (C) (D) 答(D).二、填空题1. 设L 是圆周221x y +=,则31d LI x s =⎰Ñ与52d LI x s =⎰Ñ的大小关系是.答:12.I I =2. 设L 是连接(1,0)A 与(0,1)B 两点的直线段, 则()d Lx y s +=⎰..3. 设:cos ,sin (02),L x a t y a t t π==≤≤则22()d n Lx y s +=⎰.答:212a a π+.4. 设:cos ,sin (02),L x a t y a t t π==≤≤则22()d Lx y s -=⎰.答:0.5. 设L 是圆周221x y +=,则2d LI x s ==⎰Ñ.答:π.6. 设:cos ,sin ,t t t x e t y e t z e Γ===,上相应于t 从0变到2的这段弧,则曲线积分22()d Lx y s -=⎰.答:2)e --. 7. 设L 为曲线24y x =上从点(0,0)A 到点(1,2)B 的弧段,则Ls =⎰.答:3. 三、解答题1.计算下列对弧长的曲线积分: (1)d Lx s ⎰Ñ其中为由直线y x =与抛物线2y x=所围区域的整个边界.答: 11)12.(2)Ls ⎰Ñ其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界.答: 2 2.4a a e π⎛⎫+- ⎪⎝⎭(3)2d x yz s Γ⎰,其中Γ为折线ABCD ,这里,,,A B C D 依次为点(0,0,0)、(0,0,2)、(1,0,2)、(1,3,2).答:9. (4)2d Ly s ⎰其中L 为摆线一拱(sin ),(1cos )(02)x a t t y a t t π=-=-≤≤.答: 34232.53a ⋅⋅(5)22()d Lx y s +⎰其中L 为曲线(cos sin )(sin cos )x a t t t y a t t t =+⎧⎨=-⎩(02)t π≤≤. 答: 2322(12).a ππ+§10.2对坐标的曲线积分一、选择题1. 设AB 为由(0,)A π到(,0)B π的直线段,则sin d sin d ABy x x y +=⎰( ).(A)2; (B)1-; (C)0; (D)1. 答(C). 2. 设C 表示椭圆22221x y a b+=,其方向为逆时针,则2()d C x y x +=⎰ ( ).(A)ab π; (B)0; (C)2a b +; (D)1. 答(B). 3. 设C 为由(1,1)A 到(2,3)B 的直线段,则(3)d (2)d Cx y x y x y +++=⎰( ).(A)21[(2)(23)]d x x x x x +++⎰; (B)21[(21)(213)]d x x x x x +-+-+⎰ (C)21[(73)2(51)]d x x x -+-⎰; (D)21[(73)(51)]d x x x -+-⎰. 答(C).4. 设曲线C 的方程为x y ==(0)2t π≤≤,则22d d Cx y y y x x -=⎰( )(A)20[cos sin t π⎰; (B)2220(cos sin )d t t t π-⎰(C)2200cos sin ππ-⎰⎰(D)201d 2t π⎰.答(D).5. 设()f u 连续可导,L 为以原点为心的单位圆,则必有( ).(A)22()(d d )0L f xy x x y y ++=⎰Ñ;(B)22()(d d )0Lf xy x y y x ++=⎰Ñ(C)22()(d d )0Lf xy x y y ++=⎰Ñ; (D)22()(d d )0Lf xy x x y ++=⎰Ñ.答(A).6. 设C 是从(0,0)O 沿折线11y x =--到(2,0)A 到的折线段,则d d Cx y y x -=⎰( )(A)0; (B)1-; (C)2-; (D)2. 答(C).二、填空题1. L 为xoy 平面内直线x a =上的一段,则(,)d LP x y x =⎰.答:0.2. 设L 为2y x =上从(0,0)O 到(2,4)A 的一段弧,则22()d Lx y x -=⎰.答:5615-. 3. 设L 为2y x =上从(0,0)O 到(2,4)A 的一段弧,则22()d Lx y y -=⎰.答:403-.4.L 为圆弧y (2,2)A 的一段弧,则d Lxy y =⎰ .答:43. 5.设L 为圆周222()(0)x a y a a -+=>及x 轴所围成的在第一象限的区域的整个边界(按逆时针方向绕行),则d Lxy y =⎰.答:32a π-.6.