福建省宁德市高中数学复数练习题doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题
1.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有
1z =,则a b +=( )
A .-1
B .0
C .1
D .2
2.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1
C
.z =D .复数z 在复平面内对应的点在第四象限
3.已知i 为虚数单位,则复数
23i
i
-+的虚部是( ) A .35 B .35i - C .15- D .15i -
4.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )
A 3
B .1
C .2
D .3
5.已知i 为虚数单位,复数12i
1i
z +=-,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
6.设1z 是虚数,21
1
1
z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1-
B .11,22⎡⎤
-
⎢⎥⎣
⎦ C .[]22-,
D .11,00,22
⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝

7.若复数z 满足()322i
z i i
-+=+,则复数z 的虚部为( ) A .
35 B .35i - C .35
D .35
i
8.若(1)2z i i -=,则在复平面内z 对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
9.已知复数()2
11i z i
-=
+,则z =( )
A .1i --
B .1i -+
C .1i +
D .1i -
10.已知复数z 满足2
2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上
C .恒在直线y x =上
D .恒在直线y x
=-上
11.
122i
i
-=+( ) A .1 B .-1
C .i
D .-i
12.已知i 是虚数单位,a 为实数,且3i
1i 2i
a -=-+,则a =( ) A .2
B .1
C .-2
D .-1
13.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i +
B .68i -
C .68i --
D .68i -+
14.若i 为虚数单位,,a b ∈R ,且2a i
b i i
+=+,则复数a bi -的模等于( )
A B
C D
15.在复平面内,复数z 对应的点的坐标是(1,1),则z
i
=( ) A .1i - B .1i --
C .1i -+
D .1i +
二、多选题
16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2i
B .|z |=5
C .12z i =+
D .5z z ⋅=
17.已知复数2020
11i z i
+=
-(i 为虚数单位),则下列说法错误的是( )
A .z 的实部为2
B .z 的虚部为1
C .z i =
D .||z =18.若复数351i
z i
-=-,则( )
A .z =
B .z 的实部与虚部之差为3
C .4z i =+
D .z 在复平面内对应的点位于第四象限
19.已知复数z 满足2
20z z +=,则z 可能为( ) A .0
B .2-
C .2i
D .2i -
20.已知复数(),z x yi x y R =+∈,则( ) A .2
0z
B .z 的虚部是yi
C .若12z i =+,则1x =,2y =
D .z =
21.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足
|1|||z z i -=-,下列结论正确的是( )
A .0P 点的坐标为(1,2)
B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称
C .复数z 对应的点Z 在一条直线上
D .0P 与z 对应的点Z 间的距离的最小值为
22.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足
1
R z
∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =
23.设复数z 满足1
z i z
+=,则下列说法错误的是( ) A .z 为纯虚数
B .z 的虚部为12
i -
C .在复平面内,z 对应的点位于第三象限
D .2
z =
24.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z
w z
=,则下列结论正确的有( )
A .w 在复平面内对应的点位于第二象限
B .1w =
C .w 的实部为12
-
D .w 25.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )
A .复数z 的虚部为i
B .
z =
C .复数z 的共轭复数1z i =-
D .复数z 在复平面内对应的点在第一象限
26.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =
,则12=z z B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
27.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:
()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:
()()()n cos sin co i s s n
n n
z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦
+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2
2
z z = B .当1r =,3
π
θ=
时,31z =
C .当1r =,3
π
θ=时,122
z =
- D .当1r =,4
π
θ=时,若n 为偶数,则复数n z 为纯虚数
28.复数21i
z i
+=-,i 是虚数单位,则下列结论正确的是( )
A .|z |=
B .z 的共轭复数为
3122
i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限
29.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件
30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )
A .|z |=
B .复数z 在复平面内对应的点在第四象限
C .z 的共轭复数为12i -+
D .复数z 在复平面内对应的点在直线
2y x =-上
【参考答案】***试卷处理标记,请不要删除
一、复数选择题 1.C 【分析】
根据复数的几何意义得. 【详解】
∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C . 解析:C 【分析】
根据复数的几何意义得,a b . 【详解】
∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=.
