数字图像处理 作业1
数字图像处理大作业

1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请给出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。
解:步骤与思路:○1.进行模糊处理,消除噪声○2.边缘检测,进行图像增强处理○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。
○4.采用横向标号法,根据值为1像素在标号中的相邻位置可以确定间距I=imread('xz mjt.bmp');I1=medfilt2(I); %对图像中值滤波imshow(I1);[m,n]=size(I1);for i=1:mfor j=1:nif(I1(i,j)<100) %阈值为100I1(i,j)=255;elseI1(i,j)=0; %进行二值化endendendfigure;imshow(I1);Y1=zeros(1,25);y2=y1;c=y2;i=100;for j=1:1200if (I1(i,j)==255&&I1(i,j+1)==0)Y1=j+1;endif (I1(i,j)==0&&I1(i,j+1)==255)Y2=j;endendfor i=1:25c=Y2(i)-Y1(i)endc %找出每两个条纹之间的距离2. 现有8个待编码的符号m0,……,m7,它们的概率分别为0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。
3. 请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。
各种算子对图像进行边缘检测效果的研究图像分割是根据需要将图像划分为有意义的若干区域或部分的图像处理技术。
通过边缘检测在Matlab中实现方法,及用四叉数分解函数进行区域分割的方法,掌握了Matlab区域操作函数的使用和图像分析和理解的基本方法,并学到了'roberts','sobel','prewitt','canny','log'算子对图像进行边缘检测的不同效果。
数字图像处理 第一章 导论 课后作业

数字图像处理第一章导论一.名词解释1.图像:图像是对客观对象的一种相似性的、生动性的描述或写真。
或者说图像是对客观对象的一种不完全、不精确但适当地表示。
2.数字图像:数字图像是一种空间坐标和灰度均不连续的、用离散数字(一般用整数、即0、1代码)表示的图像。
3.灰度图像:Gray scale灰度是指在数字图像中所有可能灰度级的集合。
数字图像中各个像素所具有的明暗程度由灰度值(gray level)所标识。
一般将白色的灰度值定义为255,黑色灰度值定义为0,而由黑到白之间的明暗度均匀地划分为256个等级。
由此构成灰度图像。
另外,数字图像在计算机上以位图(bitmap)的形式存在,位图是一个矩形点阵,其中每一点称为像素(pixel),像素是数字图像中的基本单位。
一幅m×n大小的图像,是由m×n个明暗度不等的像素组成的。
对于黑白图像,每个像素用一个字节数据来表示,而在彩色图像中,每个像素需用三个字节数据来表述二.问答1.数字图像处理包括哪几个层次?各层次之间有何区别和联系?答:数字图像处理层次:①狭义的图像处理;②图像识别与分析;③图像理解。
区别:狭义的图像处理:主要在图像像素级上进行的,是低级处理,处理的数据量非常大,输入输出均为图像,是图像—图像的过程,如图像缩放、图像平滑、对比度增强;图像识别与分析:通过分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述,是中级处理,输入图像,输出提取的特征,是图像—数值或符号的过程,如区域分割、边界检测;图像理解:根据较抽象的描述进行解析、判断、决策,其处理过程和方法与人类的思维推理有许多类似之处,是高级处理,输入为图像,输出为规则,是图像—描述及解释的过程,如无人驾驶,自动机器人、模式识别。
联系:随着抽象程度的提高,数据量是逐渐减少的。
具体说来,原始图像数据经过一系列的处理过程,逐步转化为更有组织和用途的信息。
在这个过程中,语义不断引入,操作对象也逐步发生变化。
《数字图像处理》期末大作业(1)

《数字图像处理》期末大作业大作业题目及要求:一、题目:本门课程的考核以作品形式进行。
作品必须用Matlab完成。
并提交相关文档。
二、作品要求:1、用Matlab设计实现图形化界面,调用后台函数完成设计,函数可以调用Matlab工具箱中的函数,也可以自己编写函数。
设计完成后,点击GUI图形界面上的菜单或者按钮,进行必要的交互式操作后,最终能显示运行结果。
2、要求实现以下功能:每个功能的演示窗口标题必须体现完成该功能的小组成员的学号和姓名。
1)对于打开的图像可以显示其灰度直方图,实现直方图均衡化。
