汽车起重机伸缩臂系统综述

合集下载

汽车起重机吊臂伸缩原理

汽车起重机吊臂伸缩原理

汽车起重机吊臂伸缩原理你有没有好奇过汽车起重机那长长的吊臂是怎么伸缩自如的呀?今天呀,咱就来好好唠唠这个超有趣的事儿。

咱先来说说汽车起重机吊臂的基本构造。

你看啊,吊臂就像是一个超级神奇的变形金刚手臂。

它可不是简单的一根大铁杆子哦。

它是由好几节组成的,就像那种可以一节一节拉长的望远镜似的。

每一节呢,都有它自己的小秘密。

最里面的那一节是基础,就像大树的树干一样,稳稳地待在那儿。

其他的节就像树枝一样,可以沿着这树干伸出去或者缩回来。

这每一节的连接呀,可都是很有讲究的呢。

那它到底是怎么伸缩的呢?这里面就涉及到一个超酷的机械原理啦。

在吊臂里面呢,有一些叫做伸缩油缸的东西。

这个伸缩油缸呀,就像是一个大力士的肌肉一样。

当要把吊臂伸出去的时候,这个伸缩油缸就开始工作啦。

它会像打气筒一样,把里面的油给推出去,然后通过一些巧妙的装置,把力量传递到下一节吊臂上。

这个力量就会让下一节吊臂慢慢地沿着上一节吊臂的轨道滑出去。

你可以想象成是火车沿着铁轨缓缓前行的样子,只不过这个是在吊臂里面,而且是一节推动一节往外走。

而且哦,为了让这个伸缩的过程特别平稳,不会突然就冲出去或者卡住,还有好多小零件在帮忙呢。

比如说有一些滑块呀,它们就像是小小的保镖一样,在每一节吊臂的连接处,保证它们滑动得顺顺当当的。

如果没有这些滑块,那吊臂伸缩的时候可能就会像个调皮捣蛋的孩子,东倒西歪的,那可就危险啦。

再说说把吊臂缩回来的时候吧。

这时候伸缩油缸就像是一个温柔的大力士啦。

它会把外面那节吊臂慢慢地拉回来。

这个过程也不是简单粗暴的哦,也是要通过那些巧妙的装置,一点一点地把吊臂给拉回来。

就好像是把伸出去的手慢慢地收回来一样,得小心翼翼的。

你可能会想,这吊臂伸缩就这么简单呀?其实呀,这里面还有很多复杂的安全装置呢。

比如说,要是在吊臂伸出去或者缩回来的过程中,突然遇到了很大的阻力,就像有个大石头挡住了一样,这时候就有一些感应装置会察觉到。

然后呢,它就会告诉整个起重机的控制系统,控制系统就会让伸缩油缸停下来,防止把吊臂或者其他零件给弄坏了。

汽车起重机伸缩臂结构有限元分析及优化

汽车起重机伸缩臂结构有限元分析及优化

汽车起重机伸缩臂结构有限元分析及优化汽车起重机伸缩臂结构有限元分析及优化引言:汽车起重机作为一种重要的工程机械设备,在建筑、物流等行业中起着重要的作用。

而在汽车起重机的设计中,伸缩臂结构是其关键组成部分之一。

伸缩臂结构的合理设计和优化可以提高汽车起重机的工作效率和承载能力,降低其重量和成本。

因此,对汽车起重机伸缩臂结构进行有限元分析与优化具有重要的理论意义和实际应用价值。

1. 伸缩臂结构的设计和工作原理汽车起重机的伸缩臂结构由伸缩臂筒、伸缩臂滑块、伸缩臂大臂、伸缩臂小臂等组成。

其工作原理是通过液压系统控制伸缩臂筒的伸缩,从而实现伸缩臂的变化和起重高度的调节。

伸缩臂结构的设计直接影响汽车起重机的工作性能和稳定性。

2. 有限元分析的原理和方法有限元分析是一种数值分析方法,通过将结构离散化为有限个小元素,利用数学和力学原理对每个小元素进行计算,最后得到整个结构的应力、应变、位移等相关信息。