设(2)d (23)d 9Lx y x x y y -++=-⎰Ñ,其中L 为xoy 平面上简单闭曲线,方向为逆时针.则L 所围成的平面区域D 的面积等于.答:32.三、解答题1.计算()d ()d Lx y x y x y ++-⎰,其中L 为:(1) 抛物线2y x =上从(1,1)到(4,2)的一段弧; (2) 从点(1,1)到点(4,2)的一直线段;(3) 先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4) 曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 答案:3432(1);(2)11;(3)14;(4).332.计算d d Ly x x y +⎰其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到2π的一段弧.答:0. 3.计算22()d ()d L x y x x y yx y+--+⎰Ñ,其中L 为圆周222x y a +=(方向按逆时针). 答:2π-.4.计算d d (1)d x x y y x y z Γ+++-⎰其中Γ为从点(1,1,1)到点(2,3,4)的直线段.答:13.5. 计算22(2)d (2)d Lx xy x y xy y -+-⎰,其中L 是2y x =上从点(1,1)-到点(1,1)的一段弧.答:1415-. §10.3 格林公式一、选择题1. 设C 是圆周222x y R +=,方向为逆时针方向,则22d d Cx y x xy y -+⎰Ñ用格林公式计算可化为( ).(A)230d d Rr r πθ⎰⎰; (B)220d d Rr r πθ⎰⎰;(C)230d 4sin cos d Rr r πθθθ-⎰⎰; (D)220d d RR r r πθ⎰⎰. 答(A).2. 设L 是圆周222x y a +=,方向为负向,则3223()d ()d Lx x y x xy y y -+-⎰Ñ= ( ). (A)323a π; (B)4a π-; (C); (D)42a π-. 答(D). 3. 设L 是从(0,0)O 沿折线22y x =--到(4,0)A 到的折线段,则d d Cx y y x -=⎰( )(A)8; (B)8-; (C)4-; (D)4. 答(B).4. 设(,),(,)P x y Q x y 在单连通区域D 内具有一阶连续偏导数,则d d LP x Q y +⎰在D 内与路径无关的充分必要条件是在D 内恒有( ).(A)0Q P x y ∂∂+=∂∂; (B)0Q Px y∂∂-=∂∂; (C)0P Q x y ∂∂-=∂∂; (D)0P Q x y∂∂+=∂∂. 答(B). 5. 设L 为一条不过原点,不含原点在内的简单闭曲线, 则22d d 4L x y y xx y -=+⎰Ñ( ).(A)4π; (B)π; (C)2π; (D)0. 答(D).6. 设L 为一条包含原点在内的简单闭曲线,则22d d 4L x y y xI x y -==+⎰Ñ( ).(A)因为Q P x y ∂∂=∂∂,所以0I =; (B)因为,Q Px y∂∂∂∂不连续,所以I 不存在; (C)2π; (D)因为Q Px y∂∂≠∂∂,所以沿不同的L ,I 的值不同. 答(C). 7. 表达式(,)d (,)d P x y x Q x y y -为某函数(,)U x y 的全微分的充分心要条件是( ).(A)P Q x y ∂∂=∂∂; (B)P Q y x∂∂=∂∂;(C)P Q x y ∂∂=-∂∂; (D)P Qy x ∂∂=-∂∂. 答(D). 8. 已知2()d d ()x ay x y yx y +++为某函数(,)U x y 的全微分,则a =( ).(A)0; (B)2; (C)1-; (D)1. 答(B). 9. 设L 是从点(1,1)A 到点(2,3)B 的直线段,则(3)d (3)d Lx y x y x y +++=⎰( ).(A)2311(3)d (6)d x x y y +++⎰⎰; (B)21[(6)(23)]d x x x x x +++⎰;(C)23111(31)d (3)d 2y x x y y ++++⋅⎰⎰; (D)21[(31)(51)]d x x x -++⎰.答(A).10*. 设()f x 连续可导,且(0)1f =,曲线积分(,)43(0,0)()tan d ()d I yf x x x f x y ππ=-⎰与路径无关,则()f x =( ).(A)1cos x +; (B)1cos x -; (C)cos x ; (D)sin x . 答(C).二、填空题1. 