分类讨论题(含答案)汇编

合集下载

分类讨论解答通关50题(含答案)

分类讨论解答通关50题(含答案)

(1)如图,若 t ,t t ,
h≌ th . 在
tt t t t 或
tt
t t t 两种情况中任选一种,解决以下问题:
线段 t 的长度是否发生变化,直接写出长度或变化范围;
h 的度数是否发生变化,直接写出度数或变化范围.
(2)若 t ,t t , t t t t ,且
h 和 th 这两个三角形全等,请求
14. 如图,已知抛物线 t 讨 讨 顶点为 h,对称轴为 讨 t .
与 讨 轴的一个交点为
tt ,与 轴的交点为 t tt ,其
(1)求抛物线的解析式; (2)已知点 为 轴上的一个动点,当 t 为等腰三角形时,求点 的坐标; (3)将 tt 沿 讨 轴向右平移 个单位长度 t 论 论 得到另一个三角形,将所得的三角
16. 如图,在 点 与点
t 中,
t
, tt
t,cos t t.在矩形 th 中,th t ,h t ,
t
重合, 与 重合,矩形 th 沿着 t 方向平移,且平移速度为每秒 t 个单
位,当点 与点 t 重合时停止运动.
(1) t 的长度是

(2)运动
秒,th 与 重合;
(3)设矩形 th 与
t 重叠部分的面积为 ,运动时间为 ,求出 与 之间的函数关系

(2)求 关于 讨 的函数关系式,并写出 讨 的取值范围.
9. 如图,抛物线 t 讨 讨
t 与 轴交于点 h tt ,与 讨 轴交于点 和点 t,其中点
的坐标为 tt ,抛物线的对称轴是直线 讨 t .
(1)求抛物线的解析式. (2)若点 是直线 th 上方的抛物线上的一个动点,是否存在点
若存在,求出点 的坐标;若不存在,请说明理由.

2020年九年级中考数学专题之分类讨论专题复习(含解析)

2020年九年级中考数学专题之分类讨论专题复习(含解析)