有限元分析方法可以精确计算伸缩臂结构在不同工况下的受力情况,为优化设计提供基础。

3. 初始结构的有限元分析首先,采用有限元分析方法对汽车起重机初始伸缩臂结构进行分析。

通过初始结构的有限元模型建立和边界条件的设定,计算得到伸缩臂结构在不同工况下的受力情况,包括应力、应变、变形等参数。

利用有限元分析结果,可以评估初始结构的工作性能,并确定需要改进的方向。

4. 结构优化设计与分析基于初始结构的有限元分析结果,可以进行伸缩臂结构的优化设计。

结构优化的目标是提高结构的工作效率和承载能力,降低结构的重量和成本。

通过在有限元模型中进行参数化设计和分析,可以获得不同设计方案下的结构性能指标。

综合考虑结构的强度、刚度、轻量化等因素,选择最优设计方案。

5. 优化设计的验证与验证对优化设计方案进行验证与评估是优化过程的重要环节。

通过将优化设计方案转化为实际工艺制造过程中的参数,并制作样件进行实际测试和评估,可以验证优化设计方案的有效性,并进一步优化设计方案。

汽车起重机伸缩臂系统综述

汽车起重机伸缩臂系统综述

论文论文题目:汽车起重机伸缩臂系统综述姓名学号学院班级专业汽车起重机伸缩臂系统综述摘要:随着经济建设的迅速发展,我国的基础建设力度正逐渐加大,道路交通,机场,港口,水利水电,市政建设等基础设施的建设规模也越来越大,市场汽车起重机的需求也随之增加。

汽车起重机为安装在标准式或特制汽车底盘上的起重设备。

而臂架是起重机的主要承载构件。

起重机通过臂架直接吊载,实现大的作业高度与幅度。

臂架的强度决定了最大起重量时整机起重性能,其自重直接影响整机倾覆稳定性,因而臂架结构设计的优劣,将直接影响整机的性能,如整机重量、整机重心高度和整机稳定性等。

所以要在保证臂架安全工作的条件下尽量减轻臂架的重量,这对提高整机质量和经济性具有很大的现实意义。

针对徐工50t汽车起重机伸缩机构的分析和研究,从而改进汽车起重机的整机性能,降低成本,同时提高了起重机的作业能力及使用经济性。

目前伸缩臂机构有两种形式,绳排系统和单缸插销式。

绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。

此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。

关键词:伸缩臂;液压缸;臂架结构Abstract:Boom is the main host of crane components. Directly through the jib crane hanging load, to achieve great height and range operations. Arm strength determines the maximum time from the weight lifting machine performance, its weight directly affect the machine overturning stability, structural design and therefore merits of boom, will directly affect the overall performance, such as the weight of the whole machine center of gravity height and machine stability. Thus, to ensure safe working conditions of boom to minimize the weight of boom, which improves overall quality and economy of great practical significance. Keywords:Telescopic boom; hydraulic cylinder; Structure of boom .1.1QY40全液压起重机主要技术参数整机主要性能参数最大起重量*幅度 40t*3m最大起升高度 46 m滑轮组倍率 11主臂长 11-33.5m(4节)主臂全程伸缩时间 162Sec主臂变幅范围 -2-80degree主臂变幅时间 60Sec主卷扬单绳速度 0-110 m/min副卷扬单绳速度 >40 m/minM最大起升力矩 1401 kN.m最大回转速度 0-2.0 r/min最高行驶速度 68 km/h最大爬坡度 37%最小转弯半径 12m行驶状态总重 37.51t外形尺寸13.65×2.75×3.46m支腿距离(纵向×横向) 5.45×6.2m上车空冷发动机斯太尔WD615.61最大功率 191KW(2600rpm)最大扭矩 828Nm(1600rpm)1.2起重机的技术参数表征起重机的作业能力,汽车式起重机的主要技术参数包括起重量、起升高度、幅度、起重力矩等。