设区域D 的边界为L ,方向为正向, D 的面积为σ. 则d d Lx y y x -=⎰Ñ.答: 2σ.2. 设(,)f x y 在22:14x D y +≤上具有二阶连续偏导数, L 是D 的边界正向,则(,)d [3(,)]d y x Lf x y y y f x y x -+=⎰Ñ.答: 6π.3. 设L 是圆周229x y +=,方向为逆时针,则2(2)d (4)d Lxy y x x x y -+-=⎰Ñ.答: 27π-.4. 设L 为闭曲线2x y +=方向为逆时针,,a b 为常数, 则d d L ax y by xx y-+⎰Ñ=.答: 4()a b +.5. 设ABCDA 为以点(1,0),(0,1),(1,0),(0,1)A B C D --为顶点的正方形逆时针方向一周,则d d Lx yx y++⎰Ñ=.答: 0.6. 设L 为圆周221x y +=上从(1,0)A 到(0,1)B 再到(1,0)C -的曲线段,则2d y Le y =⎰.答: 0. 7.(2,2)2(0,0)2d (3)d xy x x y +-=⎰.答: 2.8. 设L 为直线y x =从(0,0)O 到(2,2)A 的一段, 则22d 2d y y Le x xye y +=⎰.答: 42e .9*. 设L 为抛物线上一段弧,试将积分(,)d (,)d LP x y x Q x y y +⎰化为对弧长的曲线积分,其中(,),(,)P x y Q x y 在L 上连续.答:22d 14L P xQ s x ++⎰.10*. 设()f x 连续可导,且(0)0f =,曲线积分[()]sin d ()cos d x Lf x e y x f x y y --⎰与路径无关,则()f x =.答: 2x xe e --.三、解答题1. 计算22d d 2()L y x x y x y -+⎰Ñ,其中L 为圆周22(1)2x y -+=的正向. 答:π-. 2. 计算(24)d (536)d Lx y x y x y -+++-⎰Ñ,其中L 是顶点分别为(0,0)、(3,0)和(3,2)的三角形正向边界.答:12.3. 计算3222(2cos )d (12sin 3)d Lxyy x x y x x y y -+-+⎰,其中L 为抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧.答:24π.4. 计算22()d (sin )d Lx y x x y y --+⎰,其中L 是圆周y 上由(0,0)到(1,1)的一段弧.答:7sin 264-+.5. 证明下列曲线积分与路径无关,并计算积分值:(1) (2,3)(1,1)()d ()d x y x x y y ++-⎰.答:52. (2)(2,1)423(1,0)(23)d (4)d xy y x x xy y -++-⎰.答: 5.6. 验证下列(,)d (,)d P x y x Q x y y +在整个xoy 平面内是某函数(,)u x y 的全微分,并求函数(,)u x y .(1) (2)d (2)d x y x x y y +++. (2) 22d d xy x x y +.(3) 22(2cos cos )d (2sin sin )d x y y x x y x x y y ++-.答: (1) 22222x y xy ++; (2) 2x y ; (3)22cos sin x y y x +. 7. 用格林公式计算223()d (2)d Lx x y x xy y y -+-+⎰,其中L 是圆周y (2,0)A 到(0,0)O 的一段弧.答:324π-.8. 用格林公式计算423(23)d (4)d Lxy y x x x xy y -+++-⎰,其中L 是圆周y (1,0)A 到(1,0)B -的一段弧.答:62π-.§10.4 对面积的曲面积分一、选择题1. 设∑是xoy 平面上的一个有界闭区域xy D ,则曲面积分(,,)d f x y z S ∑⎰⎰与二重积分(,)d d xyD f x y x y ⎰⎰的关系是 ( ).(A)(,,0)d f x y S ∑⎰⎰=(,)d d xyD f x y x y ⎰⎰;(B)(,,0)d f x y S ∑⎰⎰=(,)d d xyD f x y x y -⎰⎰;(C)(,,0)d f x y S ∑<⎰⎰(,)d d xyD f x y x y ⎰⎰;(D)(,,0)d f x y S ∑>⎰⎰(,)d d xyD f x y x y ⎰⎰.答(A).2. 设∑是抛物面22(04)z x y z =+≤≤,则下列各式正确的是( ).