桥式起重机PLC控制系统
基于PLC、变频器的桥式起重机控制系统的设计

桥式起重机俗称行车,是工矿企业应用非常广泛的起重机械。
传统的桥式起重机为了提高起动转矩,采用绕线式异步电动机拖动,通过鼓形凸轮控制器的操作来改变其转子所串电阻调速。
随着新技术和控制设备的发展,现在人们普遍采用变频器作为变频调速电源,用笼形异步电动机取代原来的绕线异步电动机,用PLC作为控制装置进行无触点控制。
从而改善了调速性能,增加了系统的可靠性。
本文通过一个实例分析变频器和PLC在系统中的具体应用。
1、桥式起重机拖动系统1.1 桥式起重机的运行机构1)大车拖动系统拖动整台起重机顺着车间方向左右移动(以司机的坐向为参考)2)小车拖动系统拖动吊钩及重物顺着桥架作前后运动。
3)吊钩拖动系统拖动重物作吊起或放下的上下运动。
大型起重机(超过10t)有两个起升机构:主起升机构(主钩)和副起升机构(副钩)。
通常主钩与副钩不能同时起吊重物。
1.2 负荷特点桥式起重机的拖动系统负载都属于恒转矩性质,且其起升机构为位能性负载,当起升机构起吊重物下降或者快速减速运行时,电动机处于再生发电制动状态。
需要将电能通过反馈装置反送给电网或消耗在制动电阻上,以防直流处的泵升电压影响制动效果。
1.3 控制要求1)起升机构要求起动转矩大,起动运行平稳。
能够实现正反转运行且要有超载、限位、限流等多种保护。
2)起升机构在启停过程中易出现“溜钩”问题。
由于制动器从抱紧到松开,以及从松开到抱紧的动作过程需要时间(约0.65),而电动机转矩的产生或消失,是在通电或断电瞬间就立刻反应的。
因此,制动器和电动机在动作的配合上极易出现问题。
如电动机已经通电,而制动器尚未松开,将导致电动机的严重过载;反之,如电动机已经断电,而制动器尚未抱紧,则重物必将下滑,即出现溜钩现象。
因此要有相应的防止措施。
起升机构中要有机械制动器。
起重用变频器具有零速全转矩功能(又称零伺服功能,即零速时电动机仍能输出150%的额定转矩,使重物停在空中),但是若重物停在空中时出现电源瞬间停电等情况,就会有重物下滑的危险。
PLC和变频器桥式起重机控制系统设计毕业设计

PLC和变频器桥式起重机控制系统设计毕业设计毕业设计题目:PLC和变频器桥式起重机控制系统设计摘要:本文以桥式起重机为研究对象,通过PLC和变频器控制系统设计,实现对桥式起重机的自动化控制。
首先,对桥式起重机的工作原理和结构进行了详细介绍;然后,分析了PLC和变频器在桥式起重机控制系统中的优势和应用;最后,进行了PLC和变频器桥式起重机控制系统设计。
关键词:桥式起重机;PLC;变频器;控制系统;自动化一、引言桥式起重机是一种非常常见的起重设备,广泛应用于工厂、码头、港口等场所。
它具有运载能力强、工作灵活、结构稳定等特点。
目前,为了提高桥式起重机的操作效率和安全性,许多企业将自动化控制引入到桥式起重机中。
二、桥式起重机的工作原理和结构桥式起重机一般由桥架、行车和起重机构等组成。
工作时,起重机电机通过驱动机构提供动力。
起重机构由卷筒、悬挂系统和钩组成。
具体工作原理和结构可参考相关教材。
三、PLC和变频器在桥式起重机控制系统中的应用PLC和变频器作为现代自动化控制的重要组成部分,广泛应用于桥式起重机控制系统中。
PLC主要负责控制逻辑的实现,如控制起升、小车前后移动、大车左右移动等操作;变频器则用于控制电机的转速,实现对起重机各部分的精确控制和调速。
四、PLC和变频器桥式起重机控制系统设计1.系统硬件设计根据桥式起重机的实际需求和控制要求,选择合适的PLC和变频器设备,并搭建起相应的控制系统硬件平台。
2.系统软件设计利用PLC编程软件进行控制逻辑的设计和实现,包括起升、小车前后移动、大车左右移动等操作的代码编写。
同时,利用变频器的调试软件,设置合适的参数,实现电机的精确调速。
3.系统测试和调试将设计好的控制系统连接到实际的桥式起重机上,进行系统的测试和调试。
通过不断调整参数,检查系统运行状态,确保系统性能满足要求。
五、总结通过本文的研究,我们成功设计出了基于PLC和变频器的桥式起重机控制系统。
该控制系统具有自动化程度高、操作灵活、性能稳定等优点,可以提高桥式起重机的工作效率和安全性。