2)实现灰度图像的对比度增强,要求实现线性变换和非线性变换(包括对数变换和指数变换)。
3)实现图像的缩放变换、旋转变换等。
4)图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理。
5)采用robert算子,prewitt算子,sobel算子,拉普拉斯算子对图像进行边缘提取。
6)读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标。
3、认真完成期末大作业报告的撰写,对各个算法的原理和实验结果务必进行仔细分析讨论。
报告采用A4纸打印并装订成册。
附录:报告模板《数字图像处理》期末大作业班级:计算机小组编号:第9组组长:王迪小组成员:吴佳达浙江万里学院计算机与信息学院2014年12月目录(自动生成)1 绘制灰度直方图,实现直方图均衡化 (5)1.1 算法原理 (5)1.2 算法设计 (5)1.3 实验结果及对比分析 (5)2 灰度图像的对比度增强 (5)2.1 算法原理 (5)2.2 算法设计 (5)2.3 实验结果及分析 (5)3 图像的几何变换 (5)3.1 算法原理 (5)3.2 算法设计 (5)3.3 实验结果及分析 (5)4 图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理 (5)4.1 算法原理 (5)4.2 算法设计 (6)4.3 实验结果及分析 (6)5 采用robert,prewitt,sobel,拉普拉斯算子对图像进行边缘提取 (6)5.1 算法原理 (6)5.2 算法设计 (6)5.3 实验结果及分析 (6)6 读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标 (6)6.1 算法原理 (6)6.2 算法设计 (6)6.3 实验结果及分析 (6)7 小结(感受和体会) (6)1 绘制灰度直方图,实现直方图均衡化1.1 算法原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
数字图像处理基础作业

1.图像均值化2.图像的Gauss低通和Gauss高通3.对图像进行Gamma变化4.DCT变换,加上量化在反量化,和IDCT这四个题目,如果是对一些进行图像处理的程序员来讲或者很简单,但是我基本不接触图像处理这个方面的(虽然我头上挂着这个牌子),基本原理不同,很难写程序。
不过幸好我同学是搞这个方面的,而且他的讲解能让我很快的知道我应该怎么去处理这个图像,而且通过网络的搜索,我发现wiki上的讲解真的相当的精准阿...不带让人纠结的数学公式,也不会长篇大论,有的就是通俗易懂的步骤和例子。
让人很快能知道我应该怎么都作就能完成这个效果的处理。
这是我一直很喜欢使用wiki的原因,推荐推荐阿....对于这个作业我本打算以最大的速度做完的,也不想真的去对原理进行真正的了解!所以只要知道怎么去做就可以了。
突然想到了那几天前我好像也学习QT,所以想连着这个一起作一次练习。
qt一个gui做的不错的库!而且简单的很...既然使用了QT那就要求我使用C++来写这个程序,C++这个语言,很久很久没使用了,主要是觉得自己对C++好像很陌生了,或者可以说是对面向对象这个思想的陌生。
关于这点,我也很想提出我的一点点想法。
虽然很早就开始使用面向对象去编程,可是好像自己一直没有入门面向对象这种思想。
使用C++的过程好像是将C++当成C来使用,很少很少说一定要使用到类,继承,多态这种特性。
看了很多书说,要学好C++就要放弃一些东西,把面向对象的这些东西学好。
可是面向对象到底是一种什么样的思想呢,有的时候很想用面向对象的思想去写程序,可是有时候却发现自己好像是为了面向对象而面向对象...好似纠结....应该是我经历的还不够吧。
关于这个作业,我最想讲的两个方面是:1.qt中的QImage这个对象,为了能让内存高效的访问,qt通过空间去换取时间的方法来提升效率。
让每一行都能被4B整除,这就是让qt本身会对每一行进行填充的过程,所以将一个一维的图像数据的转换为QImage是一个要小心的过程。
数字图像处理习题集1(1~2章)

数字图像处理习题一.选择题1.二维图像可用二维函数)xf表示,下列说法正确地是( a )(y,(A))f表示点),(yx,(yx的灰度值;(B)对于模拟图像来讲,)xf是离散函数;(y,(C) x,y不是平面的二维坐标;(D)以上说法都不正确。
2.用于可见光和红外线成像的采集设备中,应用最广泛的是( d )(A) 显微密度计;(B)析像管;(C) 视像管;(D) 固态阵。
3.一幅图像在采样时,行、列的采样点与量化级数 (a )(A) 既影响数字图像的质量,也影响到该数字图像数据量的大小。
(B) 不影响数字图像的质量,只影响到该数字图像数据量的大小。
(C) 只影响数字图像的质量,不影响到该数字图像数据量的大小。