分类讨论专题复习分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.本讲主要三个内容: 1、 代数中的分类讨论 2、 几何中的分类讨论 3、 数学综合问题中的分类讨论代数中的分类讨论类型一 概念型分类讨论题有一些中考题中所涉及到的数学概念是按照分类的方法进行定义的,如a 的定义分a <0、a =0和a >0三种情况描述的.解决这一类问题,往往需要分类讨论,这一类问题我们称之为概念型分类讨论题.【例1】若,且,,则 .类型二 性质型分类讨论题有一些数学定理、公式以及性质等等具有使用范围或者是分类给出的,这就要求我们在运用它们时一定要分情况讨论.这一类问题我们称之为性质型分类讨论题.【例2】已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2m n n m -=-4m =3n =2()m n +=【例3】已知函数1yx=的图象如下,当1x≥-时,y的取值范围是()A.1y<-B.1y≤-C.1y≤-或0y>D.1y<-或0y≥类型三参数型分类讨论题解答含有字母系数(参数)的题目时,需要根据字母(参数)的不同取值范围进行讨论,这一类分类讨论问题我们称之为参数型分类讨论题.【例4】若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()【例5】对任意实数,点一定不在..()A.第一象限B.第二象限C.第三象限D.第四象限【例6】关于x的方程ax2-(a+2)x+2=0只有一解(相同解算一解),则a的值为( )(A)a=0.(B)a=2.(C)a=1.(D)a=0或a=2.类型四解集型分类讨论题求一元二次不等式及分式不等式的解集时,可以利用有理的乘(除)法法则“两数相乘(除),同号得正,异号得负”来分类,把它们转化为几个一元一次不等式组来求解.我们把这一类问题我们称之为解集型分类讨论题.【例7】先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式.解:∵,∴.由有理数的乘法法则“两数相乘,同号得正”,有ab<y ax=byx=x2(2)P x x x-,290x->29(3)(3)x x x-=+-(3)(3)0x x+->O-1-1X(1) (2)解不等式组(1),得,解不等式组(2),得, 故的解集为或, 即一元二次不等式的解集为或. 问题:求分式不等式的解集. 类型五 统计型分类讨论题有一类问题在求一组数据的平均数、众数或中位数时,由于题设的不确定性,往往需要分类讨论才能获得完整的答案.这一类问题我们称之为统计型分类讨论题.【例8】已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 .类型六 方案设计型分类讨论题在日常生活中,针对同一问题,借助于分类讨论的思想往往可以得出不同的解决方案,这一类问题我们称之为方案设计型分类讨论题.【例9】一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有 ( )A .4种B .3种C .2种D .1种 类型七 综合型分类讨论题【例10】在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数的图象上,若△P AB 为直角三角形,则满足条件的点P 的个数为( )A. 2个B. 4个C. 5个D. 6个.3030x x +>⎧⎨->⎩3030x x +<⎧⎨-<⎩3x >3x <-(3)(3)0x x +->3x >3x <-290x ->3x >3x <-51023x x +<-2y x=几何中的分类讨论类型之一:与等腰三角形有关的分类讨论与角有关的分类讨论:1.已知等腰三角形的一个内角为75°则其顶角为________与边有关的分类讨论2.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.与高有关的分类讨论3.一等腰三角形的一腰上的高与另一腰成35°,则此等腰三角形的顶角是________度.4.等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角是______度.30m的草皮铺设一块一边长为10m的等腰三角形绿地,请你5.为美化环境,计划在某小区内用2求出这个等腰三角形绿地的另两边长.6. 如图建立了一个由小正方形组成的网格(每个小正方形的边长为1).(1)在图1中,画出△ABC关于直线l对称的△A′B′C′;(2)在图2中,点D,E为格点(小正方形的顶点),则线段DE=;若点F也是格点且使得△DEF是等腰三角形,标出所有的点F.综合应用7.在直角坐标系中,O为坐标原点,已知A(-2,2),试在x轴上确定点P,使△AOP为等腰三角形,求符合条件的点P的坐标类型之二:与直角三角形有关的分类讨论8. 已知x轴上有两点A(﹣3,0),B(1,0),在直线l:x+y+1=0上取一点C(x,y),使得△ABC为直角三角形.求点C的坐标.9.如图,在平面直角坐标系xoy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形.那么所有满足条件的点P的坐标是。

初中数学专题复习分类讨论(含答案)

初中数学专题复习分类讨论(含答案)

专题复习二 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】(2005,南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式. 解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0). 设一次函数解析式为y =kx +b . 点A ,B 在一次函数图象上, ∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为my x=. 点C 在反比例函数图象上,则41-=m ,m =-4.故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。

【例2】(2005,武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。

以点O 2(13,5)为圆心的圆与x 轴相切于点D. (1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度; (3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

