定位器原理
gps定位器工作原理

gps定位器工作原理
GPS定位器是一种利用全球导航卫星系统(GPS)来确定物体位置的设备。
它的工作原理基于三角定位原理,通过接收至少三颗卫星发出的信号,并计算信号传播时间来确定接收器的位置。
首先,GPS定位器通过天线接收到来自多颗卫星的微弱无线信号。
每颗卫星都向地球表面发射精确的定时信号,其中包含卫星的位置和精确时间。
GPS定位器接收到这些信号后,会通过内部的解码器进行信号解码。
接着,GPS定位器会对每颗卫星信号的传播时间进行测量。
由于信号在空气和其他物体中的传播速度是已知的,计算机可以通过测量信号传输时间来推断物体与卫星之间的距离。
通过同时测量多颗卫星与接收器之间的距离,GPS定位器可以创建一个三角测量系统,以确定接收器的准确位置。
现代的GPS定位器通常使用了更多的卫星信号,以提高定位的精度和稳定性。
最后,GPS定位器使用测量到的距离来计算接收器与每颗卫星之间的差距。
利用这些差距,GPS定位器可以通过三角测量原理确定接收器相对于卫星的位置。
综上所述,GPS定位器通过接收卫星信号、测量信号传播时间和使用三角测量原理来确定物体的准确位置。
这种技术已广
泛应用于导航、车辆跟踪、航空航海、地图绘制以及许多其他领域。
定位器原理

定位器原理定位器是一种用于确定物体位置的设备,它可以通过各种方式来实现对目标位置的精准定位。
在现代社会中,定位器被广泛应用于各个领域,比如汽车导航、物流追踪、无人机航行等。
本文将介绍定位器的原理及其应用。
定位器的原理主要包括信号接收、信号处理和位置计算三个部分。
首先,定位器通过接收来自卫星、基站或其他信号源的信号,获取目标物体的位置信息。
然后,通过信号处理技术对接收到的信号进行解码、滤波和放大等操作,以确保信号的准确性和稳定性。
最后,利用数学算法和地理信息系统等技术进行位置计算,确定目标物体的精准位置。
在实际应用中,定位器可以采用不同的技术实现,常见的包括全球定位系统(GPS)、北斗卫星导航系统、惯性导航系统、无线定位系统等。
其中,GPS是最为常见和广泛应用的定位技术,它通过接收来自卫星的信号,计算出接收器所在位置的经度、纬度和海拔高度,从而实现对目标位置的定位。
除了卫星定位技术,还有一些其他定位技术也在特定场景下发挥着重要作用。
比如,无线定位技术可以利用无线信号的强度、多径效应和时间延迟等信息来确定目标位置,适用于室内定位、城市环境下的定位等场景。
惯性导航系统则是通过测量目标物体的加速度和角速度等信息,结合运动学模型进行位置推算,适用于导航系统中的惯性导航和姿态测量等领域。
定位器的应用涵盖了各个领域,其中最为常见的包括汽车导航、物流追踪和航空航天等。
在汽车导航中,定位器可以通过GPS技术获取车辆位置,并结合地图数据进行路径规划和导航引导,帮助驾驶员准确快速地到达目的地。
在物流追踪中,定位器可以实时监控货物的位置和运输状态,确保货物的安全和及时送达。
在航空航天领域,定位器可以用于飞行器的导航定位、姿态控制和目标跟踪等任务,保障飞行器的安全和准确性。
总的来说,定位器作为一种用于确定物体位置的设备,在现代社会中发挥着重要作用。
通过不同的定位技术和应用场景,定位器可以实现对目标位置的精准定位,为人们的生活和工作带来便利和安全保障。
定位器的工作原理

定位器的工作原理
定位器的工作原理是通过利用不同的技术手段来确定物体或人在空间中的准确位置。
一个常见的定位器是全球定位系统(GPS),它是利用地球上
的多颗卫星和接收器之间的通信来确定位置的。
GPS接收器
接收由卫星发射的信号,通过测量信号的传播时间以及卫星的位置信息,计算出接收器与卫星之间的距离。
通过至少三颗卫星的信号,GPS系统可以利用三角定位原理计算出接收器的
准确位置。
另一个常见的定位器是基站定位。
在移动通信网络中,移动电话通过与多个基站的通信来实现定位。
基站会向手机发送信号,并测量信号的传播时间。
根据信号传播时间的差异,可以计算出手机与各个基站之间的距离。
对于三个或更多的基站,可以利用三角定位原理计算出手机的准确位置。