(D) 既不影响数字图像的质量,也不影响到数字图像数据量的大小。
4.一幅数字图像是(b )(A)一个观测系统; (B) 一个由许多像素排列而成的实体;(C)一个2-D数组中的元素;(D) 一个3-D空间中的场景。
5.下面哪个色彩空间最接近人的视觉系统的特点( d )(A)RGB空间 (B)CMY空间 (C)CMYK空间 (D)HSI空间6.一幅1024x1024彩色图像,数据量约为(字节):( c )(A)1M (B) 2M (C) 3M (D) 4M7.下列设备中哪项属于图像存储设备( a )(A)组合光盘;(B)激光打印机;(C)扫描仪;(D)视像管。
8.以下图像技术中哪个属于图像处理技术( c )(A)图像检索;(B)图像合成;(C)图像增强;(D)图像分类。
9.一幅128128 ,64个灰度级的图像,则存储它所需bit数为( a )(A) 96k;(B) 192k;(C) 1M;(D) 2M。
10.从连续图像到数字图像需要( d )(A)图像灰度级设定; (B) 图像分辨率设定;(C)确定图像的存储空间; (D) 采样和量化。
11.在BMP格式、GIF格式、TIFF格式和JPEG格式中( a )(A)为表示同一幅图像,BMP格式使用的数据量最多;(B) GIF格式独立于操作系统;(C)每种格式都有文件头,其中TIFF格式的最复杂;(D)一个JPEG格式的数据文件中可存放多幅图像。
硕士研究生《数字图像处理》作业

研究生《数字图像处理》考试1. 编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。
● 图像频域降噪的实验原理与算法分析:图像的能量大部分集中在幅度谱的低频和中频部分,而图像的边缘和噪声对应于高频部分,因此能降低高频成分幅度的滤波器就能减弱噪声的影响,由卷积定理,在频域实现低通滤波的数学表达式:),(),(),(v u F v u H v u G =1. 理想低通滤波器(ILPF )0),(),(01),(D v u D D v u D v u H >≤⎩⎨⎧=2. 巴特沃斯低通滤波器(BLPF ) nD v u D v u H 20),()12(11),(⎥⎦⎤⎢⎣⎡-+=3. 指数型低通滤波器(ELPF ) 2),(0),(nD v u D ev u H ⎥⎦⎤⎢⎣⎡-=● 图像频域降噪的实验过程: 1. 理想低通滤波器程序I=imread('xpy.jpg'); f=double(I); g=fft2(f); g=fftshift(g); [M,N]=size(g); d0=100;m=fix(M/2);n=fix(N/2); for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2); if(d<=d0) h=1; else h=0; endresult(i,j)=h*g(i,j);endend>> result=ifftshift(result);>> J1=ifft2(result);>> J2=uint8(real(J1));>> imshow(J2)2.巴特沃斯低通滤波器程序I=imread('xpy.jpg');f=double(I);g=fft2(f);g=fftshift(g);[M,N]=size(g);nn=2;d0=30;m=fix(M/2);n=fix(N/2);for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2);h=1/(1+0.414*(d/d0)^(2*nn));result(i,j)=h*g(i,j);endendresult=ifftshift(result);J1=ifft2(result);J2=uint8(real(J1));imshow(J2)3.高斯低通滤波器程序I=imread('xpy.jpg');f=double(I);g=fft2(f);g=fftshift(g);[M,N]=size(g);d0=100;m=fix(M/2);n=fix(N/2);for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2);h=exp(-(d.^2)./(2*(d0^2)));result(i,j)=h*g(i,j);endendresult=ifftshift(result);J1=ifft2(result);J2=uint8(real(J1));imshow(J2)图像频域降噪的实验结果分析与讨论下面是理想低通滤波器、巴特沃斯低通滤波器、高斯低通滤波器的滤波效果分析与讨论。
数字图像处理习题(1)