汽车吊大臂伸缩的原理

汽车吊大臂伸缩的原理

汽车吊大臂伸缩的原理
汽车吊大臂伸缩的原理是通过液压系统来实现的。

液压系统由一个液压泵、液压缸和控制阀组成。

当需要将大臂伸长时,液压泵将液压油从油箱吸入,通过高压泵将液压油压力增加后送入液压缸的一个腔体。

同时,另一个腔体的液压油经过控制阀排出,使液压缸的另一侧形成负压,从而使液压缸得到推动,使大臂伸长。

当需要将大臂缩短时,控制阀切换使液压泵将液压油从油箱吸入液压缸的另一个腔体,同时将另一个腔体的液压油通过控制阀排出,形成负压,使液压缸收缩,从而使大臂缩短。

通过控制阀的切换和液压泵的工作,可以实现大臂的伸缩控制。

液压系统具有结构简单、可靠性高、承载能力大等优点,因此被广泛应用于汽车吊大臂的伸缩装置中。

起重机大臂伸缩原理

起重机大臂伸缩原理

起重机大臂伸缩原理起重机是一种用于吊装和搬运重物的机械设备,广泛应用于建筑工地、港口码头、工厂等领域。

而起重机的大臂伸缩功能是其重要的工作原理之一。

起重机的大臂伸缩原理主要依靠液压系统来实现。

液压系统是利用液体的压力传递力量和控制运动的一种技术,通过液体的传递来实现机械设备的工作。

起重机的大臂伸缩液压系统由液压泵、液压缸、液压阀等组成。

起重机的大臂伸缩液压系统中的液压泵起到了压力传递的作用。

液压泵将液体从液压油箱中抽取出来,并通过压力传递给液压缸。

液压泵产生的压力使液压缸中的液体产生压力,从而推动液压缸的活塞运动。

液压缸是起重机大臂伸缩液压系统中的核心部件。

当液压泵产生的压力传递到液压缸时,液压缸的活塞就会受到压力的作用而运动。

液压缸的活塞由密封件密封,使得液压缸内的液体无法泄漏,从而保证了液压缸的工作效果。

液压阀是起重机大臂伸缩液压系统中的控制部件。

液压阀可以控制液压缸的运动方向和速度,从而实现起重机大臂的伸缩。

液压阀通过控制液压系统中液体的流动方向和流量来控制液压缸的运动。

当液压泵产生的液体通过液压阀流入液压缸时,液压阀可以控制液体的流动方向,使液压缸的活塞向外伸出或向内收回,从而实现起重机大臂的伸缩。

起重机大臂伸缩液压系统的工作过程中,液压泵不断地将液体送入液压缸,使液压缸的活塞不断向外伸出,起重机大臂也随之伸出。

而当液压阀控制液体的流向改变时,液压缸的活塞也会相应地向内收回,起重机大臂也会收回。

通过液压系统的控制,起重机大臂的伸缩可以灵活地调整,以适应各种工作需要。

起重机大臂伸缩原理的应用使得起重机具备了更高的灵活性和适应性,能够满足不同工作场景的需求。

通过液压系统的控制,起重机大臂的伸缩可以实现快速、精确的调节,提高了起重机的工作效率和安全性。

起重机大臂伸缩原理是依靠液压系统来实现的,液压泵、液压缸和液压阀是起重机大臂伸缩液压系统中的关键组成部分。

通过液压系统的工作原理,起重机大臂能够实现灵活的伸缩运动,提高起重机的工作效率和适应性。

吊车臂伸缩结构

吊车臂伸缩结构

吊车臂伸缩结构
吊车臂伸缩结构有多种形式,以下是几种常见的伸缩形式:
1. 顺序伸缩机构:伸缩臂的各节臂以一定的先后次序逐节伸缩。

2. 同步伸缩机构:伸缩臂的各节臂以相同的相对速度进行伸缩。