除了GPS和基站定位,还有其他定位技术,如无线传感器网络、惯性导航系统、超宽带定位等。
这些技术利用不同的物理原理来实现定位,如信号强度、时间差测量、加速度测量等。
总的来说,定位器的工作原理是通过测量和计算物体或人与参考源之间的距离、角度或其他相关参数,从而确定其准确位置的。
不同的定位技术具有不同的适用场景和精度要求,可以根据具体需求选择合适的定位器。
gps定位器工作原理

gps定位器工作原理GPS定位器工作原理。
GPS定位器(Global Positioning System,全球定位系统)是一种利用卫星信号确定位置的设备,它可以在全球范围内提供精准的位置信息。
GPS定位器的工作原理主要包括卫星信号接收、信号处理和位置计算三个步骤。
首先,GPS定位器通过接收来自卫星的信号来确定自己的位置。
目前,全球共有30颗左右的GPS卫星,它们以不同的轨道在地球上空运行,每颗卫星都会定期向地面发射信号。
当GPS定位器处于开阔的地方,没有遮挡物遮挡时,它可以同时接收到多颗卫星的信号。
这些信号包含了卫星的位置、速度和时间等信息,GPS 定位器通过这些信息来计算自己与卫星的距离。
其次,GPS定位器通过对接收到的卫星信号进行处理,来确定自己的位置。
在接收到卫星信号后,GPS定位器会对信号进行解码和计算,以确定自己与卫星的距离。
这个过程需要至少接收到三颗卫星的信号,因为三颗卫星可以确定一个二维的位置,而四颗卫星可以确定一个三维的位置。
最后,GPS定位器根据接收到的卫星信号和自身的位置信息,来计算自己的精确位置。
通过将自身与至少三颗卫星的距离进行计算,GPS定位器可以确定自己的经度和纬度。
而通过接收到第四颗卫星的信号,GPS定位器还可以确定自己的海拔高度。
通过这些信息,GPS定位器可以准确地确定自己的位置,并将这些信息显示在屏幕上。
总的来说,GPS定位器的工作原理是通过接收卫星信号、信号处理和位置计算来确定自己的位置。
这种技术在航海、航空、地理勘测、车辆追踪等领域都有着广泛的应用,它为人们提供了精准的位置信息,极大地方便了人们的生活和工作。
希望通过本文的介绍,读者对GPS定位器的工作原理有了更深入的了解。
在日常生活中,我们可以看到越来越多的设备和应用都在使用GPS定位技术,因此对其工作原理的了解也变得越发重要。
通过深入了解GPS定位器的工作原理,我们可以更好地利用这项技术,为我们的生活和工作带来更多的便利。
智能定位器工作原理

智能定位器工作原理一、概述智能定位器是一种利用卫星定位技术和通信技术,实现物品或人员精确定位的设备。
它广泛应用于物流、运输、安防等领域。
二、GPS定位原理GPS(Global Positioning System)全球定位系统,是由美国空军开发的一种卫星导航系统。
它由24颗卫星组成,通过接收卫星信号并计算信号传播时间来确定接收器的位置。
三、智能定位器工作原理智能定位器内置GPS芯片,通过接收GPS卫星发射的信号来获取自身位置信息,并通过GSM/GPRS/CDMA等通信方式将位置信息发送到服务器或手机APP上。
四、GPS芯片工作原理GPS芯片主要由天线模块、接收机模块和处理器模块组成。
天线模块负责接收GPS卫星发射的信号,并将信号传递给接收机模块进行处理。
接收机模块对信号进行放大、滤波和解调等操作,将处理后的数据传递给处理器模块进行计算。
五、GSM/GPRS/CDMA通信方式原理GSM(Global System for Mobile Communications)是一种数字移动电话标准,它使用TDMA(Time Division Multiple Access)技术实现多用户共享频段。
GPRS(General Packet Radio Service)是一种基于GSM的数据传输技术,它通过分组传输方式实现高速数据传输。
CDMA(Code Division Multiple Access)是一种数字移动电话标准,它使用CDMA技术实现多用户共享频段。
六、智能定位器工作流程智能定位器通过GPS芯片获取自身位置信息,并将位置信息通过GSM/GPRS/CDMA等通信方式发送到服务器或手机APP上。