一、判断题(10分)(正确√,错误×)1.图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的要求(√)2.在MATLAB中,uint8是无符号8位整数(√)3.在MATLAB中,uint16是无符号16位整数(√)4.图像的点运算与代数运算不相同(√)5.点运算也叫灰度级变换(√)6.线性点运算可以改变数字图像的对比度(√)7.图像的几何变换也叫图像的点运算(×)8.图像的平滑操作实际上是邻域操作(√)9.傅立叶变换后的矩阵处在频域上(√)10.傅立叶变换后的矩阵处在空域上(×)11.傅立叶变换,人们可以在空域和频域中同时思考问题(√)12.像素深度是指存储每个像素所用的位数(√)13.图像经过变换后,图像的大部分能量都集中在中、高频段(×)14.图像经过变换后,图像的大部分能量都集中在低频段(√)15.直方图均衡化也是一种非线性点运算(√)16.仿射变换是空间变换(√)17.空间变换是频域变换(×)18.边缘检测是将边缘像元标识出来的一种图像分割技术(√)19.灰度直方图能反映一幅图像各灰度级像元占图像的面积比(√)20.直方图均衡是一种点运算,图像的二值化则是一种局部运算(×)21.双边滤波法可用于边缘增强(×)22.均值平滑滤波器可用于锐化图像边缘(×)23.拉普拉斯算子可用于图像的平滑处理(×)24.高频加强滤波器可以有效增强图像边缘和灰度平滑区的对比度(√)25.应用傅立叶变换的可分离性可以将图像的二维变换分解为行和列方向的一维变换(√)26.图像分割可以依据图像的灰度、颜色、纹理等特性来进行(√)27.图像增强有空域和变换域两类(√)28.加大、减小对比度分别会使图像发生亮处更亮,暗处更暗的直观变化(√)29.加大、减小亮度分别会使图像发生亮处更亮,暗处更暗的直观变化(×)30.二值图像就是只有黑白两个灰度级(√)31.一般来说,图像采样间距越大,图像数据量越大,质量越好;反之亦然(×)32.用Matlab开辟一个图像窗口的命令是imshow(×)33.图像尺寸为400*300是指图像的宽为400毫米,高为300毫米(×)34.一般而言,对于椒盐噪声,均值滤波的效果好于中值滤波(×)35.与高斯低通滤波器相比,理想低通滤波低通滤波器在图像处理过程中更容易出现振铃(rings)(√)二、填空题(20分,1分/空)1.一般来说,图像采样间距越小,图像数据量_____,质量_____;反之亦然(大,高)2.若采样4个数,大小分别为4.56 0.23 7.94 16.55。
数字图像处理 Matlab版 作业1

%A、B 是作为图片的变量
>> B1=imread('image2-10.jpg'); >> MSE=sum((A(:)-B1(:)).^2)/(M*N) MSE = 31.3642
>> B2=imread('image2-20.jpg'); MSE=sum((A(:)-B2(:)).^2)/(M*N) MSE = 20.3310
K20=imfinfo('image2-20.jpg'); >> image_byte_20=K20.Width*K20.Height*K20.BitDepth/8; >> CMP_bytes=K20.FileSize; >> CMP_R20=image_byte_20/CMP_bytes CMP_R20 = 16.9368
>>y1=[SNR0,SNR10,SNR20,SNR30,SNR40,SNR50]; y2=[MSE0,MSE1,MSE2,MSE3,MSE4,MSE5]; x=[0,10,20,30,40,50]; plot(x,y1,x,y2) >> y1=[SNR0,SNR10,SNR20,SNR30,SNR40,SNR50]; y2=[MSE0,MSE1,MSE2,MSE3,MSE4,MSE5]; x=[0,10,20,30,40,50]; plot(x,y1,x,y2)
>> K50=imfinfo('image2-50.jpg'); image_byte_50=K50.Width*K50.Height*K50.BitDepth/8; CMP_bytes=K50.FileSize; CMP_R50=image_byte_50/CMP_bytes CMP_R50 = 10.6149 %绘图 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理报告标题:01报告编号:课程编号:学生姓名:截止日期:上交日期:摘要(1)编写函数计算灰度图像的均方误差(MSE)、信噪比(SNR)、峰值信噪比(PSNR)、平均绝对误差(MAE);(2)编写函数对灰度图像经行降采样,直接消除像素以及消除像素前进行简单平滑滤波;(3)编写函数对图像进行放大,分别使用像素直接复制和双线性插值的方法:(4)编写函数用题目给出的量化步骤Q去量化灰度图像,并给出相应的MSE和直方图;(5)编写函数对灰度图像执行直方图均衡化,显示均衡前后的直方图。
同时,熟悉使用MATLAB,并且熟练操作对图像进行各种修改变换等。