论桥式起重机检测中PLC控制技术的应用

论桥式起重机检测中PLC控制技术的应用1. 引言1.1 背景介绍PLC控制技术具有灵活、可靠、易扩展等优点,可以实现对起重机各个部分的精确控制,提高起重机的运行效率和安全性。
通过PLC 控制技术,可以实现桥式起重机的自动化控制,减少人为操作错误的风险,提高工作效率。
本文将探讨PLC控制技术在桥式起重机检测中的应用,分析其优势和具体应用案例。
也将总结PLC控制技术在桥式起重机检测中的应用效果,展望未来的发展方向,提出相关研究的建议。
通过本文的研究,可以更深入地了解PLC控制技术在桥式起重机检测中的作用,为相关领域的研究和应用提供参考。
1.2 研究意义桥式起重机是工业生产中常见的起重设备,其安全运行对生产工作至关重要。
在桥式起重机的使用过程中,检测其运行状态和负载重量是必不可少的操作。
利用PLC控制技术进行桥式起重机检测,可以实现自动化和智能化监测,提高检测效率和精度。
这种技术的应用具有重要的研究意义。
桥式起重机在工业生产中扮演着重要的角色,其安全运行直接关系到生产作业人员的生命安全和生产设备的正常运行。
采用PLC控制技术对桥式起重机进行检测,可以提前发现潜在的故障或问题,及时采取措施保证起重机的安全运行,对于生产工作的顺利进行具有重要的意义。
利用PLC控制技术对桥式起重机进行检测具有重要的研究意义,可以提高工业生产中桥式起重机的安全性和运行效率,是当前研究领域中值得深入探讨和应用的技术之一。
1.3 目的和意义在桥式起重机检测中,PLC控制技术的应用具有重要的目的和意义。
通过PLC控制技术,可以实现对起重机运行状态的实时监测和控制,提高了起重机的安全性和稳定性。
PLC控制技术能够提高检测效率和精度,减少人为因素的干扰,更加准确地获取起重机的各项参数信息。
PLC控制技术还可以实现对桥式起重机的自动化控制,减少操作人员的负担,提高工作效率。
PLC控制技术在桥式起重机检测中的应用不仅可以提高起重机的运行效率和安全性,还能够为相关领域的技术发展和应用提供有力支持,具有重要的现实意义和发展价值。
桥式起重机的PLC控课件

限护装置是用于防止 因操作不当而引发的事故的重要设备。
VS
详细描述
限位保护装置包括上升限位、下降限位和 运行限位等,能够分别在起重机上升、下 降和运行到特定位置时,自动切断电源, 从而防止因操作不当而引发的事故。
防风装置
总结词
桥式起重机的防风装置是用于防止大 风天气下起重机被风吹翻的重要设备。
起重机的动作。
数字量输入模块
接收来自开关量输入信号,如 按钮、限位开关等。
数字量输出模块
将中央处理单元发出的数字信 号转换为开关量输出,用于控 制接触器、继电器等执行器。
中央处理单元
CPU
PLC控制系统的核心,负责数据 处理和控制输出。
存储器
用于存储程序、数据和系统信息。
电源模块
为PLC控制系统提供稳定的直流电源。
1
定期更换磨损严重的钢丝绳, 以确保安全可靠。
检查电气设备接线是否牢固, 避免因松动导致安全隐患。
对起重机结构进行全面检查, 确保无疲劳裂纹等安全隐患。
特殊环境的维护与保养
在潮湿、高温、粉尘等恶劣环境下使用起重机 时,应加强检查和维护。
在寒冷环境下使用时,应注意保温,避免因温 度变化导致结构损伤。
程序调试与优化
通过模拟实验和现场调试,对程序进 行调试和优化,提高控制精度和稳定 性。
01
02
硬件配置
根据桥式起重机的硬件配置,选择合 适的PLC型号和I/O模块,确定输入输 出信号的数量和类型。
03
控制算法设计
根据桥式起重机的控制要求,设计合 适的控制算法,如PID、PWM等,实 现速度、位置等控制量的调节。
优化程序
根据实际运行情况和用户反馈, 对程序进行优化和改进,提高控
桥式起重机的PLC控

(1) PLC的构成 1) 中央处理器(CPU) 2)存储器 3)基本I/O接口电路 4)接口电路 5) 电源 PLC的特点 (1) 可靠性高 (2) 控制功能强 (3) 通用性好 (4) 操作方便 (5) 网络功能
PLC的工作原理
PLC的工作原理与计算机的工作原理基本一致。它采用循环扫描工作方式,