2.C 【分析】
利用复数的除法运算求出,即可判断各选项. 【详解】 , ,
则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;
对应的点为在第一象限,故D 错误. 故选:C.
解析:C 【分析】
利用复数的除法运算求出z ,即可判断各选项. 【详解】
()13i z i +=+,
()()()()
3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;
z ==,故C 正;
2z i =+对应的点为()2,1在第一象限,故D 错误.
故选:C.
3.A 【分析】
先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】
因为,所以其虚部是. 故选:A.
解析:A 【分析】
先由复数的除法运算化简复数23i
i
-+,再由复数的概念,即可得出其虚部. 【详解】
因为
22(3)2613
3(3)(3)1055
i i i i i i i i -----===--++-,所以其虚部是35
.
4.A 【分析】
利用复数的模长公式结合可求得的值. 【详解】
,由已知条件可得,解得. 故选:A.
解析:A 【分析】
利用复数的模长公式结合0a >可求得a 的值. 【详解】
0a >,由已知条件可得12ai +==,解得a =
故选:A.
5.C 【分析】
利用复数的除法法则化简,再求的共轭复数,即可得出结果. 【详解】 因为 , 所以,
所以复数在复平面上的对应点位于第三象限, 故选:C.
解析:C 【分析】
利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果. 【详解】 因为2
12(12)(1)
11i i i z i i +++=
=-- 13
22
i =-+,
所以13
22
z i =-
-, 所以复数z 在复平面上的对应点13(,)2
2
--位于第三象限, 故选:C.
6.B 【分析】
设,由是实数可得,即得,由此可求出. 【详解】 设,, 则,
是实数,,则, ,则,解得, 故的实部取值范围是. 故选:B.
解析:B 【分析】
设1z a bi =+,由211
1
z z z =+
是实数可得221a b +=,即得22z a =,由此可求出1122a -≤≤. 【详解】
设1z a bi =+,0b ≠, 则21222222111a bi a b z z a bi a bi a b i z a bi a b a b a b -⎛⎫⎛⎫=+
=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭
, 2z 是实数,22
0b
b a b
∴-
=+,则221a b +=, 22z a ∴=,则121a -≤≤,解得11
22
a -≤≤,
故1z 的实部取值范围是11,22⎡⎤-⎢⎥⎣⎦
. 故选:B.
7.A 【分析】
由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得, 其虚部为, 故选:A.
解析:A 【分析】
由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】
由题意,得()
()()()()2
334331334343455
2i i i
i z i
i i i i ----=
=
==-++-+, 其虚部为35
, 故选:A.
8.B 【分析】
先求解出复数,然后根据复数的几何意义判断. 【详解】 因为,所以,
故对应的点位于复平面内第二象限. 故选:B. 【点睛】
本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计
解析:B 【分析】
先求解出复数z ,然后根据复数的几何意义判断. 【详解】
因为(1)2z i i -=,所以()212112
i i i z i i +=
==-+-, 故z 对应的点位于复平面内第二象限. 故选:B. 【点睛】
本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.
9.B 【分析】
根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解. 【详解】 由题意可得,则. 故答案为:B
解析:B 【分析】
根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解. 【详解】
由题意可得()()
()()
()2
12111111i i i z i i i i
i i ---=
=
=--=--++-,则1z i =-+.
故答案为:B
10.A 【分析】
先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果. 【详解】
由复数在复平面内对应的点为得,则,, 根据得,得,.
所以复数在复平面内对应的点恒在实轴上, 故
解析:A 【分析】
先由题意得到z x yi =+,然后分别计算2z 和2
z ,再根据2
2z z =得到关于x ,y 的方程
组并求解,从而可得结果. 【详解】
由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2
2
2
2z x y xyi =-+,
2
22z x y =+,
根据2
2
z z =得2222
20
x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R .