KEY WORD :MATLAB MSE、PSNR 直方图量化技术探讨数字图像处理是基于Matlab来实现的,由于Matlab 独特的功能和对矩阵,图像,函数灵活的处理,因而用于图像的处理相当的方便。
task1均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)。
可以使用使用for循环语句,分别计算图像MSE/SNR/PSNR/MAE,具体的计算公式见附录代码,下面只附运算原理代码均方误差(MSE):sum=sum+(a(i,j)-b(i,j))^2; MSE=sum/(M*N)信噪比(SNR):sum2=sum2+a(i,j)^2; SNR=10*log10(sum2/MSE)峰值信噪比(PSNR):sum=sum+(a(i,j)-b(i,j))^2; PSNR=10*log10(255^2/MSE)平均绝对误差(MAE):sum=sum+a(i,j)+b(i,j); MAE=sum/(M*N)在每次对同一个图像处理时它们的均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)都会有所不同,因为它是原图像与加噪后的图像比较,而电脑的每次操作都会对加噪过得图像有影响。
task3按比例缩小灰度图像(1)直接消除像素点:I1=g(1:m:end,1:m:end);I1 为缩小后的图像,g为原图。
(2)先平滑滤波再消除像素点:滤波函数,g=imfilter(I,w,'corr','replicate');task4对图像的放大运用了pixel repetition法以及双线性插值法:它有三种插值法:即最近邻插值(pixel repetition)、双线性插值、双三次插值(缩放倍数为0.5) ;缩放与放大由给定的参数来确定。
;缩放与放大由给定的参数来确定。
而缩小则同样适用I1=g(1:m:end,1:m:end);而放大的代码为“J=imresize(I,m,'nearest');%使用pixel repetition法”和“J=imresize(I,m,'bilinear');%使用双线性插值法”放大倍数更改m值即可task4对图像的量化,使用“J=histeq(I,x); ”,x为可变的量化步长task5灰度图像的量化和直方图均衡化直接调用函数。
“J=histeq(I)”“imhist(I,64)”结果:图像的结果Task1mse =0.0426psnr =61.8377SNR =68.5982MAE =262.2853mse =0.0443psnr =61.6711SNR =73.3907MAE =262.2102处理给定的测试图像“Lena”,以其原始的形式和加过噪声之后的形式。
(用其他图像代替)Task2编写MATLAB函数通过两种不同的方法抽取一幅灰度图像从原来的大小到给定的输出尺寸: (用其他图像代替)处理给定的测试图像“Living Room”,按给定比例系数缩小:2:1, 4:1, 8:1,16:1 (a)直接消除像素(b)消除像素前进行初步的图像滤波)Task3编写MATLAB函数通过两种不同的方法放大一幅灰度图像从原来的大小到给定的输出尺寸(a)像素重复(b)双线性插值[内插]用上述方法将Task 2放大回原尺寸并对使用MATLAB方法对原图像以及放大后的图像计算均方误差和峰值信噪比(a)像素重复2:1 时MSE = 2.6753e+003 PSNR =13.85714:1 时MSE =2.4600e+003 PSNR =14.22148:1 时MSE =2.4696e+003 PSNR = 14.204516:1 时MSE =2.0887e+003 PSNR =14.9321(b)双线性插值[内插]2:1 时MSE = 3.3733e+003 PSNR =12.85034:1 时MSE =2.6291e+003 PSNR =13.93278:1 时MSE =2.4658e+003 PSNR =14.211316:1 时MSE =2.4248e+003 PSNR =14.2840在相同尺寸减少率下,确定哪些组合缩小/放大的方法能提供最小均方误差以及最大峰值信噪比最小均方误差最大最大峰值信噪比(a)像素重复16:1 时MSE =2.0887e+003 PSNR =14.9321(b)双线性插值[内插]16:1 时MSE =2.4248e+003 PSNR =14.2840Task4编写MATLAB函数以量化步长Q来量化(数字转换)灰度图像。
以量化步长Q=2, 4, 8 16, 32, 64, 128 处理给定的测试图像“Lena”(用其他图像代替)不同量化步长Q量化后的图像的对比对每一个量化步长显示量化的图像以及它相应的直方图。
显示测试图像及其直方图。