用户可以通过服务器或手机APP查看设备位置信息,并对设备进行远程控制。
七、应用场景智能定位器广泛应用于物流、运输、安防等领域。
在物流和运输领域,它可以实时监控货物位置,提高物流效率;在安防领域,它可以实时监控人员位置,提高安全性。
定位器工作原理

定位器工作原理
定位器是一种用来确定物体位置的设备,它可以通过不同的技术手段来实现定位,比如全球卫星定位系统(GPS)、蓝牙定位、无线局域网定位等。
定位器的工
作原理主要包括信号接收、信号处理和位置计算三个步骤。
首先,定位器通过接收来自外部信号源的信号来确定物体的位置。
以GPS定
位器为例,它通过接收来自卫星的信号来确定接收器所在的位置。
这些卫星发射的信号包含了卫星的位置和时间信息,定位器通过接收这些信号来计算出自己与卫星的距离。
其次,定位器对接收到的信号进行处理,包括信号的解码、滤波和放大等操作。
在GPS定位器中,接收到的卫星信号需要经过解码和滤波处理,以确保接收到的
信号质量良好并且准确度高。
最后,定位器利用处理后的信号来计算物体的位置。
在GPS定位器中,通过
接收到的至少三颗卫星的信号,定位器可以利用三边测量法来计算出自己的位置。
当接收到更多卫星的信号时,定位器可以通过多边测量法来提高定位的准确度。
除了GPS定位器,蓝牙定位和无线局域网定位等技术也有类似的工作原理,
它们通过接收不同的信号源来确定物体的位置,并且经过信号处理和位置计算来实现定位功能。
总的来说,定位器的工作原理是通过接收外部信号源的信号,经过处理和计算
来确定物体的位置。
不同的定位器技术有着各自不同的特点和适用范围,但它们都是基于相似的工作原理来实现定位功能的。
通过了解定位器的工作原理,我们可以更好地理解定位技术的实现方式,从而更好地应用于实际生活和工作中。
定位器工作原理

定位器工作原理定位器是一种用于确定物体或人员位置的设备。
它通过使用不同的技术和方法来实现定位功能。
本文将介绍定位器的工作原理,以及几种常见的定位器技术。
一、定位器的工作原理定位器的工作原理主要基于三种技术:无线信号定位、卫星定位和传感器定位。
1. 无线信号定位无线信号定位是一种利用无线信号强度来确定物体位置的技术。
它通过测量接收到的信号的强度来计算物体与信号源之间的距离。
常见的无线信号定位技术包括Wi-Fi定位和蓝牙定位。
Wi-Fi定位利用Wi-Fi信号的强度和多个信号源之间的差异来确定物体位置。
蓝牙定位则是通过测量蓝牙信号的强度和信号源之间的距离来确定物体位置。
2. 卫星定位卫星定位是一种利用卫星信号来确定物体位置的技术。
其中最常见的是全球定位系统(GPS)。
GPS利用多个卫星信号和接收器之间的距离差异来确定物体位置。
通过计算接收到的卫星信号的时间差,可以精确计算物体与卫星之间的距离,从而确定物体的位置。
3. 传感器定位传感器定位是一种利用传感器来确定物体位置的技术。
传感器可以是加速度计、陀螺仪、磁力计等。
通过测量物体的加速度、角速度、磁场等信息,可以确定物体的位置和方向。
二、常见的定位器技术1. GPS定位器GPS定位器是一种基于卫星定位技术的设备。
它可以通过接收卫星信号来确定物体的位置,并将位置信息发送给用户。
GPS定位器广泛应用于汽车导航、手机定位等领域。
2. RFID定位器RFID定位器是一种利用射频识别技术来确定物体位置的设备。
它通过在物体上安装RFID标签,并通过读取RFID标签的信号来确定物体的位置。
RFID定位器常用于物流管理、仓库管理等领域。
3. 蓝牙定位器蓝牙定位器是一种利用蓝牙技术来确定物体位置的设备。
它可以通过与蓝牙信号源的连接来确定物体的位置,并将位置信息发送给用户。
蓝牙定位器广泛应用于室内定位、物品追踪等领域。
三、定位器的应用领域定位器在现代生活中有着广泛的应用。
以下是几个常见的应用领域:1. 导航定位GPS定位器广泛应用于汽车导航、航空导航等领域。
gps定位器原理

GPS定位器原理一、什么是GPS定位器GPS定位器是一种基于全球定位系统(Global Positioning System)的设备,用于获取和追踪物体的准确位置。