所以复数z 在复平面内对应的点(),x y 恒在实轴上, 故选:A .
11.D 【分析】
利用复数的除法求解. 【详解】 . 故选:D
解析:D 【分析】
利用复数的除法求解. 【详解】
()()()()
12212222i i i i i i i ---==-++-. 故选:D
12.B
【分析】 可得,即得. 【详解】 由,得a =1. 故选:B .
解析:B 【分析】
可得3(2)(1)3ai i i i -=+-=-,即得1a =. 【详解】
由2
3(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1. 故选:B .
13.D 【分析】
设,根据复数对应的向量与共线,得到,再结合求解. 【详解】 设,
则复数对应的向量, 因为向量与共线, 所以, 又, 所以, 解得或,
因为复数对应的点在第三象限, 所以, 所以,,
解析:D 【分析】
设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到
43a b =,再结合10z =求解.
【详解】
设(,)z a bi a R b R =+∈∈, 则复数z 对应的向量(),OZ a b =, 因为向量OZ 与(3,4)a =共线, 所以43a b =, 又10z =,
所以22100+=a b ,
解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩
, 因为复数z 对应的点在第三象限,
所以68a b =-⎧⎨=-⎩
, 所以68z i =--,68z i =-+,
故选:D
14.C
【分析】
首先根据复数相等得到,,再求的模即可.
【详解】
因为,所以,.
所以.
故选:C
解析:C
【分析】
首先根据复数相等得到1a =-,2b =,再求a bi -的模即可.
【详解】
因为()21a i b i i bi +=+=-+,所以1a =-,2b =.
所以12a bi i -=--=
=
故选:C 15.A
【分析】
根据复数对应的点的坐标是,得到,再利用复数的除法求解.
【详解】
因为在复平面内,复数对应的点的坐标是,
所以,
所以,
故选:A
解析:A
【分析】
根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.
【详解】
因为在复平面内,复数z 对应的点的坐标是(1,1),
所以1z i =+,
所以
11i i i z i
+==-, 故选:A 二、多选题
16.AD
【分析】
因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量,
所以,,|z|=,,
故选:AD
解析:AD
【分析】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,
所以12z i =-+,12z i =--,|z 5z z ⋅=,
故选:AD
17.AC
【分析】
根据复数的运算及复数的概念即可求解.
【详解】
因为复数,
所以z 的虚部为1,,
故AC 错误,BD 正确.
故选:AC
解析:AC
【分析】
根据复数的运算及复数的概念即可求解.
【详解】 因为复数2020450511()22(1)11112
i i i z i i i i +++=====+---,
所以z 的虚部为1,||z =
故AC 错误,BD 正确.
故选:AC
18.AD
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.
【详解】
解:,

z 的实部为4,虚部为,则相差5,
z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正
解析:AD
【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.
【详解】 解:()()()()
351358241112i i i i z i i i i -+--====---+,
z ∴==
z 的实部为4,虚部为1-,则相差5,
z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.
19.ACD
【分析】
令代入已知等式,列方程组求解即可知的可能值.
【详解】
令代入,得:,
∴,解得或或
∴或或.
故选:ACD
【点睛】
本题考查了已知等量关系求复数,属于简单题.
解析:ACD
【分析】
令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.
【详解】
令z a bi =+代入2
2||0z z
+=,得:2220a b abi -+=,
∴22020
a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.
故选:ACD
本题考查了已知等量关系求复数,属于简单题.
20.CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取,则,A 选项错误;
对于B 选项,复数的虚部为,B 选项错误;
解析:CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取z i ,则210z =-<,A 选项错误;
对于B 选项,复数z 的虚部为y ,B 选项错误;
对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;
对于D 选项,z =
D 选项正确.
故选:CD.
【点睛】
本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 21.ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确
解析:ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.