(A)(,,)d f x y z S ∑⎰⎰=22224(,,)d d x y f x y x y x y +≤+⎰⎰;(B)(,,)d f x y z S ∑⎰⎰=22224(,,d x y f x y x y x y +≤+⎰⎰;(C)(,,)d f x y z S ∑=⎰⎰22224(,,d x y f x y x y x y +≤+⎰⎰;(D)(,,)d f x y z S ∑=⎰⎰22224(,,d x y f x y x y x y +≤+⎰⎰. 答(D).3.设2222:(0)x y z a z ∑++=≥,1∑是∑在第一卦限中的部分,则有( ).(A)1d 4d x S x S ∑∑=⎰⎰⎰⎰;(B)1d 4d y S x S ∑∑=⎰⎰⎰⎰;(C)1d 4d z S z S ∑∑=⎰⎰⎰⎰;(D)1d 4d xyz S xyz S ∑∑=⎰⎰⎰⎰. 答(C).4. 设∑是锥面1)z z ≤≤,则22()d x y S ∑+=⎰⎰( ).(A)22()d x y S ∑+=⎰⎰2120d d r r r πθ⋅⎰⎰;(B)22()d x y S ∑+=⎰⎰1200d d r r r πθ⋅⎰⎰;(C)22()d xy S ∑+=⎰⎰21200d d r r πθ⎰;(D)22()d x y S ∑+=⎰⎰21200d d r r r πθ⋅⎰;. 答(D). 5. 设∑为平面1234x y z++=在第一卦限内的部分, 则42d 3z x y S ∑⎛⎫++= ⎪⎝⎭⎰⎰( ).(A)4d d xyD x y ⎰⎰;(B)4d d xyD x y ⎰⎰;(C)23004d d x y ⎰;(D)32004d d x y ⎰;. 答(B). 6. 设∑为曲面222()z x y =-+在xoy 平面上方的部分,则d z S ∑=⎰⎰( ).(A)222200d (2)d r r r r πθ--⋅⎰⎰;(B)2220d (2d r r r πθ-⎰⎰;(C)220d )d r r r πθ-⋅⎰⎰;(D)220d d r r r πθ-⎰. 答(D).7. 设∑为球面2222x y z z ++=,则下列等式错误的是( ).(A)22()d 0x yz S ∑+=⎰⎰Ò; (B)22()d 0y yz S ∑+=⎰⎰Ò;(C)22()d 0z x y S ∑+=⎰⎰Ò; (D)2()d 0x y z S ∑+=⎰⎰Ò. 答(C). 二、填空题1. 设2222:x y z a ∑++=,则222()d x y z S ∑++=⎰⎰Ò.答: 44a π.2. 设∑为球面2222x y z a ++=,则222d x y z S ∑=⎰⎰Ò.答: 0.3. 设∑为上半球面z =,则d z S ∑=⎰⎰.答: 3a π.4. 设∑为下半球面z =则d z S ∑=⎰⎰.答: 3a π.5 设∑为球面2222x y z a ++=,则d z S ∑=⎰⎰Ò.答: 23a π.6. 设∑为上半球面z =,则d x S ∑=⎰⎰.答: 0. 7. 设∑为平面1232x y z ++=在第一卦限部分,则2d 3z y x S ∑⎛⎫++=⎪⎝⎭⎰⎰.答:8. 设∑为平面1x y z ++=在第一卦限部分,则d z S ∑=⎰⎰.答:. 9. 设∑为平面226x y z ++=在第一卦限部分, 则(522)d x y z S ∑---=⎰⎰.答: 272-. 三、解答题1. 计算曲面积分(,,)d f x y z S ∑⎰⎰,其中∑为抛物面222()z x y =-+在xoy 面上方部分,(,,)f x y z 分别如下:(1) (,,)1f x y z =; (2) 22(,,)f x y z x y =+; (3) (,,)2f x y z z =. 答: (1)136π; (2) 14930π; (3) 11110π.2. 计算22()d x y S ∑+⎰⎰Ò,其中∑是锥面z =1z =所围成的区域的整个边界曲面.答:12. 3. 计算22()d x y S ∑+⎰⎰,其中∑是锥面222z x y =+被平面0z =和3z =所截得的部分.答: 9π.4. 计算42d 3z x y S ∑⎛⎫++ ⎪⎝⎭⎰⎰,其中∑为平面1234x y z ++=在第一卦限中的部分.答:5. 计算()d x y z S ∑++⎰⎰,其中∑为球面2222x y z a ++=上(0)z h h a ≥<<的部分.答: 22()a a h π-.§10.5 对坐标的曲面积分一、选择题1. 设∑是球面2222x y z a ++=外侧,222:xy D x y a +≤,则下列结论正确的是( ).