最新九年级数学必考要点分类汇编精华版 分类讨论

最新九年级数学必考要点分类汇编精华版 分类讨论

最新九年级数学必考要点分类汇编精华版专题一:分类讨论简要分析在数学中,当被研究的问题存在多种情况,不能一概而论时,就需要按照可能出现的各种情况分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法叫分类讨论思想,它不仅是一种重要的数学思想,同时也是一种重要的解题策略.在研究问题时,要认真审题,思考全面,根据其数量差异或位置差异进行分类,注意分类应不重不漏,从而得到完美答案. 典型例题例1 已知⊙O 的半径为13cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,则AB 、CD 之间的距离为【 】A .17cmB .7cmC .12cmD .17cm 或7cm例2 如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【 】【分析】△AMN 的面积=12AP×MN ,通过题干已知条件,用x 分别表示出AP 、MN ,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x <2;例3 已知直角三角形两边x 、y 的长满足224560x y y -+-+=,则第三边长为 .例4 先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-, ∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >, 解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-, 即一元二次不等式290x ->的解集为3x >或3x <-.OOOO x x x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . ABCDMN P第2题图问题:求分式不等式51023x x +<-的解集. 例5 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长.【分析】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可.图1668DC BA图2486BC AD图3x +6x 68BCDA考点训练一、选择题1.如图,点A 、B 、P 在⊙O 上,且∠APB =50°,若点M 是⊙O 上的动点,要使△ABM为等腰三角形,则所有符合条件的点M 有【 】A .1个B .2个C .3个D .4个2. 如图,已知⊙B 与△ABD 的边AD 相切于点C ,AC=4,⊙B 的半径为3,当⊙A 与⊙B 相切时,⊙A 的半径是【 】A .2B .7C .2或5D .2或8第1题图3.关于x 的方程068)6(2=+--x x a 有实数根,则整数a 的最大值是【 】A .6B .7C .7D .84. ⊙O 的半径为5㎝,弦AB ∥CD ,AB=6㎝,CD=8㎝,则AB 和CD 的距离是【 】A .7㎝B .8㎝C .7㎝或1㎝D .1㎝5. 已知一个等腰三角形两内角的度数之比为1∶4,则此等腰三角形顶角的度数是【 】A .20°B .120°C .20°或120°D .36°二、填空题6. 已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .7. 如图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点.如果AD=1,那么当AE= 时,以点A 、D 、E 为顶点的三角形与△ABC 相似.8. 二次三项式 942+-mx x 是完全平方式,则m = .9. 腰长为5,一条高为4的等腰三角形的底边长为 错误!未找到引用源。

分类讨论问题(含问题解析)

分类讨论问题(含问题解析)

初三数学专题复习:分类讨论问题【学习目标】1、学会运用数学的思维方式去观察、分析数学问题,体会分类讨论思想解决数学问题的方法.2、培养学生思维的逻辑性、探究性、以及归纳的条理性、完整性.【学习重点】用分类讨论思想观察、分析数学问题【学习难点】选择恰当的标准进行分类【学习过程】一、分类讨论概述:1、分类讨论问题就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后再逐类进行研究和求解的一种数学解题思想.2、分类的要求:①分类的标准统一②分类要不重不漏.二、典型例题例1.已知直角三角形两边、的长满足,则第三边长为。

例2.⊙O的半径为5㎝,弦AB∥CD,AB=6㎝,CD=8㎝,则AB和CD的距离是()A. 7㎝B. 8㎝C. 7㎝或1㎝D. 1㎝例3.如图,正方形ABCD的边长是2,BE=CE,MN=1,线段MN的两端在CD、AD上滑动。

当DM=时,△ABE与以D、M、N为顶点的三角形相似。

例4.如图,在直角梯形ABCD中,AD∥BC,∠C=900,BC=16,DC=12,AD=21,动点P 从D 出发,沿射线DA 的方向以每秒2个单位长度的速度运动,动点Q 从点C 出发,经线段CB 上以每秒1个单位长度的速度向点B 运动,点P 、Q 分别从D 、C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。

