数字图像处理图像翻转,平移,缩放
《数字图像处理》课程教学大纲

《数字图像处理》课程教学大纲课程代码:ABJD0619课程中文名称:数字图像处理课程英文名称:Dig让a1ImageProcessing课程性质:选修课程学分数:3学分课程学时数:48学时(32理论课时+16实验学时)授课对象:电子信息工程本课程的前导课程:高等数学,概率论,线性代数,数字信号处理,信息论,程序设计等一、课程简介数字图像处理是一门新兴的跨学科的前沿高科技,在军事、工业、科研、医学等领域获得了广泛应用,是国内外高校和科研院所的研窕生教育中一个重要的研究方向。
通过本课程的学习,同学们将掌握数字图像处理的基本理论与方法,包括图像变换、图像增强、图像分割、图像恢复、图像识别、图像压缩编码、数字图像处理系统及应用等内容。
二、教学基本内容和要求(-)数字图像处理方法概述教学内容:数字图像处理的研究对象、基本应用、研究内容等,数字图像的基本概念、彩色图像的调色板等概念。
课程的重点、难点:重点:CDIB类与程序框架结构介绍。
难点:调色板的基本概念和应用。
教学要求:D了解本课程研究的对象、内容及其在培养软件编程高级人才中的地位、作用和任务;2)了解数字图像处理的应用;3)理解数字图像的基本概念、与设备相关的位图(DDB)、与设备无关的位图(D1B);4)理解调色板的基本概念和应用;5)了解CD1B类与程序框架结构介绍;6)掌握位图图像处理技术。
(二)图像的几何变换教学内容:图像的几何变换种类以及概念,几何变换的实现原理和实施方法课程的重点、难点:重点:镜像变换。
难点:旋转。
教学要求:1)理解图像的缩放、平移、镜像变换、转置、旋转。
(三)图像灰度变换教学内容:直方图的概念、灰度的点运算(包含灰度信息的线性变化、指数变换等)、直方图的均匀化和规定化课程的重点、难点:重点:灰度直方图。
难点:灰度分布均衡化。
教学要求:1)了解非O元素取1法、固定阈值法、双固定阈值法的图像灰度变换;2)掌握灰度的线性变换、窗口灰度变换处理、灰度拉伸、灰度直方图、灰度分布均衡化。
图像的几何变换的两种实现(旋转、平移、放大、缩小)

面向对象程序设计学号:2学生所在学院:信息工程学院学生姓名:邵丽群任课教师:熊邦书教师所在学院:信息工程学院2013级实现图像的几何变换电子信息工程信息工程学院摘要:几何变换是最常见的图像处理手段,通过对变形的图像进行几何校正,可以得出准确的图像。
常用的几何变换功能包括图像的平移、图像的镜像变换、图像的转置、图像的缩放、图像的旋转等等。
目前数字图像处理的应用越来越广泛,已经渗透到工业、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
作为数字图像处理的一个重要部分,本文接受的工作是如何Visual C++编程工具设计一个完整的应用程序,实现经典的图像几何变换功能。
程序大概分为两大部分:读写BMP图像,和数字图像的几何变换。
即首先用Visual C++创建一个单文档应用程序框架,在实现任意BMP图像的读写,打印,以及剪贴板操作的基础上,完成经典的图像几何变换功能。
图像几何变换的Visual C++编程实现,为校内课题的实现提供了一个实例。
关键字:图像处理;几何变换(图像的平移、缩放、转置、旋转和镜像变换);BMP图像;Visual C++一、引言图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。
在实际场景拍摄到的一幅图像,如果画面过大或过小,都需要进行缩小或放大。
如果拍摄时景物与摄像头不成相互平行关系的时候,会发生一些几何畸变,例如会把一个正方形拍摄成一个梯形等。
这就需要进行一定的畸变校正。
在进行目标物的匹配时,需要对图像进行旋转、平移等处理。
在进行三维景物显示时,需要进行三维到二维平面的投影建模。
因此,图像几何变换是图像处理及分析的基础。
图像几何变换是计算机图像处理领域中的一个重要组成部分,也是值得深讨的一个重要课题。
在图像几何变换中主要包括图像的放缩、图像的旋转、图像的移动、图像的镜像、图像的块操作等内容,几何变换不改变图像的像素值,只改变像素所在的几何位置。
从广义上说,图像是自然界景物的客观反映,是人类认识世界和人类本身的重要源泉。
mfc空间几何变换之图像平移、镜像、旋转、缩放详解

