高中数学高考总复习复数习题
复数综合练习题百度文库(1)

一、复数选择题1.复数11z i=-,则z 的共轭复数为( ) A .1i - B .1i + C .1122i + D .1122i - 2.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )A B .1 C .2 D .3 3.已知复数31i z i -=,则z 的虚部为( ) A .1B .1-C .iD .i - 4.复数312i z i =-的虚部是( ) A .65i - B .35i C .35 D .65- 5.已知复数1z i i =+-(i 为虚数单位),则z =( )A.1B .iC iD i 6.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i -B .3i --C .3i +D .3i -+ 7.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③ 9.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( )A B C .3 D .510.在复平面内,复数z 对应的点是()1,1-,则1z z =+( ) A .1i -+ B .1i + C .1i --D .1i - 11.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -13.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2 C .10 D 14.122i i-=+( ) A .1B .-1C .iD .-i 15.已知复数z 满足()1+243i z i =+,则z 的虚部是( )A .-1B .1C .i -D .i二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 18.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =19.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 20.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 22.下列说法正确的是( ) A .若2z =,则4z z ⋅= B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件23.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =24.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=25.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限26.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z = 27.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i -- 28.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .529.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.A【分析】利用复数的模长公式结合可求得的值.【详解】,由已知条件可得,解得.故选:A.解析:A【分析】利用复数的模长公式结合0a >可求得a 的值.【详解】0a >,由已知条件可得12ai +==,解得a =故选:A.3.B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B【分析】化简复数z ,可得z ,结合选项得出答案.()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1-故选:B4.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z 的虚部是.故选:C .解析:C【分析】由复数除法法则计算出z 后可得其虚部.【详解】 因为33(12)366312(12)(12)555i i i i i i i i +-===-+--+, 所以复数z 的虚部是35. 故选:C .5.D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D【分析】 先对1z i i =+-化简,求出z ,从而可求出z【详解】解:因为1z i i i i =+-==,所以z i =,故选:D 6.A根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A解析:A【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为313i z i ⋅=-, 所以()13133i z i i i i-==-=+-, 复数z 的共扼复数是3z i =-,故选:A7.D【分析】先求出,再求出,直接得复数在复平面内对应的点【详解】因为,所以,在复平面内对应点,位于第四象限.故选:D解析:D【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点【详解】 因为211i z i i ==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限. 故选:D8.D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.故选:D.【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.9.B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】由复数()为纯虚数,则 ,则所以故选:B解析:B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】 由()()()()()()21i 2221112a i a a i a i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B10.A【分析】由得出,再由复数的四则运算求解即可.【详解】由题意得,则.故选:A【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可.【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A 11.C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C .解析:C【分析】由已知得到2021(2)(2)i i i z -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果.【详解】由题可得,2021(2)(2)5i z i i i -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限,故选:C .12.A【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-,所以z i ,则z 的虚部为1.故选:A13.D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,,所以,故选:D.解析:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为1z i =+, 所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-==故选:D.14.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D15.B【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求.【详解】由,得,,则的虚部是1.故选:.解析:B【分析】 利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求.【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i i z i i i i ++--====-++-, ∴2z i =+, 则z 的虚部是1.故选:B .二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD18.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC19.ACD分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.20.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误; 当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.23.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.24.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 25.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误;1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 26.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.27.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.28.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.29.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