3. 独立伸缩机构:各节臂能独立进行伸缩的机构。

4. 组合伸缩机构:当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。

5. 绳排伸缩:通过伸缩油缸的伸出和缩回拉动相应的伸钢丝绳、缩钢丝绳,进而实现不同吊臂的伸缩。

这种伸缩方式一般常用于中小吨位起重机(90
吨及以下)上,吊臂一般是4节臂或者5节臂,结构简单,伸缩效率比较快,成本较低。

6. 单缸插销伸缩方式:通过一根油缸实现多节吊臂的伸缩。

这个伸缩油缸结构比较特殊,通过油缸头部的伸缩机构可以将吊臂一节一节的伸出、缩回。

这种伸缩方式在国内一般用于大吨位产品(90T以上),不过现在中小吨位也有不少机型开始应用这种吊臂系统。

请注意,不同类型的吊车可能采用不同的吊臂伸缩结构,请根据具体情况选择合适的结构形式。

汽车起重机吊臂构造及伸缩原理

汽车起重机吊臂构造及伸缩原理
起重机臂架构造及伸缩原理
2009-05-10 张宗山
目录
汽车起重机吊臂构造 吊臂臂伸缩原理 单缸锁销技术介绍
汽车起重机吊臂构造
主吊臂
汽车起重机的升降重物,是利 用吊臂顶端的滑轮组支承卷扬钢丝 绳悬挂重物,利用吊臂的长度和倾 角的变化改变起升高度和工作半径。 汽车起重机吊臂有两节、三节、 四节、五节等不同的节数,通过伸 臂油缸和钢丝绳组实现伸缩 基本臂下端和转台铰接在一起, 通过变幅机构实现俯仰。 起重臂顶端可以加装单顶滑轮, 实现吊钩单倍率工作,提供工作速 度。 起重臂顶端可同时加装副臂,实 现更大的起升高度。
无销全液压伸缩机构
多缸加一级绳排 德马格、多田野 单缸或多缸梁级绳排 徐工、中联、柳工
使用第二种特点是单缸或双缸加两级绳排实现四节或五节 臂的伸缩。这种伸缩方式在国内最先进,但解决五节臂以 上起重臂的伸缩难度很大。
汽车起重机吊臂伸缩原理
多缸加一级绳排结构实例:柳工QY35E 单缸或双缸加两极绳排实例:柳工QY25N、QY50C
汽车起重机吊臂构造
汽车起重机主吊臂按使用特点可以分为
A 主臂 B 副臂 C 基本臂 D 最长主臂 E 伸缩臂
汽车起重机吊臂构造
汽车起重机主吊臂按截面形式可以分为: 1、矩形截面 2、梯形截面 3、六边形截面 4、八边形截面 5、多边形截面 6、U形截面
汽车起重机吊臂伸缩原理
汽车起重机主吊臂伸缩形式可以分为 1、顺序伸缩机构---伸缩臂的各节臂以一定的先后 次序逐节伸缩。 2、同步伸缩机构---伸缩臂的各节臂以相同的相对 速度进行伸缩。 3、独立伸缩机构---各节臂能独立进行伸缩的机构。 4、组合伸缩机构---当伸缩臂超过三节时,可以同 时采用上列的任意两种伸缩方式进行伸缩的机 构 伸缩机构由伸臂油缸或伸臂油缸加拉索组成。

XGC25T伸缩臂履带起重机介绍

XGC25T伸缩臂履带起重机介绍

XGC25T伸缩臂履带起重机介绍一、伸缩臂履带起重机产品综述:伸缩臂履带起重机属于非路面移动式起重机械,该结构形式的起重机械既具备汽车起重机不需拆卸、机动灵活、可在高度受限场合下工作的特点,又集合了履带式起重机的吊载量大、回转平稳、可带载行走、并能在非公路场合工作的特点。