MFC空间几何变换之图像平移、镜像、旋转、缩放详解一. 图像平移前一篇文章讲述了图像点运算(基于像素的图像变换),这篇文章讲述的是图像几何变换:在不改变图像容的情况下对图像像素进行空间几何变换的处理方式。
点运算对单幅图像做处理,不改变像素的空间位置;代数运算对多幅图像做处理,也不改变像素的空间位置;几何运算对单幅图像做处理,改变像素的空间位置,几何运算包括两个独立的算法:空间变换算法和灰度级插值算法。
空间变换操作包括简单空间变换、多项式卷绕和几何校正、控制栅格插值和图像卷绕,这里主要讲述简单的空间变换,如图像平移、镜像、缩放和旋转。
主要是通过线性代数中的齐次坐标变换。
图像平移坐标变换如下:运行效果如下图所示,其中BMP图片(0,0)像素点为左下角。
其代码核心算法:1.在对话框中输入平移坐标(x,y) m_xPY=x,m_yPY=y2.定义Place=dlg.m_yPY*m_nWidth*3 表示当前m_yPY行需要填充为黑色3.新建一个像素矩阵ImageSize=new unsigned char[m_nImage]4.循环整个像素矩阵处理for(int i=0 ; i<m_nImage ; i++ ){if(i<Place) {ImageSize[i]=black;continue;}//黑色填充底部从小往上绘图else if(i>=Place && countWidth<dlg.m_xPY*3) {//黑色填充左部分ImageSize[i]=black;countWidth++; continue;}else if(i>=Place && countWidth>=dlg.m_xPY*3) {//图像像素平移区域ImageSize[i]=m_pImage[m_pImagePlace];//原(0,0)像素赋值过去m_pImagePlace++;countWidth++;if(countWidth==m_nWidth*3) {//一行填满m_pImagePlace走到(0,1)number++;m_pImagePlace=number*m_nWidth*3;}}}5.写文件绘图fwrite(ImageSize,m_nImage,1,fpw)第一步:在ResourceView资源视图中,添加Menu子菜单如下:(注意ID号)第二步:设置平移对话框。
数字图像处理9-图像的平移与旋转

这次作业的内容是要完成让图片绕任意一点旋转的效果,同时要了解图像旋转的原理。
为了达到这一目的,我在老师的示例代码上进行了改进,并自己计算出新的变换矩阵,达到了作业中要求的效果。
这里我们先来看一下旋转的效果。
旋转中心(0,0),旋转60°旋转中心(0,0),旋转120°旋转中心(100,0),旋转120°旋转中心(0,600),旋转120°图像的大小是690*728,旋转的角度为顺时针,因此可以看到四副图中的结果都是符合预期的。
之后我们来通过代码,详细的分析这一变化实现的过程。
代码如下:close all;f = imread('try.jpg');theta = 2* pi / 3;x0=0;y0=600;T = [cos(theta) sin(theta) 0-sin(theta) cos(theta) 00 0 1];t1=[ 1 0 00 1 0-x0 -y0 1];t2=[1 0 00 1 0x0 y0 1];T=t1*T*t2;tform = maketform('affine',T);[g, xdata, ydata] = imtransform(f,tform, 'FillValue',255);imshow(g,'XData',xdata,'YData',ydata);hold on;imshow(f);axis auto;axis on;读入图像后,先设定了三个参数,x0y0就是旋转中心的坐标,而theta就是旋转角(顺时针)。
这里要详细说明一下这几个矩阵的作用,并且推导出其生成的过程。
首先最主要的矩阵T,是负责旋转的矩阵。
以下这个图片摘自网络,可以说较为完整的解释了这个矩阵的来历。
如图,利用勾股定理,旋转后与原点距离不变,和差化积公式可以较为简单的得到二维的旋转变换矩阵。
数字图像处理学