(A) 2d d z x y ∑=⎰⎰Ò222()d d xyD ax y x y --⎰⎰;(B)2d d z x y ∑=⎰⎰Ò2222()d d xyD ax y x y --⎰⎰;(C)2d d z x y ∑=⎰⎰Ò0;(D) (A)(B)(C)都不对. 答(C).2. 设∑为柱面222x y a +=被平面0z =及3z =所截得的部分外侧,则d d d d d d z x y x y z y x z ∑++=⎰⎰( ).(A) 3d d z x y ∑⎰⎰; (B)3d d x y z ∑⎰⎰;(C)3d d y x z ∑⎰⎰0; (D)d d d d x y z y x z ∑+⎰⎰. 答(D).3. 设∑为柱面222x y a +=被平面0z =及3z =所截得的部分外侧在第一卦限内的部分,则d d d d d d z x y x y z y x z ∑++=⎰⎰( ).(A)303d y x ⎰⎰;(B)302d z y ⎰⎰;(C)30d z x ⎰⎰; (D)30d z x ⎰⎰. 答(B).4. 设2222:x y z a ∑++=,1:z ∑=∑取外侧, 1∑取上侧.下列结论正确的是( ).(A) 12222()d d d d xy z x y a x y ∑∑++=⎰⎰⎰⎰Ò;(B)12222()d d 2d d xy z x y a x y ∑∑++=⎰⎰⎰⎰Ò;(C)2222222()d d 2d d x y a x y z x y a x y ∑+≤++=⎰⎰⎰⎰Ò; (D) 0. 答(D).5. 已知∑为平面1x y z ++=在第一卦限内的下侧,则d d z x y ∑=⎰⎰( ).(A) 1100d (1)d x x x y y ----⎰⎰; (B)110d (1)d x x x y y ---⎰⎰;(C)110d (1)d xy x y x ---⎰⎰; (D) 110d (1)d x y x y x ----⎰⎰. 答(A).6. 曲面积分2d d z x y ∑⎰⎰在数值上等于( ).(A)向量2z i v 穿过曲面∑的流量;(B)密度为2z 的曲面∑的质量; (C)向量2z k v 穿过曲面∑的流量;(D)向量2z j v穿过曲面∑的流量. 答(C).二、填空题1. 设∑是xoy 平面上的闭区域0101x y ≤≤⎧⎨≤≤⎩的上侧,则()d d x y z y z ∑++=⎰⎰.答: 0.2. 设∑是xoy 平面上的闭区域0101x y ≤≤⎧⎨≤≤⎩的上侧,则()d d x y z x y ∑++=⎰⎰.答: 1.3. 设∑为球面2222x y z a ++=取外侧, 则222()d d x y z x y ∑++=⎰⎰Ò..答: 0.4. 设∑为球面2222x y z a ++=取外侧, 则d d z x y ∑=⎰⎰Ò..答:343a π. 5. 设∑为球面2222()()()x a yb zc R -+-+-=取外侧, 则曲面积分d d z x y ∑=⎰⎰Ò..答:343R π. 6. 设∑为球面2222x y z a ++=取外侧, 则222()d d x y z x y ∑++=⎰⎰Ò.答: 0. 三、解答题1. 计算22d d x y z x y ∑⎰⎰,其中∑是球面2222x y z R ++=的下半部分的下侧.答:77426422453753105R R ππ⎛⎫⋅-⋅⋅= ⎪⎝⎭. 2. 计算d d d d d d z x y x y z y z x ∑++⎰⎰,其中∑是柱面221x y +=被平面0z =及3z =所截得的在第一卦限内的部分的前侧.答: 32π.3. 计算d d d d d d xz x y xy y z yz z x ∑++⎰⎰Ò,其中∑是平面0x =,0y =,0z =,及1x y z ++=所围成的空间区域的整个边界曲面的外侧.答:18. 4*. 把对坐标的曲面积分(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑++⎰⎰化成对面积的曲面积分,其中:(1) ∑是平面326x y ++=在第一卦限部分的上侧. (2) ∑是抛物面228()z x y =-+在xoy 面上方部分的上侧.答:(1) 32d 55P Q S ∑⎛⎫++ ⎪ ⎪⎝⎭⎰⎰;(2) S ∑.§10.6 高斯公式一、选择题1. 设空间闭区域Ω的边界是分片光滑的闭曲面∑围成, ∑取外侧,则Ω的体积V =( ).(A)1d d d d d d 3y y z z z x x x y ∑++⎰⎰Ò; (B)1d d d d d d 3x y z y z x z x y ∑++⎰⎰Ò; (C)1d d d d d d 3z y z z z x y x y ∑++⎰⎰Ò; (D) 1d d d d d d 3x y z z z x y x y ∑++⎰⎰Ò.