主要用于建筑工地压桩,桥梁、隧道内施工,建筑物内部拆卸,船仓内作业等高度受限且又无路面的特定场合,尤其是在沙漠、沼泽地带等作业场所,更能发挥其独特的优势。

1)相对于履带起重机的优点a、无需拆装,方便转运,转场方便;b、作业空间小,不受空间限制(受高度空间限制较小)。

2)相对于汽车起重机的优点a、越野能力强;b、无需打支腿;c、能够实现带载行驶;d、作业空间极小,方便灵活;e、转弯半径小。

二、XGC25T伸缩臂履带起重机产品亮点介绍:1、机动灵活,快捷高效,无需拆装,应用范围广整机运输无需拆装,运输重量仅34.96t,外形尺寸12.805×2.95×3.035m,转场方便快捷;同时,伸缩式主臂配置,全伸臂长33m(10.6~33m),可在臂长范围内满足各种作业幅度的需求。

可伸缩式履带,既满足吊装作业高稳定性的要求,又满足整车运输时对车辆外形尺寸的要求。

2、起重能力强、作业范围广,全面覆盖行业同吨级产品(1)起重臂采用十二边形吊臂、单板式臂头、紧凑型臂尾、嵌入式滑块,提升搭接长度10%,主臂长度和中长臂性能高于行业对手5%~10%;(2)具有空载行驶、原地吊重、吊重行驶等作业工况,快速实现重物吊装、转移,满足用户不同施工作业需求。

3、多项措施,全方位的安全保障(1)过载、过卷、过放、过伸等多项主动保护措施,安全可靠;(2)行驶作业部分设置重载高速行走自动降速、反向行驶失效报警保护、反向行驶时操纵方向自动切换等功能,主动安全性好。

4、节能措施,降低使用费用,提升工作效率(1)采用温度传感器实时检测,自动控制液压系统散热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车起重机伸缩臂系统综述————————————————————————————————作者:————————————————————————————————日期:论文论文题目:汽车起重机伸缩臂系统综述姓名学号学院班级专业汽车起重机伸缩臂系统综述摘要:随着经济建设的迅速发展,我国的基础建设力度正逐渐加大,道路交通,机场,港口,水利水电,市政建设等基础设施的建设规模也越来越大,市场汽车起重机的需求也随之增加。

汽车起重机为安装在标准式或特制汽车底盘上的起重设备。

而臂架是起重机的主要承载构件。

起重机通过臂架直接吊载,实现大的作业高度与幅度。

臂架的强度决定了最大起重量时整机起重性能,其自重直接影响整机倾覆稳定性,因而臂架结构设计的优劣,将直接影响整机的性能,如整机重量、整机重心高度和整机稳定性等。

所以要在保证臂架安全工作的条件下尽量减轻臂架的重量,这对提高整机质量和经济性具有很大的现实意义。

针对徐工50t汽车起重机伸缩机构的分析和研究,从而改进汽车起重机的整机性能,降低成本,同时提高了起重机的作业能力及使用经济性。

目前伸缩臂机构有两种形式,绳排系统和单缸插销式。

绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。

此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。

关键词:伸缩臂;液压缸;臂架结构Abstract:Boom is the main host of crane components. Directly through the jib crane hanging load, to achieve great height and range operations. Arm strength determines the maximum time from the weight lifting machine performance, its weight directly affect the machine overturning stability, structural design and therefore merits of boom, will directly affect the overall performance, such as the weight of the whole machine center of gravity height and machine stability. Thus, to ensure safe working conditions of boom to minimize the weight of boom, which improves overall quality and economy of great practical significance. Keywords:Telescopic boom; hydraulic cylinder; Structure of boom .1.1QY40全液压起重机主要技术参数整机主要性能参数最大起重量*幅度 40t*3m最大起升高度 46 m滑轮组倍率 11主臂长 11-33.5m(4节)主臂全程伸缩时间 162Sec主臂变幅范围 -2-80degree主臂变幅时间 60Sec主卷扬单绳速度 0-110 m/min副卷扬单绳速度 >40 m/minM最大起升力矩 1401 kN.m最大回转速度 0-2.0 r/min最高行驶速度 68 km/h最大爬坡度 37%最小转弯半径 12m行驶状态总重 37.51t外形尺寸13.65×2.75×3.46m支腿距离(纵向×横向) 5.45×6.2m上车空冷发动机斯太尔WD615.61最大功率 191KW(2600rpm)最大扭矩 828Nm(1600rpm)1.2起重机的技术参数表征起重机的作业能力,汽车式起重机的主要技术参数包括起重量、起升高度、幅度、起重力矩等。