量化后的图像的直方图对比Q=2 Q=4Q=8 Q=16Q=32 Q=64Q=128对Task 1用MATLAB编写的方法计算原始以及量化(数字转换)图像的均方误差Q=2 时 MSE=8.6904e+003Q=4时 MSE=6.7394e+003Q=8时 MSE=5.3419e+003Q=16时 MSE=4.8395e+003Q=32时 MSE=4.7529e+003Q=64时 MSE=4.7060e+003Q=128时MSE=4.6526e+003Task5编写MATLAB函数对图像“ Fig0316(1)(top_left)” 和图像“ Fig0316(4)(bottom_left)”分别地进行直方图均衡,并在直方图均衡前后显示图像的直方图(用其他图像代替)结果探讨Task1在每次对同一个图像处理时它们的均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)都会有所不同,因为它是原图像与加噪后的图像比较,而电脑的每次操作都会对加噪过得图像有影响。
给原图像加入高斯噪音,则可看出SNR与PSNR的变化,因为其实评价噪声的;MSE可以评价数据的变化程度,MSE的值越小,说明数据具有更好的精确度。
MAE是将各次测量的绝对误差取绝对值后再求平均值。
Task2对原图像直接消除像素的降采样和经过平滑滤波后得到的降采样采样对比来看,经过平滑滤波后,图像模糊一些,但灰度值变化更加平滑,整体效果好于直接消除像素Task3pixel repetition(像素重复)和双线性插值法对图像的缩放,其处理效果相近,但从MSE和PSNR值来看,双线性插值法更好。
但运算时间较长将缩小后的图像再放大,还原效果都较好Task4可以看出,对图像进行量化后,随着量化步长越大,图像越接近原图;当Q=2时,图像几乎全白,而直方图灰度值也极端的集中在0和250两个值上。
随着量化步长增加,图像细节几个方面均有明显转变,而直方图灰度值也逐渐向着整个灰度级数覆盖,最后集中于10到250之间Task5第一幅图,绘制其直方图可以看到直方图灰度值主要集中在100到150之间,均衡化后灰度值覆盖整个灰度级数。
第二幅图图相比相对亮一些,绘制其直方图可以看到直方图灰度值主要集中在60到120以及200到250之间,均衡化后灰度值覆盖整个灰度级数。
附录:程序列表第一题:均方误差(MSE):sum=sum+(a(i,j)-b(i,j))^2; MSE=sum/(M*N)峰值信噪比(PSNR)sum=sum+(a(i,j)-b(i,j))^2; PSNR=10*log10(255^2/MSE) 计算MSE; PSNR;clear all;close all;I=imread('C:\Users\Dark Selee\Desktop\bbpg'); %录入图像figure(1),imshow(I);X=rgb2gray(I); %将真彩色图像转换为灰度图像。
[height width]=size(X);X=im2double(X);A=imnoise(X,'gaussian',0,0.05); %加高斯噪声figure(2),imshow(A);%利用两组for循环,即可实现计算sigma1=0;for i=1:heightfor j=1:widthsigma1=sigma1+(X(i,j)-A(i,j))^2;endendmse=(sigma1/(height*width)) %均方误差psnr=10*log10((255^2)/mse) %峰值信噪比信噪比(SNR)sum2=sum2+a(i,j)^2; SNR=10*log10(sum2/MSE)计算SNR;clear all;close all;J=imnoise(I,'gaussian'); %加噪声a=double(I);b=double(J);[M,N]=size(I);sum=0;%先计算出MSEfor i=1:M;for j=1:N;sum=sum+(a(i,j)-b(i,j))^2;end;end;MSE=sum/(M*N)sum2=0;%同上,利用两组for循环,即可实现计算for i=1:M;for j=1:N;sum2=sum2+a(i,j)^2;end;end;SNR=10*log10(sum2/MSE)平均绝对误差(MAE)sum=sum+a(i,j)+b(i,j); MAE=sum/(M*N)计算MAE;J=imnoise(I,'gaussian'); %加噪声a=double(I);b=double(J);[M,N]=size(I);sum=0;for i=1:M;for j=1:N;sum=sum+a(i,j)+b(i,j);end;end;MAE=sum/(M*N)处理给定的测试图像,以其原始的形式和加过噪声之后的形式clear all;close all;I=imread('C:\Users\Dark Selee\Desktop\aa.jpg'); %读入图像figure(1),imshow(I);X=rgb2gray(I); %将真彩色图像转换为灰度图像。