它通过接收来自GPS卫星的信号,并通过计算距离和时间的差异来确定物体的位置和速度。
二、GPS定位器的原理GPS定位器的工作原理可以简单地分为以下几个步骤:1. 卫星信号接收GPS定位器通过内置的天线接收来自GPS卫星的信号。
卫星以固定轨道绕地球运行,发射射频信号以广播自己的位置和时间信息。
2. 信号解调接收到的信号由GPS定位器进行解码和解调。
解调是将接收到的信号转换为数值形式的过程,以便进行后续的信号处理和计算。
3. 信号处理GPS定位器对解调后的信号进行处理,计算信号的时间差异。
由于GPS信号的传播速度已知,通过计算信号的时间差异,可以确定物体与卫星之间的距离。
4. 定位计算利用接收到的多个卫星信号的时间差异,GPS定位器使用三角测量的原理来计算物体的准确位置。
三角测量基于测量物体与多个卫星之间的距离,然后使用三角形的几何关系来确定物体的位置。
5. 位置更新GPS定位器根据信号的变化和接收到的最新信息,持续地更新物体的位置和速度。
通过连续接收和处理卫星信号,GPS定位器可以实时追踪物体的移动,并提供准确的位置信息。
三、GPS定位器的应用GPS定位器具有广泛的应用领域,包括但不限于以下几个方面:1. 导航和定位GPS定位器是导航系统的核心组件,用于提供准确的位置信息和导航指引。
无论是车载导航、航空导航还是户外导航,GPS定位器可以帮助用户确定自己的位置,规划路线并提供导航指示。
2. 车辆追踪许多车辆安装了GPS定位器,用于实时追踪车辆的位置和行驶情况。
这对于车辆管理、防盗和安全监控非常重要。
GPS定位器可以提供车辆的实时位置、行驶轨迹和车速等信息。
3. 物流和运输在物流和运输行业,GPS定位器被广泛用于货物追踪和物流管理。
通过安装在货车或货物上的GPS定位器,物流公司可以实时掌握货物的位置和运输进度,提高物流效率并优化货物配送。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、前言电气阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。
它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。
随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。
其在电气阀门定位器中的应用使智能定位器的性能和功能有了一个大的飞跃。
二、智能电气阀门定位器与传统定位器的对比2.1 传统电气阀门定位器的工作原理电气阀门定位器经过几十年的发展,各公司产品虽不尽相同,但基本原理大致相似,下面画简图进行说明。
其基本结构见图1:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。
当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。
在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。
2.2 智能电气阀门定位器工作原理虽然智能电气阀门定位器与传统定位器从控制规律上基本相同,都是将输入信号与位置反馈进行比较后对输出压力信号进行调节。
但在执行元件上智能定位器和传统定位器完全不同,也就是工作方式上二者完全不同。
智能定位器以微处理器为核心,利用了新型的压电阀代替传统定位器中的喷嘴、挡板调压系统来实现对输出压力的调节。
目前有很多厂家生产智能型电气阀门定位器,西门子公司的SIPA TT PS2系列智能电气阀门定位器比较典型,具有一定代表性,下面以就以SIPART PS2系列定位器为例,对智能定位器的工作原理进行说明,其基本结构如图2所示:其具体工作原理如下:由阀杆位置传感器拾取阀门的实际开度信号,通过A/D转换变为数字编码信号,与定位器的输入(设定)信号的数字编码在CPU中进行对比,计算二者偏差值。