【详解】
复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;
复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;
设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即
=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距
2
=,故D 正确. 故选:ACD
【点睛】
本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 22.AC
【分析】
根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.
【详解】
A 选项,设复数,则,因为,所以,因此,即A 正确;
B 选项,设复数,则,
因为,所,若,则;故B 错;
C 选项,设
解析:AC
【分析】
根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.
【详解】
A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;
B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,
因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;
C 选项,设复数(,)z a bi a b R =+∈,则
22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z
∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,
则()()()()12z z a bi c di ac bd ad bc i =++=-++,
因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨
=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.
故选:AC.
【点睛】
本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.
23.AB
【分析】
先由复数除法运算可得,再逐一分析选项,即可得答案.
【详解】
由题意得:,即,
所以z 不是纯虚数,故A 错误;
复数z 的虚部为,故B 错误;
在复平面内,对应的点为,在第三象限,故C 正确
解析:AB
【分析】 先由复数除法运算可得1122z i =-
-,再逐一分析选项,即可得答案. 【详解】
由题意得:1z zi +=,即111122
z i i -==---, 所以z 不是纯虚数,故A 错误;
复数z 的虚部为12
-,故B 错误; 在复平面内,z 对应的点为1
1(,)22--,在第三象限,故C 正确;
2
z ==,故D 正确. 故选:AB
【点睛】
本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.
24.ABC
【分析】
对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.
【详解】
对选项由题得
.
所以复数对应的点为,在第二象限,所以选项正确
解析:ABC
【分析】
对选项,A 求出1=22
w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项
,C 复数w 的实部为12-
,判断得解;对选项D ,w 判断得解. 【详解】
对选项,A 由题得1,z =-
221=
422w -+∴===-+.
所以复数w 对应的点为1(2-
,在第二象限,所以选项A 正确;
对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-
,所以选项C 正确;
对选项D ,w 所以选项D 错误. 故选:ABC
【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.
25.BCD
【分析】
根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.
【详解】
因为复数,
所以其虚部为,即A 错误;
,故B 正确;
解析:BCD
【分析】
根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.
【详解】
因为复数1z i =+,
所以其虚部为1,即A 错误;
z ==B 正确;
复数z 的共轭复数1z i =-,故C 正确;
复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.
故选:BCD.
【点睛】
本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.
26.BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小
解析:BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;
当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;
因为当两个复数相等时,模一定相等,所以A 项正确;
故选:BCD.
【点睛】
该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.
27.AC
【分析】
利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.
【详解】
对于A 选项,,则,可得
解析:AC
【分析】
利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.
【详解】
对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得
()222cos 2sin 2z r i r θθ=+=,()22
2cos sin z r i r θθ=+=,A 选项正确;
对于B 选项,当1r =,3πθ=
时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;
对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则12z =,C 选项正确;
对于D 选项,()cos sin cos sin cos sin 44
n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.
故选:AC.
【点睛】
本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.
28.CD
【分析】
根据复数的四则运算,整理复数,再逐一分析选项,即得.
【详解】
由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一
解析:CD
【分析】
根据复数的四则运算,整理复数z ,再逐一分析选项,即得.
【详解】 由题得,复数22(2)(1)13131(1)(1)122
i i i i z i i i i i ++++====+--+-,可得
||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22
,位于第一象限,则D 正确.综上,正确结论是CD.
故选:CD
【点睛】
本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.
29.BC
【分析】
设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.
【详解】
设,则,
则,若,则,,若,则不为纯虚数,
所以,“”是“为纯虚数”必要不充分
解析:BC
【分析】
设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.
【详解】
设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;
22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.
故选:BC.
【点睛】
本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.
30.AC
【分析】
根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.
【详解】
,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对
解析:AC
【分析】
根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.
【详解】
||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.
故选:AC
【点睛】
本小题主要考查复数的有关知识,属于基础题.。

相关文档
最新文档