答(B). 2.设∑是长方体{}:(,,)0,0,0,x y z x a y b z c Ω≤≤≤≤≤≤的整个表面的外侧,则222d d d d d d x y z y z x z x y ∑++=⎰⎰Ò( ). (A) 2a bc ; (B)2ab c ; (C)2abc ; (D) ()a b c abc ++. 答(D).3. 在高斯定理的条件下,下列等式不成立的是( ).(A)d d d P Q R x y z x y z Ω⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰(cos cos cos )d P Q R S αβγ∑++⎰⎰Ò;(B)d d d d d d P y z Q z x R x y ∑++=⎰⎰Òd d d P Q R x y z x y z Ω⎛⎫∂∂∂++ ⎪∂∂∂⎝⎭⎰⎰⎰; (C)d d d d d d P y z Q z x R x y ∑++=⎰⎰Òd d d R Q P x y z x y z Ω⎛⎫∂∂∂++ ⎪∂∂∂⎝⎭⎰⎰⎰; (D)d d d d d d P y z Q z x R x y ∑++=⎰⎰Ò(cos cos cos )d P Q R S αβγ∑++⎰⎰Ò.答(C).4. 若∑是空间区域Ω的外表面,下述计算用高斯公式正确的是( ).(A) 2d d (2)d d x y z z y x y ∑++=⎰⎰Ò(22)d d d x x y z Ω+⎰⎰⎰;(B)3()d d 2d d d d x yz y z xy z x z x y ∑--+=⎰⎰Ò2(321)d d d x x x y z Ω-+⎰⎰⎰; (C) 2d d (2)d d x y z z y z x ∑++=⎰⎰Ò(21)d d d x x y z Ω+⎰⎰⎰;(D)2d d (2)d d x x y z y y z ∑++=⎰⎰Ò(22)d d d x x y z Ω+⎰⎰⎰. 答(B).二、填空题1. 设∑是球面2222x y z a ++=外侧, 则d d z x y ∑=⎰⎰Ò.答:343a π. 2. 设∑是球面2222x y z a ++=外侧, 则333d d d d d d x y z y z x z x y ∑++=⎰⎰Ò.答:525a π. 3. 设∑是长方体{}:(,,)0,0,0,x y z x a yb zc Ω≤≤≤≤≤≤的整个表面的外侧,则d d d d d d x y z y z x z x y ∑++=⎰⎰Ò.答: 3abc .4. 设∑是长方体{}:(,,)0,0,0,x y z x a y b z c Ω≤≤≤≤≤≤的整个表面的外侧,则222d d d d d d x y z y z x z x y ∑++=⎰⎰Ò.答: ()a b c abc ++.5. 向量A yzi zxj xyk =++v v v v穿过圆柱222(0)x y a z h +=≤≤全表面∑流向外侧的通量Φ=.答: 0.6.向量2(23)()(2)A x z i xz y j y z k =+-+++v v v v穿过球面222(3)(1)(2)9x y z -+++-=∑流向外侧的通量Φ=.答: 108π. 三、解答题1. 计算222d d d d d d x y z y z x z x y ∑++⎰⎰Ò,其中∑为平面0x =,0y =,0z =及x a =,y a =,z a =所围成的立体的表面外侧.答: 43a .2. 计算333d d d d d d x y z y z x z x y ∑++⎰⎰Ò,其中∑为球面2222x y z a ++=外侧.答:525a π. 3. 计算2232d d ()d d (2)d d xz y z x y z z x xy y z x y ∑+-++⎰⎰Ò,其中∑为上半球体222x y a +≤,0z ≤.答:525a π. 4. 计算d d d d d d x y z y z x z x y ∑++⎰⎰Ò,其中∑是界于0z =和3z =之间的圆柱体223x y +≤的整个表面外侧. 答: 81π.5. 计算24d d d d d d xz y z y z x yz x y ∑-+⎰⎰Ò,其中∑是平面0x =,0y =,0z =与平面1x =,1y =,1z =所围成的立方体的全表面外侧. 答:32. 6. 计算22d d (2)d d d d 2z x y z z xy z x x y ∑+-+⎰⎰Ò,其中∑为曲面22z x y =+与平面1z =所围成的立体的表面外侧.