如偏差值超出定位精度,则CPU输出指令使相应的开/关压电阀动作,即:当设定信号大于阀位反馈时,升压压电阀V一l打开,输出气源压力P1增大,执行机构气室压力增加是阀门开度增加,减小二者偏差;如设定信号小于阀位反馈则排气压电阀V-2打开,通过消音器排气减小输出气源压力P1,执行机构气室压力减小是阀门开度减小,二者偏差减小。
正是通过CPU 控制压电阀来调节输出气源压力的大小使输入信号与阀位达到新的平衡。
2.3 智能电气阀门定位器对输出气源压力调节的新颖之处1) 输出压力调节采用PID脉宽调制(PWM)技术,迅速准确。
由于CPU对压电阀的控制采用一个五步开关程序来控制,可以精确、快速地控制输出气源压力增减。
其控制算法一般采用数字PID调节方式,CPU 根据输入信号与阀位产生偏差的大小和方向进行PID计算,输出一个PWM脉宽调制脉冲信号来控制压电阀开、闭动作。
由于脉冲的宽度对应于定位器输出气源压力的增量,从而可以迅速、准确的改变气源压力输出P1。
当偏差较大时,定位器输出一个连续信号,快速连续、大幅度的改变P1的大小,当偏差较小时,定位器输出一个较小脉宽的脉冲信号,断续、小幅改变P1的大小,当偏差很小(进入死区)时,则无脉冲输出,阀位稳定工作。
2) 新型压电阀器件的采用,保证了控制的高精度。
压电阀的主导元件是一个压电柔韧开关阀,也称作硅微控制阀,由于其质量小,开关惯性非常小,可以执行很高的开关频率,因而作为一个高频率的脉冲阀,对输出气路压力P1进行控制,驱动执行机构,可以达到很高的阀门定位精度。
3) 阀位反馈元件定位精度高,寿命长。
阀位反馈元件是一个结构简单、高精度、高可靠性的导电塑料电位器,将执行机构的直线或转角位移转换为电阻信号,因而可以精确的检测阀位并且可以方便的对阀门进行零位,满度及阀门流量特性曲线的定位。
2.4 智能定位器的特点由于新型控制元件如导电塑料和压电阀的使用,可以使阀门定位达到很高精度,由于微处理的使用,可以使定位器的调校以及适用范围有大的改善。
主要特点是:1) 安装简易;可以进行自动调校。
组态简便、灵活,可以非常方便的设定阀门正反作用,流量特性,行程限定或分程操作等功能。
2) 定位器的耗气量极小。
传统定位器的喷嘴、挡板系统是连续耗气型元件。
由于智能定位器采用脉冲压电阀替代了传统定位器的喷嘴、挡板系统,而且五步脉冲压电阀控制方式可实现阀门的快速、精确定位。
智能定位器只有在减小输出压力时,才向外排气,因此在大部分时间内处于非耗气状态,其总耗气量为20L/h,相对于传统定位器来说可以忽略不计。
3) 具有智能通讯和现场显示功能,便于维修人员对定位器工作情况进行检查维修。
4) 定位器与阀门可以采用分离式安装方式。
因为智能定位器的位置反馈元件是电位器,即阀位信息是用电信号传递的,并且可以在CPU中对阀门的特征进行现场整定。
因此采用行程位置检测装置外置的方法,将阀位反馈组件与定位器本身分离安装。
将行程位置检测装置在执行机构上,定位器安装在离执行器一定距离的地方,如图3所示:这样就大大扩展了定位器的使用范围,例如可以适用于大型风门、闸门等非标准结构的执行机构以及超大行程结构的执行机构中(已经有大量此类应用)。
正是与智能电气阀门定位器的结合,大大提高了此类装置的控制定位精度。
5) 行程检测装置还可以采用非接触式位置传感器,用于恶劣现场。
如应用在强振动、高低温及核辐射区环境中的阀门上,避免了不良环境对定位器的影响,保证定位器的可靠使用和寿命。
6) 具有丰富的自诊断功能。
不仅可以对定位器本身的工作情况进行故障自诊断,还可对调节阀和执行机构的性能进行定量测量和诊断。
如阀门行程的变化检测,对阀门极限位置变化的测量,可诊断阀门的磨损情况;对阀门定位时间的测量可以诊断定位周期是否合适,是否会引起震荡;还可以对气动执行机构的密封情况等进行诊断,从而为阀门的维修提供科学依据。
7) 可以非常方便的进行安全检测测试与试动作,尤其在对阀门的可靠动作要求非常高的安全仪表系统中,可以在线验证SIS安全仪表系统的阀门执行的安全有效性,见参考文献2。
三、实际使用中应注意的问题虽然智能定位器使用简单,功能强大,但在工程应用中还是应注意一些问题,以使其可靠的工作,发挥出更好的控制作用,延长其使用寿命。