高中数学复数练习题含答案

高中数学复数练习题含答案一、单选题 1.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.3.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .24.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)- B .(0,1)C .(,0)-∞D .(1,)-+∞5.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i -- B .2i -+C .2i -D .2i +7.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 8.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )AB .5CD .2 9.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一 B .二 C .三 D .四 10.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.若复数z 对应的点在直线y =2x 上,且|z |z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i12.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +13.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 14.若5i2iz =+,则||z =( )A.2 B C .D .315.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 16.已知复数i(1i)z =-,则其共轭复数z =( )A .1i --B .1i -+C .1i -D .1i +17.设向量OP ,PQ ,OQ 对应的复数分别为z 1,z 2,z 3,那么( )A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=0 18.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .9 19.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i20.已知复数23i z =-,则()1i z +=( ) A .3i - B .3+3i - C .3i + D .3i -+二、填空题21.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 22.设复数1z ,2z 是共轭复数,且12229i,-=-+z z ,则1z =___________.23.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.24.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.复数2ii 1+-的共轭复数是_______. 27.设12z i =-,则z =___________ . 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.若复数31i 2iz a -=-为实数,则实数a 的值为_______.30.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________. 31.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 32.复数1515cos77isin ππ+的辐角主值是________. 33.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________.34i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.35.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 36.把复数z 的共轭复数记作z ,已知()12i 43i z +=+(其中i 是虚数单位),则z =______.37.方程()()2223256i 0x x x x --+-+=的实数解x =________.38.设复数20211i 1iz -=-(i 为虚数单位),则z 的虚部是_______.39.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.40.已知复数z =,则复数z 的虚部为__________. 三、解答题41.若43i 3i m m -+(m ∈R)为纯虚数,求42i 2i m m +⎛⎫⎪-⎝⎭的值. 42.设复数22()(lg 2232i )z m m m m =--+++(m ∈R ),试求m 取何值时? (1)z 是实数;(2)z 是纯虚数;(3)z 对应的点位于复平面的第一象限.43.已知i 是虚数单位,复数()()221i z m m m =---,m ∈R.(1)当复数z 为实数时,求m 的值; (2)当复数z 纯虚数时,求m 的值.44.由方程()31cos2πisin 2πz k k k ==+∈Z 得310z -=的三个根为()2π2πcosisin 02,33k k k k k ω=+≤≤∈Z ,则()()()321111z z z z ωω-=---.将上式右边的各个一次因子适当分组相乘,则可变成有理系数多项式,就得到了31z -的有理分解式.请你仿此将151z -进行有理分解.45.在复平面内,复数1i +与13i +分别对应向量OA 和OB ,其中O 为坐标原点,求线段AB 的中点所对应的复数.【参考答案】一、单选题 1.D 2.D 3.B 4.A 5.A 6.B 7.D 8.A 9.B 10.D 11.D 12.B 13.D 14.B 15.C 16.C 17.D18.C19.D20.B二、填空题21.-1+2i##2i-1 222324.25.四26.13i22-+2728.29.2-30.1##1+ 31.13i+##3i1+32.7π3334.1-1-35.236.2i+##i2+ 37.238.039.340.三、解答题41.【解析】【分析】由题可得21230130mm⎧-=⎨-≠⎩,进而即得.【详解】因为243i (43i)(3i)3i 9m m m m m ---=++=22(123)13i9m m m --+是纯虚数, 所以21230130m m ⎧-=⎨-≠⎩,,解得m =±2.于是当m =2时,4442i 22i 1i 2i 22i 1i m m +++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭=i 4=1; 当2m =-时,4442i 22i 1i 2i 22i 1i m m +--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭=4(i)-=1. 综上,42i 2i m m +⎛⎫⎪-⎝⎭=1.42.(1)2m =-或1m =-; (2)3m =; (3)2m <-或3m >. 【解析】 【分析】(1)(2)利用复数的分类,分别列式,求解作答. (3)复数的几何意义列式,求解作答. (1)复数22()(lg 2232i )z m m m m =--+++是实数,则22220320m m m m ⎧-->⎨++=⎩,解得2m =-或1m =-,所以当2m =-或1m =-时,z 是实数. (2)复数22()(lg 2232i )z m m m m =--+++是纯虚数,则22lg(22)0320m m m m ⎧--=⎨++≠⎩,解得3m =,所以当3m =时,z 是纯虚数. (3)复数22()(lg 2232i )z m m m m =--+++在复平面内对应点2222(lg(,)32)m m m m --++,依题意,22lg(22)0320m m m m ⎧-->⎨++>⎩,解得:2m <-或3m >,所以当2m <-或3m >时,z 对应的点位于复平面的第一象限. 43.(1)1或1-; (2)0. 【解析】 【分析】(1)虚部为零,则为实数;(2)虚部不为零,实部为零,则为纯虚数. (1)当210m -=时,得1m =±; (2)当22010m m m ⎧-=⎨-≠⎩时,得0m =.44.()()()()()231411111z z z z z ωωωω----⋅⋅⋅-【解析】 【分析】根据题目所给的信息即可求解. 【详解】根据题目有理分解式原理可知151=0z -的15个根为()2π2πcosisin 0151514,k k k k k ω=+≤≤∈Z , 则151z -()()()()()231411111z z z z z ωωωω=----⋅⋅⋅-.45.12i + 【解析】 【分析】根据复数的几何意义求出点A 、B 的坐标,可得出线段AB 的中点坐标,利用复数的几何意义即可得出结果. 【详解】解:由复数的几何意义可得()1,1A 、()1,3B ,所以线段AB 的中点为()1,2M , 故线段AB 的中点所对应的复数为12i +.。