应用与发展
目前PLC已广泛应用于钢铁、石油化工、电力、交通运输、汽车、机械制造、环保与污水 处理、食品加工等领域。 我国使用较多的PLC产品有德国西门子的S7系列、日本立石公司的C系列、三菱公司的FX 系列、美国公司的GE系列等。 从可编程控制器的发展来看,有小型化和大型化两个趋势 。
PLC的组成
硬第 件四 设章 计 基 于 桥 式 起 重 机 PLC 控 制 系 统 的
软第 件五 设章 计基 于 桥 式 起 重 机 PLC 控 制 系 统 的
第1章 绪论
前言
桥式起重机是桥梁式起重机的一种,依靠升降机构和水平运动机构在两个互 相垂直的方向运动,能在矩阵场地上完成操作。随着电力电子技术、微电子技 术及现代控制理论的发展,控制从分立组成模拟量控制发展到数字量控制,运 用可编程控制器和变频器对电动机进行变频调速成为可行。 我国起重机的雏形是古代灌溉农田用的桔,现代我国起重机最早是通过学习 和仿造前苏联的技术制造出来的,目前各行业中使用的桥式起重机数不胜数, 普遍采用小型PLC控制和调压调速,基本上没有智能化产品。
甘肃机电职业技术学院 毕业设计
课题名称:桥式起重机的PLC控制系统设计
系
别: 电气工程系 专 业: 电气自动化技术 班 级: G103402 姓 名: 姚海军 指导教师: 汪存义 日 期: 2013年6月6日
桥式起重机电路设计中PLC控制技术的应用

桥式起重机电路设计中PLC控制技术的应用电气控制系统、金属结构和传动机构是桥式起重机的三大组成部分。
其中传动结构主要是升降及大小车运行的机构,像卷筒、减速、钢丝绳等装置;电气控制则包括电器元件、供电系统和电控系统三部分。
一、起重机总体系统设计桥式起重机的PLC控制系统主要包括限位器、主令控制器、PLC、5台电动机(两台大车电动机)、4台变频器和保护输入等内容。
此系统有28个输出点, 25个输入点,I/O接口共53个。
控制核心选用西门子S7-224,通信接口为选用通信能力较强的RS-485接口。
连接外部数字量的扩展模块有7个,其输出方变压器为式为晶体管和继电器两种方式,控制能力较强。
其中晶体管输出更能适应频繁开合的运行节奏,使用寿命相对较长。
其系统具体设计如下:1.安全设计要求桥式起重机PLC信号输入方式是通过控制台或控制手柄来完成各种动作的信号输入。
如主副钩的起降、小车后退及前进、打车的左右行等,并且互锁同一动作的不同运动方向及执行装置的速度。
设置报警或电铃装置一旦出现故障可自动启动报警。
报警应在起重机启动之前,必须是电铃未响前起重机绝对不运行。
同时应设置各种限位开关、限制器和紧急断电开关,以满足各种情况下电源报警或自动切断的需要。
还应在通道口设置联锁保护电路,以控制门栏。
2.设计控制信号控制信号的设计应在桥式起重机的运行结构及情况和主电路分析的基础上进行。
控制信号主要包括:主副钩速度、升、降控制信号;大车及小车速度、前、后控制信号;运行的启、止及安全栏的开关;主副升限位、小车前进与后退限位、大车左右行限位等限位信号;超载限动、过流继电器和电铃信号等。
共有35个输入信号和反馈信号。
输出信号包括:主副钩降、升及其速度,小车高、低速、前、后和高速自保;大车速度、左、右和两个高速自保以及启动信号的输出,紧急停止和电铃输出等共计22个。
(其控制功能见下图1.)上述数据均是确定PLC的依据。
二、控制系统的设计与确定1.PLC设计确定PLC设计必须按照以下原则进行:符合控制分析系统要求,按照被控对象的情况来确定动作及其完成的顺序,并概括出顺序的功能;PLC类型的确定应适合工艺要求,确定I/O点类型及点数,估计其内存存量;而后选取相应硬件设计,了解所选PLC产品功能,并根据实际需要对其进行软件编程和设计外电路,绘制出控制系统接线原理图;按照控制系统要求把功能顺序图转为梯形图,并应用软元件列表将其程序用途详细标明,以供设计、维护、调试和检修使用;对PLC控制系统进行模拟调试和现场调试,检查各种外接信号源及控制信号的运行情况,并观察其输入、输出间的变化是否符合要求,并进行调整修改。
PLC控制在桥式起重机检测中的应用