数字图像处理学数字图像处理(digital image processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二就是数学的发展(特别就是离散数学理论的创办和健全);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
一、实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等,具体要求如下:1、编程同时实现图像位移,建议位移后的图像大小维持不变;2、编程实现图像的镜像;3、编程同时实现图像的单位矩阵;4、编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5、编程同时实现以任一角度对图像展开旋转变换,建议分别用双线性插值和最近邻插值两种方法去同时实现,并比较两种方法的转动效果。
二、实验目的和意义:本实验的目的就是并使学生熟识并掌控图像处理编程环境,掌控图像位移、镜像、单位矩阵和转动等几何变换的方法,并能够通过程序设计同时实现图像文件的读、写下操作方式,及图像位移、镜像、单位矩阵和转动等几何变换的程序实现。
三、实验原理与主要框架:3.1实验所用编程环境:visualc++(简称vc)是微软公司提供的基于c/c++的应用程序集成开发工具、vc拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的windows应用程序和web应用程序。
vc除了提供更多高效率的c/c++编译器外,还提供更多了大量的可以器重类和组件,包含知名的谷歌基础类库(mfc)和活动模板类库(atl),因此它就是软件开发人员不可多得的开发工具。
vc丰富的功能和大量的扩展库,类的重用特性以及它对函数库、dll库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于vc具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具。
数学公式知识:几何图形的平移、缩放、旋转及其应用举例

数学公式知识:几何图形的平移、缩放、旋转及其应用举例几何图形是我们日常生活中经常会遇到的,例如门、窗、桌椅等等,而针对几何图形的变换包括平移、缩放、旋转等,这些变换能够让我们更好地记录、分析和描述几何图形,所以在数学上被广泛运用。
一、平移平移是指将几何图形保持形状和大小不变,沿着某条直线方向上移动一定的距离,使得图形的位置发生变化。
平移通常表示为T(x, y),其中(x, y)为平移向量的坐标。
平移的应用举例:1、地图的平移。
我们在使用地图时,可能需要将地图的视角移到其他地方,这就需要对地图进行平移变换。
例如,我们需要查看某个城市的正确位置,在地图上找到该城市对应的位置,然后对地图进行平移变换,将该城市移到地图的中心位置,这样就可以更清楚地看到周围的地理环境。
2、数字拼图的平移。
在数字拼图的游戏中,玩家需要拖动数字或者形状拼图块,将其移到正确的位置上,通过平移变换来完成游戏。
二、缩放缩放是指将几何图形围绕某个中心点,按照一定比例进行变换,图形的形状和位置都会发生变化。
缩放通常表示为S(x, y),其中(x, y)为缩放因子。
缩放的应用举例:1、图片的缩放。
在数字图像处理中,我们可以使用缩放变换将图片进行放大或缩小处理。
例如,我们可以将一张高清图片缩放成适合手机屏幕的尺寸,或者将图片缩小成小图标等。
2、地图的缩放。
在使用地图时,我们可以通过缩放变换调节地图的大小,在缩小地图时,我们可以看到更大范围的区域。
反之,当我们需要查看某个城市的街道时,缩小地图可以使我们看到更详细的信息。
三、旋转旋转是指将几何图形绕某个中心点,按照一定角度进行变换,图形的形状和位置都会发生变化。
旋转通常表示为R(θ),其中θ为旋转角度。
旋转的应用举例:1、三维旋转。
在三维计算机图形学中,旋转变换常常被用来模拟三维场景中物体的位置和姿态。
例如,当我们需要旋转三维场景中的一个车轮时,我们可以使用旋转变换沿着车轮的轴心进行旋转。
2、电影特效中的旋转。
数字图像处理领域的二十四个典型算法