设运动时间为秒。

⑴设△BPQ 的面积为S ,求S 与之间的函数关系式。

⑵当为何值时,以B 、P 、Q 三点为顶点的三角形是等腰三角形?二、当堂达标1.如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能是( )A .(4,0)B .(1,0)C .(-2 2,0)D .(2,0)2.若函数y =⎩⎪⎨⎪⎧x 2+2(x ≤2),2x (x >2),则当函数值y =8时,自变量x 的值是( )A .± 6B .4C .±6或4D .4或- 63.如图,在平面直角坐标系xOy 中,分别平行x 、y 轴的两直线a 、b 相交于点A (3,4),连接OA ,若在直线a 上存在点P ,使△AOP 是等腰三角形,那么所有满足条件的点P 的坐标是( )A .(8,4)B .(8,4)或(-3,4)C .(8,4)或(-3,4)或(-2,4)D .(8,4)或(-3,4)或(-2,4)或⎝⎛⎭⎫-76,44.矩形一个内角的平分线分矩形一边长为1 cm 和3 cm 两部分,则这个矩形的面积为多少cm 2?( )A .4B .12C .4或12D .6或85.若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m,1),则k 的值是( )A .-2或 2B .-22或22 C.22D. 26.一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为______________. 7.如图所示,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =AB =6,BC =14,点M 是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有________个.8.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从B点出发,以每秒1 cm的速度沿B→A→C的方向运动,设运动的时间为t秒,过D、P两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍,那么t的值为________.9.已知正方形ABCD中,点E在边DC上,DE=2,EC=1,如图所示.把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_______.10.如图,点A、B在直线MN上,AB=11 cm,⊙A、⊙B的半径均为1 cm,⊙A以每秒2 cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当点A出发后________秒两圆相切.11.(2010·柳州)如图,AB是⊙O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t值为多少时,△BEF是直角三角形.12.(2011·南通)已知A(1,0),B(0,-1),C(-1,2),D(2,-1),E(4,2)五个点,抛物线y=a(x-1)2+k(a>0),经过其中三个点.(1)求证:C、E两点不可能同时在抛物线y=a (x-1)2+k(a>0)上;(2)点A在抛物线y=a (x-1)2+k(a>0)上吗?为什么?(3)求a和k的值.13、如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD 内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.(1)求过A、C两点直线的解析式;(2)当点N在半圆M内时,求a的取值范围;(3)过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M 为顶点的三角形相似时,求点N的坐标.中考数学专题复习分类讨论问题参考答案一、例题参考答案【例题1】解:由已知易得⑴若是三角形两条直角边的长,则第三边长为。

中考“分类讨论”题型整编(含答案)

中考“分类讨论”题型整编(含答案)

中考“分类讨论”题型整编整体感悟:分类讨论问题是创新性问题之一,此类题综合性强,难题较大,在各地中考试题中多以压轴题出现,对考生的能力要求较高,具有选拔性。

目前,中考试卷中,觉见的需分类讨论的知识点有三大类:1.代数类:代数有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等.2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等.3.综合类:代数与几何类分类情况的综合运用.特例探究:以性质、公式、定理的使用条件为标准分类的题型.题型1 考查数学概念及定义的分类规律提示:熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论对象及原因,进而确定其存在的条件和标准。

考题1.求函数251()(3)22y k x k x =-+-+的图象与x 轴的交点? 名师点拔:二次项系数中含有参数k ,此函数可能是二次函数,也可能是一次函数,故应对52k -分类讨论. 解:(1)当502k -=时,即52k =时,此函数为1122y x =-+,故其与x 轴只有一个交点(1,0) (2)当55022k k -≠≠,即时,此函数为二次函数,2251(3)4()(2)22k k k ∆=--⨯-⨯=-. ①当2k =时,Δ=0.抛物线与x 轴的交点只有一个.212110,122x x x x -+===,交点坐标为(1,0)②当2k ≠时,Δ>0,函数与x 轴有两个不同的交点.1(1,0)(,0)52k -和. 综合所述:当52k =或2k =时,函数图像与x 轴只有一个交点(1,0);当52k ≠且2k ≠时,函数图像与x 轴有两个不同交点1(1,0),(,0)52k-. 变式思考1已知关于x 的方程22(4)(4)0kx k x k +++-=(1)若方程有实数根,求k 的取值范围.(2)若等腰三角形ABC 的边长a=3,另两边b 和c 恰好是这个方程的两个根,求ΔABC 的周长.易误点睛:根据方程定义确定方程到底是一次方程还是二次方程,同时应注意的是第(2)问中并无说明哪两边是ΔABC 的腰,故应考虑其所有可能情况.题型2:考查字母的取值情况或范围的分类.规律提示:此类问题通常在函数中体现颇多,考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围.考题2.如图(1)边长为2的正方形ABCD 中,顶点A 的坐标是(0,2)一次函数y x t =+的图像l 随t 的不同取值变化时,位于l 的右下方由l 和正方形的边围成的图形面积为S (阴影部分).(1)当t 取何值时,S =3?(2)在平面直角坐标系下(图2),画出S 与t 的函数图像.名师点拔:设l 与正方形ABCD 的交点为M ,N ,易知ΔDMN 是等腰Rt Δ,只有当MD1MDN S ∆=,那么3ABCD MDN S S S =-=,此时求得4t =2)问中,随着t 的变化,S 的表达式发生变化,因而须分类讨论t 在不同取值时S 的表达式,进而作出图像.解:(1)设l 与正方形ABCD 的交点为M ,N ,∵l 的解析式y x t =+,在x 轴,y 轴上所截线段相等.∴ΔDMN 为等腰Rt ΔDMN∵S =3,∴2231DMN ABCD S S S ∆=-=⨯-= 又∵21122DMN S MD ND ND ∆=⋅=∴MD =ND ON =OD -DM =4即D 点的坐标为(0,4∴4t =4t =S =3.(2)∵直线l 与y 轴的交点M 的坐标为(0,)t∴当0≤t <2时,21122S B B t =M ⋅N = 当2≤t <4时,21(4)42ABCD DMN S S S t ∆=-=--+ 当t ≥4时,S =4。