这些参数表名起重机工作性能和技术经济指标,它是设计起重机的技术依据,也是生产使用中选择起重机技术性能的依据。

(1)起重量起重机起吊重物的质量称为起重量,通常以Q表示,单位为kg或t。

起重机的起重参数通常是以额定起重量表示的。

所谓额定起重量是指起重机在各种工况下安全作业所容许的起吊重物的最大质量的值,它是随着幅度的加大而减小的。

带有吊钩的起重机的额定起重量不包括吊钩和滑轮组的自重。

汽车式起重机的额定起重量随着吊臂的方位(侧方、后方、前方三个基本作业方位)不同而有所变化。

汽车式起重机的额定起重量还分支腿全伸、不用支腿吊臂行驶3种情况。

起重机吊重行使时,起重臂必须前置。

起重机不用支腿作业和吊重行使时的额定起重量决定于轮胎、车桥(或轮对转向架)的承载能力。

(2)起升高度起升高度是指从地面或轨道顶面至取物装置最高起生位置的铅垂距离(吊钩取取钩环中心),单位为米。

如果取物装置能下落到地面或轨面以下,从地面或轨面至取物装置最低下放位置间的铅垂距离称为下放深度。

此时总起升高度H为轨面以上的起升高度h2和轨面以下的下放深度h3之和,H=h2+h3。

由于汽车式起重机的起升高度随着臂架仰角和臂架长度变化,在各种臂长和不同臂架仰角时可得相应的起升高度曲线。

汽车式起重机起升高度的选择按作业要求而定。

在确定起升高度时,应考虑配属的吊具、路基和汽车高度保证起重机能将最大高度的物品装入车内。

汽车式起重机的最大起升高度的确定是根据起重机作业要求和起重机总体设计的合理性综合考虑。

(3)幅度旋转臂架式起重机处于水平位置时,回转中心线与取物装置中心线垂直之间的水平距离称为幅度(R)。

幅度的最小值Rmax和最大值Rmin根据作业要求而定。

在臂架变幅平面内起重机机体的最外边至取物中心铅垂线之间的距离称为有效幅度,有效幅度可为正值或副值。

汽车式起重机有效幅度通常是指使用支腿工作,臂架位于侧向最小幅度时,取物装置中心铅垂线至该侧两支腿中心连线的水平距离,它表示汽车式起重机在最小幅度时工作的可能性。

汽车式起重机的幅度R。

(4)起重力矩起重力矩是臂架类起重机主要技术数据之一,它等于额定起重量Q和其相对应的工作幅度R的乘积,即M=Q×R,起重力矩一般用t·m为单位。

伸缩回路伸缩回路如图3.4所示:图3.4伸缩回路此伸缩回路采用电磁液动阀组来控制各臂的伸缩,除了不能同步伸缩外,其他的伸缩方式都可以。

3.3.1性能要求起、制动平稳,各缸应具有一定的伸缩选择性能;3.3.2主要元件单向定量泵(4与变幅、支腿回路共用)、电液比例换向阀(24)、二位六通转阀(23)、缸(25、26、27)、电磁-液控组阀(30、31)、平衡阀(29)、单向阀组(28)3.3.3主要回路缸25、26、27伸出、缩回油路,控制油路3.3.4功能实现和工作原理(1) 缸25伸出A)控制回路35-1(常) 35-4(下位)(向伸缩臂油路通油)37-2(右移)电流 24(右)油油箱(24左移)23右转(切换成伸缩状态)B)主油路4 35-4(下位) 24(右) 23(左)B 25 30-1(上)29-1(开) 25(无杆腔)(缸25伸出)25(无杆腔)A 23(左) 24(右)油箱(回油)(2)缸25缩回A)控制回路35-1(常) 