答:4π. 7. 计算曲面积分3333d d (2)d d ()d d x y z yz x z x x y ∑+++-⎰⎰Ò,其中∑为曲面z =z .答: 326(1cos2)5π⋅⋅-. 8. 计算曲面积分222d d d d (1)d d xy y z z z x z xx y ∑++-⎰⎰Ò,其中∑为由曲面z =0z =所围成的空间区域的整个边界表面外侧.答: 322161625335πππ⋅⋅-=. 9*.用Gauss 公式计算曲面积分2()d d d d zx y z z x y ∑+-⎰⎰,其中∑是旋转抛物面221()2z x y =+介于平面0z =及2z =之间部分的下侧. 答: 8π.§10.7 斯托克斯公式一、选择题1. 在斯托克斯定理的条件下,下列等式不成立的是( ).(A) d d d P x Q y R z Γ++=⎰Ñd d d d d d y z z x x y x y z P Q R ∑∂∂∂∂∂∂⎰⎰; (B) d d d P x Q y R z Γ++=⎰Ñcos cos cos d S x y z PQ Rαβγ∑∂∂∂∂∂∂⎰⎰; (C)d d d P x Q y R z Γ++=⎰Ñ{}cos ,cos ,cos d i j k S x y z PQRαβγ∑∂∂∂⋅∂∂∂⎰⎰vv v ;(D)d d d P x Q y R z Γ++=⎰Ñ{}d ,d ,d i j k x y z x y z P Q R∑∂∂∂⋅∂∂∂⎰⎰v vv . 答(D). 2. 设Γ是从点(,0,0)a 到点(0,,0)a 再到(0,0,)a 最后回到(,0,0)a 的三角形边界(0a >),则()d ()d ()d z y x x z y y x z Γ-+-+-=⎰Ñ( ).(A) 23a ; (B)26a ; (C)22a ; (D) 2a . 答(A).3. 设Γ为圆周2229,0x y z z ++==,若从z 轴正向看去, Γ为逆时针方向.则22d 3d d y x x y z z Γ+-=⎰Ñ( ).(A) π; (B)6π; 9π; (D) 0. 答(C).二、填空题1. 设Γ为圆周2222,0x y z a z ++==,若从z 轴正向看去, Γ为逆时针方向.22d 2d d y x x y z z Γ+-=⎰Ñ.答: 0.2. 设u xy yz zx xyz =+++, 则(1)grad u =.答: {},,y z yz z x xz x y xy ++++++(2) div(grad )u = .答: 0.(3) rot(grad )u =. 答: 0v .3. 设向量场(23)(3)(2)A z y i x z j y x k =-+-+-v v v v,则rot A =v .答: 246i j k ++v v v.4. 设向量场22sin sin()sin(cos )A x yi y xz j xy z k =++v v v v,则rot A =v .答: 222[sin(cos )cos()]sin(cos )[cos()cos ]x z xy xz i y z j y z xz x y k --+-v v v .三、解答题1. 计算d d d y x z y x z Γ++⎰Ñ,其中Γ为圆周2222,0x y z a x y z ++=++=,若从z 轴正向看去, Γ为逆时针方向.答: 2a .2*. 计算()d ()d ()d yz x z x y x y z Γ+-+-⎰Ñ,其中Γ为椭圆222x y a +=, 1(0,0)x y a b a b+=>>,若从x 轴正向看去, Γ为逆时针方向.答: π3. 计算23d d d y x xz y yz z Γ-+⎰Ñ,其中Γ为圆周222,2x y z z +==,若从z 轴正向看去, Γ为逆时针方向.答: 20π-.4. 计算22d 3d d y x x y z z Γ+-⎰Ñ,其中Γ为圆周2229,0x y z z ++==,若从z 轴正向看去, Γ为逆时针方向.答: 9π.5*. 利用斯托克斯公式把曲面积分rot d A n S ∑⋅⎰⎰v v化为曲线积分,并计算积分值,其中A v 、∑及n v 分别如下:(1) 2A y i xyj xzk =++v v v v ,∑为上半球面z 的上侧, n v 是∑的单位法向量.(2) ()A y z i yzj xzk =-+-v v v v ,∑为{}(,,)02,02,02x y z x y z ≤≤≤≤≤≤的表面外侧去掉xoy 平面上的那个底面,, n v 是∑的单位法向量.答: (1) 0. (2) 4-.。