中考数学专题:例+练——第8课时 分类讨论题(含答案)

中考数学专题:例+练——第8课时 分类讨论题(含答案)

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

分类讨论型试题含答案-

分类讨论型试题含答案-

多解型试题分类思想是解题的一种常用思想方法,它有利于培养和发展学生思维的条理性、缜密性、灵活性,使学生学会完整地考虑问题、化整为零地解决问题,学生只有掌握了分类的思想方法,在解题中才不会出现漏解的情况.例1(2005年黑龙江) 王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.分析:本题是无附图的几何试题,在此情况下一般要考虑多种情况的出现,需要对题目进行分情况讨论。

分类思想在中考解题中有着广泛的应用,我们在解题中应仔细分析题意,挖掘题目的题设,结论中可能出现的不同的情况,然后采用分类的思想加以解决.解:(1)当等腰三角形为锐角三角形时(如图1),由勾股定理得AE =25(m )由DE ∥FC 得,FCEDAC AE =,得FC =24(m ) S △ABC =12 ×40×24=480(m 2) (2)当等腰三角形为钝角三角形时(如图2)同理可得,S △ABC =12×64×24=768(m 2)说明:本题主要考查勾股定理、相似三角形的判定及性质等内容。

练习一 1、(2005年资阳市)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A. 2a b +B. 2a b -C. 2a b +或2a b - D. a+b 或a-b2.(2005年杭州)在右图的几何体中, 上下底面都是平行四边形, 各个侧面都是梯形, 那么图中和下底面平行的直线有( )(A) 1条 (B) 2条 (C) 4条 (D) 8条3(2005年潍坊市)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的 半径为3cm ,则圆B 的半径是( ).A .5cmB .11cmC .3cmD .5cm 或11cm图1图2A4.(2005年北京) 在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD BD DC 2·,则∠BCA 的度数为____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.5.(上海市)在△ABC中,AB=AC=5,3cos5B .如果圆O的半径为10,且经过点B、C,那么线段AO的长等于.6.(•威海市)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

故顶角可能是50°或80°.【答案】D .2.【解析】在没有明确腰长和底边长的情况下,要分两种情况进行讨论,当腰长是3cm ,底边长是6cm 时,由于3+3不能大于6所以组不成三角形;当腰长是6cm ,地边长是3cm 时能组成三角形.【答案】D3.【解析】由折叠图形的轴对称性可知,B F BF '=,B FE BFE '∠=∠,从而可求得B′E=BF ;第(2)小题要注意分类讨论.【答案】(1)证:由题意得B F BF '=,B FE BFE '∠=∠,在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠,B F B E ''∴=.B E BF '∴=.(2)答:a b c ,,三者关系不唯一,有两种可能情况:(ⅰ)a b c ,,三者存在的关系是222a b c +=.证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=.在ABE △中,90A ∠=o ,222AE AB BE ∴+=. AE a =Q ,AB b =,222a b c ∴+=.(ⅱ)a b c ,,三者存在的关系是a b c +>.证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=.在ABE △中,AE AB BE +>, a b c ∴+>.4.【解析】圆与斜边AB 只有一个公共点有两种情况,1、圆与AB 相切,此时r =2.4;2、圆与线段相交,点A 在圆的内部,点B 在圆的外部或在圆上,此时3<r≤4。