35-4(下位)(向伸缩臂油路通油)37-1(左移)电流 24(左)油油箱(24右移)23右转(切换成伸缩状态)B)主油路4 35-4(下位) 24(左) 23(左)A 25(有杆腔)(缩回)25(无) 29-1(开) 30-1(上) 25 B 23(左) 24(左) 油箱(回油)(3)缸26伸出A)控制回路35-1(常) 35-4(下位)(向伸缩臂油路通油)37-2(右移电流 24(右)油油箱(24左移)23右转(切换成伸缩状态)DF5(+) 30-2(上位) 30-1(下位)(连通缸26油路)B)主油路4 35-4(下位) 24(右) 23(左)B 25 30-1(下) B′31-1(上)29-2(开) 26 (无杆腔)(缸26伸出)26(有杆腔) 25(有杆腔) B 23(左) 24(右) 油箱 (回油)(4)缸26缩回A)控制回路37-1(左移)电流 24(左)油油箱(24右移)其它的跟伸出相同B)主油路4 35-4(下) 24(左) 23(左)A 25(有杆腔)A′ 2 6(有杆腔) (26缩回) 26(无杆腔) 29-2(开) 31-1(上) 26 B′ 30-1(下) 25 B 23(左)24(左)油箱(回油)(5)缸27伸出A)控制油路DF6(+) 31-1(下位)其它的跟缸26伸出控制一样B)主油路跟缸26伸出相似(6)缸27缩回2.2伸缩臂架的截面形式分类伸缩臂是受弯为主的双向压弯构件,除受有整体强度、刚度、稳定性的约束限制外,主要受局部稳定性约束。

因此采用何种截面形式使吊臂的自重较小、材料的利用充分,是伸缩式吊臂设计的关键技术。

以下是目前伸缩式吊臂常见的截面形式(如图2.2所示):伸缩臂可以制成几种典型箱形截面:矩形、梯形、倒置梯形、五边形、六边形、八边形、大圆角矩形以及椭圆形截面等。

其中,矩形截面是由翼缘板和腹板焊接而成的,它是目前轮式起重机伸缩臂中用得最多的截面形式。

与其他截面形式相比,矩形截面的制造工艺简单,具有较好的抗弯能力和抗扭刚度,因此,中、小吨位轮式起重机的伸缩臂通常都采用这一形式,但是这种截面没有充分发挥材料的承载能力,为了使伸缩臂各节之间能很好地传递扭矩和横向力,需设附加支承。

梯形截面的上翼缘板窄,下翼缘板宽,截面中性层靠下能发挥上翼缘板的机械性能,提高腹板的稳定性,前部滑块可接近腹板布置,后部滑块传递给上翼缘板的集中力,因上翼缘板窄,产生的弯曲力矩减小。

梯形截面的扭转刚度和横向刚度均较矩形截面大,但是,这种截面的下翼缘板宽,对局部稳定不利,材料性能得不到充分发挥,且需设侧向支承装置,这是梯形截面的缺点。

倒置梯形的下翼缘板窄,上翼缘板宽,对提高下翼缘板的局部稳定性很有好处,材料能得到充分利用,且和梯形截面一样,具有较大的横向刚度和扭转刚度,倒置梯形伸缩臂对安装变幅油缸较为有利,但是这种截面对上翼缘板的局部弯曲和腹板的稳定性不是很有利,亦需设侧向支承。

梯形和倒置梯形截面的伸缩臂通常用于大吨位的轮式起重机。

八边形和大圆角矩形截面的下翼缘板和腹板的实际计算宽度较小,有利于提高抗失稳的能力。

前后滑块均支承在四角处,伸缩臂各板不产生局部弯曲,且能较好地传递扭矩与横向力,因此这两种截面形式的伸缩臂能较好的发挥材料机械性能,减轻结构自重。

相关文档
最新文档