PLC控制在桥式起重机检测中的应用笔者分别从:PLC控制系统分析、起重机检测、PLC桥式起重机检测中的I/O概念、检测应用设计,四方面进行分析,实践证明,PLC检测故障排除迅速,减少了系统维修频率。
标签:PLC控制系统;桥式起重机;检测一、PLC控制系统分析在100/32t桥式起重机中应用西门子S7--300模块化的PLC。
PLC控制包含:中央单元CU、扩展模板EM、西门子CP340触目屏构成。
中央单元CU在起重機的电气梁中,CU输入模块选择直流24V,主要作用为搜集配电开关、接触器、过流信号。
不同电动机线路,正反转接触器,过电流、制动器反馈信号,不同形式限位保护与提高机构的超载、超速、故障提示等。
输出模块选择直流24V,利用微型继电器输出,主要控制配电中的总接触器,不同机构电动机、制动器运行。
扩展模板EM位于驾驶室操作台中,EM输入选择直流24V,通过搜集操作台中的电动转动、档位速度信息、零位信息、起重机电源控制、应答、等控制信息。
同时利用PROFIBUS总线电缆和PLC控制相关联。
CP340触摸屏位于操控室操作台中,能够将起重机的运行情况显示在触摸屏上。
工作人员在触摸屏上就能够掌握起重机的电动机工作状态。
做到发现问题及时解决,防止事故扩大化,保障起重机平稳工作。
二、起重机检测过程大车、小车以及副提升电机具有相对较小的功率,其运行需要对PLC输出控制接触器加以运用。
主提升电动机具有较大功率,因此选择ACC800变频器,基于开关量端子对PLC控制信号进行接收,以此完成检测。
例如,主提升电机。
工作实践中,操作人员应结合实际需求,在联动操作台将控制信号发送给PLC,然后通过程序编译,将信号输出给变频器。
变频器接收信号后,会根据设定将可变频、变压电源提供给电动机,并将制动器打开,以此检测电动机启停与调速情况。
面对紧急情况时,可将紧急按钮按下来断开变频器电源,以此停止变频器运行。
如果在故障影响下导致主提升机跳闸,那么在排除故障后可以将复位按钮按下,与变频器复位控制端RST相接,进而恢复变频器运行。
论桥式起重机检测中PLC控制技术的应用

论桥式起重机检测中PLC控制技术的应用随着技术的不断发展,PLC(可编程逻辑控制器)在各个行业中得到了广泛的应用。
PLC 控制技术在桥式起重机检测中的应用也越来越受到重视。
桥式起重机是工业领域中常见的一种起重设备,其结构复杂,运行环境较为恶劣。
为了确保桥式起重机的安全可靠运行,需要对其进行定期的检测。
传统的检测方法主要依靠人工操作,效率低下且存在一定的隐患。
而基于PLC控制技术的桥式起重机检测系统能够实现自动化检测,提高检测效率,降低人为操作引发的事故风险。
1. 桥式起重机电气系统检测:该系统通过PLC控制各个电气设备的开关状态,检测电气设备的工作状态,包括电源、控制回路、断路器、接触器等。
通过自动化的检测,可以准确地判断电气设备是否正常工作,避免电气故障引发的安全问题。
2. 桥式起重机运行状态检测:PLC控制技术可以实时监控桥式起重机的运行状态,包括起重机运行速度、位置、负荷等参数。
通过对这些参数的检测和分析,可以判断桥式起重机是否正常运行,是否存在异常情况,如超速、超载等,并及时发出警报或采取相应的措施,确保起重机的安全运行。
3. 桥式起重机传感器检测:桥式起重机多采用传感器来监测各个部位的运行状态,如行车运行轨迹、起重机大臂伸缩等。
PLC控制技术可以通过读取传感器的信号数据,并进行处理分析,判断传感器的工作状态是否正常,是否需要进行维修或更换。
4. 桥式起重机故障诊断:通过PLC控制技术,可以实现对桥式起重机各个部位的故障诊断。
当系统检测到故障时,PLC可以根据预设的故障代码和故障诊断规则,对故障进行自动诊断,确定故障原因,并输出故障报警信息,以便维修人员及时处理故障,减少停机时间,提高生产效率。
基于PLC控制技术的桥式起重机检测系统能够实现自动化检测和监控,提高检测效率、降低人为操作引发的事故风险,帮助企业提高生产效率、保障生产安全。
随着技术的不断进步和应用的不断推广,相信PLC控制技术在桥式起重机检测中的应用还将不断完善和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PLC控制变频器在桥式起重机中的应用