3.1 定位器2/4线接线方式的选择由于智能阀门定位器的输入阻抗较高,而且随输入电流的增加而增大。
例如西门子SPRART PS2系列定位器作为2线制仪表使用时其输入阻抗为415欧姆,如带HART协议型则输入阻抗更大,为440欧姆左右,因此对调节信号的带负载能力有较高的要求。
而通常情况下,数字调节仪表的输出带负荷能力小于300欧姆,因此在选用智能电气阀门定位器时一定要核对调节器输出控制信号的带负载能力,应大于500欧姆,才能保证大开度时定位器的正常工作。
笔者曾在某DCS系统的输出回路中直接驱动SPRART PS2型智能电气阀门定位器,最大只能驱动18mA的电流,即只能满足87.5%以内的行程开度。
并且在通讯情况下,其最大电流会进一步降低,严重影响大开度时的定位要求。
鉴于此,对于调节器输出控制信号带负载能力不够的情况,应考虑以下解决方案:1) 在输入信号回路中设置信号隔离器件,增加控制信号的带负载能力。
即选用带负载能力高的中间隔离驱动器件,器件带载能力应大于500欧姆。
如果现场是防爆场所则可选用带负载能力高的隔离式安全栅,如MTL3000系列隔离安全栅,见图4所示:2) 采用4线制连接方式,减小智能定位器输入信号回路的输入阻抗,如图5所示的接线方式,由于增加了电源供电回路,因此智能定位器信号回路的输入阻抗会大大减小,约250欧姆左右,符合大多数调节器输出回路的负载要求。
3.2 合理设置定位器的动作死区一般智能定位器的动作死区设置范围为0.1~l0.0%之间。
死区设置越小,定位精度越高,但相应的压电阀及反馈连杆等运动部件的动作越频繁,有时甚至会引起阀门震荡,增大机械磨损,影响定位器和阀门的寿命,故定位器的死区设置不宜过小,应结合具体工艺控制精度要求进行设置,一般不小于0.5%。
3.3 合理设置控制周期应结合调节器和被调节对象的特性来合理设置控制系统的控制周期。
一般的智能定位器本身的控制响应时间为1.5s,因此调节器输出改变周期设置在1.0s左右比较合适。
3.4 智能定位器流量特性的选择智能定位器均具有流量特性选择设定功能。
但在实际使用中,要根据所配阀门的流量特性与工艺具体要求来合理确定。
一般定位器所配用阀门的流量特性是由阀芯的加工特性决定的。
阀芯有直线、等百分比、快开等流量特性,如果工艺要求与此相符,则智能定位器的输出特性应选择为线性输出,这样就能保证整体阀门流量特性与原设计要求相符。
当实际使用中,阀芯如有流量特性不能适合工艺要求时,则可以通过阀门定位器输出特性的改变来改变阀门的整体流量特性。
如:可以修改智能定位器为等百分比输出,将具有线性阀芯的阀门变为等百分比流量特性的阀门来使用;或修改智能定位器为反向等百分比输出,可将等百分比阀芯的阀门调整为线性流量特性的阀门来使用。
3.5 防爆环境中的应用在防爆环境中应选用本安或隔爆型智能定位器。
而且应在接线时注意智能定位器输入阻抗与安全关联设备的带负载能力的匹配问题。
如构成本质安全回路,最好选用带附载能力大于500欧姆以上的输出型隔离栅,如果采用齐纳安全栅则应采用4线制连接方式,降低定位器信号回路的输入阻抗。
如选用隔爆型智能定位器,其现场安装方式则应符合隔爆电气设备的安装规范要求。
3.6 恶劣现场条件下的应用在一些恶劣现场工况环境中,如过高、过低的环境温度,阀门或管道存在强烈的震动,以及现场环境存在强烈辐射、强电磁干扰,智能阀门定位器安装在阀门上是不能很好工作的,寿命也会大大降低。
此时可以将阀位传感器与智能定位器进行分离式安装。
将阀位传感器(一般为线性电阻传感器等简单元件)安装在阀门上,智能定位器本身可单独安装在距阀门一定距离的,工况环境较好的地方,如图3中所示。
阀位传感器与智能定位器通过电缆进行连接,智能定位器的气动输出通过气动连接管与执行机构连接,即可实现阀门的可靠定位控制。
电缆连接应采用屏蔽电缆,并在智能定位器中使用EMC滤波器来抑制恶劣环境产生的干扰因素。
四、总结由于CPU和新型器件的采用,智能电气阀门定位器的性能与传统阀门定位器相比有了一个大的飞跃。