【答案】 3<r≤4或r =2.45.【解析】本题考察了等腰三角形的性质、垂径定理以及分类讨论思想。

由AB=AC=5,3cos 5B =,可得BC 边上的高AD 为4,圆O 经过点B 、C 则O 必在直线AD 上,若O 在BC 上方,则AO=3,若O 在BC 下方,则AO=5。

【答案】3或5.6.【解析】在两圆相切的时候,可能是外切,也可能是内切,所以需要对两圆相切进行讨论.【答案】解:(1)当0≤t≤5.5时,函数表达式为d =11-2t ;当t >5.5时,函数表达式为d =2t -11.(2)两圆相切可分为如下四种情况:①当两圆第一次外切,由题意,可得11-2t =1+1+t ,t =3;②当两圆第一次内切,由题意,可得11-2t =1+t -1,t =311; ③当两圆第二次内切,由题意,可得2t -11=1+t -1,t =11;④当两圆第二次外切,由题意,可得2t -11=1+t +1,t =13.所以,点A 出发后3秒、311秒、11秒、13秒两圆相切. 7.【解析】建立函数关系实质就是把函数y 用含自变量x 的代数式表示。

要求线段的长,可假设线段的长,找到等量关系,列出方程求解。

题中遇到“如果以A N D ,,为顶点的三角形与BME △相似”,一定要注意分类讨论。

【答案】(1)取AB 中点H ,联结MH ,M Q 为DE 的中点,MH BE ∴∥,1()2MH BE AD =+. 又AB BE ⊥Q ,MH AB ∴⊥. 12ABM S AB MH ∴=g △,得12(0)2y x x =+>; (2)由已知得22(4)2DE x =-+. Q 以线段AB 为直径的圆与以线段DE 为直径的圆外切,1122MH AB DE ∴=+,即2211(4)2(4)222x x ⎡⎤+=+-+⎣⎦. 解得43x =,即线段BE 的长为43; (3)由已知,以A N D ,,为顶点的三角形与BME △相似,又易证得DAM EBM ∠=∠.由此可知,另一对对应角相等有两种情况:①ADN BEM ∠=∠;②ADB BME ∠=∠.①当ADN BEM ∠=∠时,AD BE Q ∥, ADN DBE ∴∠=∠.DBE BEM ∴∠=∠.DB DE ∴=,易得2BE AD =.得8BE =;②当ADB BME ∠=∠时,AD BE Q ∥, ADB DBE ∴∠=∠.DBE BME ∴∠=∠.又BED MEB ∠=∠, BED MEB ∴△∽△. DE BE BE EM ∴=,即2BE EM DE =g ,得2222212(4)2(4)2x x x =+-+-g . 解得12x =,210x =-(舍去).即线段BE 的长为2.综上所述,所求线段BE 的长为8或2.8.【解析】①解决翻折类问题,首先应注意翻折前后的两个图形是全等图,找出相等的边和角.其次要注意对应点的连线被对称轴(折痕)垂直平分.结合这两个性质来解决.在运用分类讨论的方法解决问题时,关键在于正确的分类,因而应有一定的分类标准,如E 为顶点、P 为顶点、F 为顶点.在分析题意时,也应注意一些关键的点或线段,借助这些关键点和线段来准确分类.这样才能做到不重不漏.③解决和最短之类的问题,常构建水泵站模型解决.【答案】(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=o , 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >, Q 顶点(12)F ,,∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,. 24(01)2a ∴=-+.解得2a =.∴抛物线的解析式为22(1)2y x =-+②如图②,当EP FP =时,22EP FP =, 22(2)1(1)9n n ∴-+=-+.解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在.综上所述,符合条件的抛物线解析式是22(1)2y x =-+.(3)存在点M N ,,使得四边形MNFE 的周长最小.如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点. (31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,. FN NM ME F N NM ME F E ''''∴++=++=22345=+=. 又5EF =Q , ∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是55+.。

相关文档
最新文档