传统桥式起重机的电力拖动系统采用交流绕线转子异步电动机转子串电阻的方法进行起动和调速,继电―接触器控制,这种控制系统的主要缺点有:
1.1 桥式起重机工作环境恶劣,工作任务重,电动机以及所串电阻烧损和断裂故障时有发生。
1.2 继电―接触器控制系统可靠性差,操作复杂,故障率高。
1.3 转子串电阻调速,机械特性软,负载变化时转速也变化,调速不理想。
所串电阻长期发热,电能浪费大,效率低。
要从根本上解决这些问题,只有彻底改变传统的控制方式。
随着计算机技术和电力电子器件的迅猛发展,电气传动和自动控制领域也日新月异。
其中,具有代表性的交流变频装置和可编程控制器获得了广泛的应用,为PLC控制的变频调速技术在桥式起重机拖动系统中的应用提供了有利条件。
2、系统硬件构成
PLC控制的桥式起重机变频调速系统框图如图1所示
桥式起重机大车、小车、主钩,副钩电动机都需独立运行,大车为两台电动机同时拖动,所以整个系统有5台电动机,4台变频器传动,并由4台PLC分别加以控制。
2.1 可编程控制器:完成系统逻辑控制部分
控制电动机的正、反转、调速等控制信号进入PLC,PLC经处理后,向变频器发出起停、调速等信号,使电动机工作,是系统的核心。
2.2 变频器:为电动机提供可变频率的电源,实现电动机的调速。
2.3 制动电阻:起重机放下重物时,由于重力加速度的原因电动机将处于再生制动状态,拖动系统的动能要反馈到变频器直流电路中,使直流电压不断上升,甚至达到危险的地步。
因此,必须将再生到直流电路里的能量消耗掉,使直流电压保持在允许范围内。
制动电阻就是用来消耗这部分能量的。
桥式起重机大车、小车、副钩、主钩电动机工作由各自的PLC控制,大车、小车、副钩、主钩电动机都运行在电动状态,控制过程基本相似,变频器与 PLC之间控制关系在硬件组成以及软件的实现基本相同,而主钩电动机运行状态处于电动、倒拉反接或再生制动状态,变频器与PLC之间控制关系在硬件组成以及软件的实现稍有区别。
控制小车电动机的变频器与PLC控制原理图如图2所示。
3、系统软件设计
要实现对变频器的控制,必须对PLC进行编程,通过程序实现PLC与变频器信息交换的控制。
编程的重要依据是系统的工作过程。
3.1 桥式起重机小车电动机的工作过程
在驾驶室门及横梁栏杆门关好后,位置开关SQa、SQb、SQc闭合,紧急开关SB2等符合要求的情况下,速度选择开关置于零位,按下起动按钮SB1,接触器KM通电吸合,三相电源接通。
当速度选择开关置于正转速度1时,将三相交流电和电动机接通,1档速度起动,速度选择开关置于正转速度2时,2档速度运行,一般桥式起重机正反向均有5档速度,其余与此类似。
速度选择开关置于零位或由于停电,电动机停止运行。
为防止因停电、变频器跳闸等使拖动负载快速下降出现危险,仍设置有机械制动装置。
当发生紧急情况时,可立即拉开紧急开关SB2,一方面机械制动将所有电动机制动,另一方面将变频器紧急停机控制端EMS接通,变频器将使电动机迅速停车。
当电动机过载时,可使热继电器的触点FR接通变频器的外接保护控制端,使变频器停止工作。
位置开关SQ1和SQ2装在小车两头。
当小车行走到终端时,两端各有挡块,撞上位置开关,切断小车电路,小车电动机停车并制动。
变频器因发生故障而跳闸后,当故障已被排除、可以重新起动时,按下复位按钮SB,接通复位控制端RST,使变频器恢复到运行状态。
3.2 控制小车电动机的变频器输入控制端的安排
一般桥式起重机有五档速度,所以3个外接开关K3、K4、K5来控制速度信号,达到调节速度的目的(实际可达8档速度),外接开关状态与速度的对应关系如下表所示。
用户可自由设定与每档速度对应的频率大小。
3.3 梯形图
小车电动机的梯形图程序如图4所示。
4、结束语
利用PLC控制的变频调速技术,桥式起重机拖动系统的各档速度、加速时间和制动减速时间都可根据现场情况由变频器设置,调整方便。
负载变化时,各档速度基本不变,调速性能好。
若是改造原有系统,大小车电动机仍可采用原有的绕线转子异步电动机,将转子绕组引出线短接,去掉电刷和集电环,节省更换电动机的费用。
、。