数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。
图像处理是信号处理在图像域上的⼀个应⽤。
⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。
本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。
由于篇幅所限,只给出某⼀算法的主体代码。
ok,请细看。
⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。
灰度分为256阶。
所以,⽤灰度表⽰的图像称作灰度图。
程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。
这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。
数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:Xb09680112 班级:09通信工程(1)姓名:项德亮实验一图像几何变换
一.实验目的
1.熟悉MATLAB中的图像处理工具箱。
2.熟悉MATLAB中常用的图像处理函数。
3.掌握图像平移、图像旋转和图像缩放的基本原理与实现方法。
二.实验设备
微机
三.预习要求
1.认真复习课件里的内容,并熟悉教材中第2章的内容。
2.了解imread()、imshow()、imhist()等函数的使用方法。
四.实验内容及步骤
实验内容:
1.熟悉MATLAB图像处理工具箱的功能及常用的图像处理函数。
2.打开“Image Processing”工具箱里的Demos,查看“Spatial Transformation”
中的第一个例子“Creating a Gallery of Transformed Images”,把所有源代码拷到一个m文件里运行,查看运行结果,给源代码添加注释。
然后再改变变换矩阵T里面的参数,再查看运行结果。
把改变参数后(每位同学可以任意改变)的m文件保存为SpatialTransformation.m。
3.编程实现图像的平移,平移量应该可调(即用一个向量或两个标量保存平移量),并显示对图像“view”的处理结果。
%平移
clear;
%读入图像
imori=imread('view.bmp','bmp');
imres=imori;
[m,n]=size(imori);
tx=60;
ty=-40;
%平移
for i=1:m
for j=1:n
if tx<i&i<m+tx&ty<j&j<n+ty
imres(i,j)=imori(i,j);
else
imres(i,j)=255;
end
end
end
imshow(imres) %显示结果%显示结果
4.编程实现图像的缩放,缩放系数可调,分别用两个变量或一个向量保存水平和垂直方向的缩放系数,并显示对图像“view”的处理结果。
clc;
sx=1.5;
sy=2.0;
%读入原始图像
imageOri=imread('view.bmp','bmp');
[m,n]=size(imageOri);
%求变化矩阵
s=[sx,0,0;0,sy,0;0,0,1];
sinv=inv(s);
%求变换后的图像大小
m1=m*sx; n1=n*sy;
m2=floor(m1); n2=floor(n1);
imageres=255*ones(m2,n2);
%灰度差值
for i=1:m2
for j=1:n2
a=sinv*[i,j,1]';
x=a(1);y=a(2);
g(i,j) =ImageBiInterpolate(y,x,imageOri);
end
end
imshow(uint8(g)) %输出结果图像
5.编程实现图像绕图像原点的旋转,并显示对图像“couple”的处理结果。
有兴趣的同学可以实现绕任意点的旋转。
clc;
clear;
theta=30;
%读入原始图像
ImageOri=imread('view.bmp','bmp');
[m,n]=size(ImageOri);
%求变化矩阵
r=[cos(theta),sin(theta),0;-sin(theta),cos(theta),0;0,0,1];
rinv=inv(r);
%求变换后的图像大小
m1=m; n1=n;
m2=floor(m1); n2=floor(n1);
imageres=255*ones(m2,n2);
%灰度差值
for i=1:m2
for j=1:n2
a=rinv*[i,j,1]';
x=a(1);y=a(2);
g(i,j)=ImageBiInterpolate(x,y,ImageOri);
end
end
imshow(uint8(g)) %输出结果图像
五.实验的心得体会
通过这次实验,我发现matlab软件的功能很强大,既能编写程序,完成波形的设计,还可以处理图像的位置,改变图像的大小,旋转图像的角度,学会使用imread()读取图像,imshow()展示图像,使用for语句,完成图像的反复操作,直到得到我们要的图像。