高考数学压轴专题专题备战高考《复数》真题汇编及答案

【高中数学】数学《复数》复习知识点一、选择题1.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 【答案】D【解析】因为734ii ++(7)(34)2525=1(34)(34)25i i ii i i +--==-+-,所以所对应的点为(1,1)-,位于第四象限,选D. 2.设i 是虚数单位,若复数()103a a R i -∈-是纯虚数,则a 的值为( )A .-3B .-1C .1D .3【答案】D【解析】【分析】【详解】 因,故由题设, 故,故选D .考点:复数的概念与运算.3.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】()12i z i +=22(1)112ii i z i i -⇒===++,所以z 的虚部是1,选A.4.已知复数i z x y =+(x ,y ∈R ),且23z +=1y x -的最大值为()A 3B 6C .26+D .26【答案】C【解析】【分析】根据模长公式,求出复数z 对应点的轨迹为圆,1y x -表示(,)x y 与(0,1)连线的斜率,其最值为过(0,1)点与圆相切的切线斜率,即可求解.【详解】∵复数i z x y =+(x ,y ∈R),且2z +==()2223x y ++=. 设圆的切线l :1y kx =+=化为2420k k --=,解得2k =∴1y x-的最大值为2 故选:C.【点睛】 本题考查复数的几何意义、轨迹方程、斜率的几何意义,考查数形结合思想,属于中档题.5.已知复数z 满足121i z i i +⋅=--(其中z 为z 的共轭复数),则z 的值为( ) A .1B .2 CD 【答案】D【解析】【分析】 按照复数的运算法则先求出z ,再写出z ,进而求出z .【详解】 21(1)21(1)(1)2i i i i i i i ++===--+Q , 1222(2)121i i z i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.6.已知i 是虚数单位,则复数242i z i-=+的共轭复数在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【详解】 解:∵()()()()242232424242105i i i z i i i i ---===-++-, ∴32105z i =+, ∴复数z 的共轭复数在复平面内对应的点的坐标为(32105,),所在的象限为第一象限. 故选:A . 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi7.已知2a i b i i +=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1B .1C .2D .3【答案】B【解析】【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果.【详解】 因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段【答案】D【解析】【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】 2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选:D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.9.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i -【答案】A【解析】【分析】 根据欧拉公式求出2cossin 22i z e i i πππ==+=,再计算(12)z i +的值.【详解】 ∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .10.设2i 2i 1i z =++-,则复数z =( ) A .12i - B .12i + C .2i + D .2i -【答案】A【解析】【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解.【详解】 由题意,可得复数()()()2i 1i 2i 2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-.故选:A .【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.11.在复平面内,复数121i z i -=+对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】 试题分析:1213122i i i -=--+在复平面内所对应的点坐标为,位于第三象限,故选C .考点:复数的代数运算及几何意义.12.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】 ()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.13.(2018江西省景德镇联考)若复数2i 2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2BC .1 D.【答案】B【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a a z i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭, 由复数2i 2a z -=在复平面内对应的点在直线0x y +=上, 可得10212a a z i -=⇒==-,,z ==,故选B.14.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4ii e e ππ表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】 根据欧拉公式计算4i i e e ππ,再根据复数几何意义确定象限.【详解】因为444iie cos isincos isineππππππ+===+,所以对应点22-(,,在第二象限,选B.【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.15.设复数z a bi=+(i为虚数单位,,a b∈R),若,a b满足关系式2ab t=-,且z在复平面上的轨迹经过三个象限,则t的取值范围是( )A.[0,1]B.[1,1]-C.(0,1)(1,)⋃+∞D.(1,)-+∞【答案】C【解析】【分析】首先根据复数的几何意义得到z的轨迹方程2xy t=-,再根据指数函数的图象,得到关于t的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y,2ax ay b t=⎧⎨==-⎩,即2xy t=-,因为z在复平面上的轨迹经过三个象限,则当0x=时,11t-<且10t-≠,解得0t>且1t≠,即t的取值范围是()()0,11,+∞U.故选:C【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.16.设复数4273izi-=-,则复数z的虚部为()A.1729-B.1729C.129-D.129【答案】C【解析】【分析】根据复数运算法则求解1712929z i=-,即可得到其虚部.【详解】 依题意,()()()()427342281214634217173737358582929i i i i i i z i i i i -+-+-+-=====---+ 故复数z 的虚部为129-故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握运算法则,准确计算,正确辨析虚部的概念.17.下列命题中,正确命题的个数是( )①若,,则的充要条件是;②若,且,则; ③若,则. A . B . C . D .【答案】A【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题; 对②,由于两个虚数不能比较大小,故②是假命题;③是假命题,如12+i 2=0,但1≠0,i≠0.考点:复数的有关概念.18.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3B .复数z 的虚部为425iC .复数z 的共轭复数为342525i + D .复数的模为1【答案】C【解析】【分析】直接利用复数的基本概念得选项.【详解】 1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425- ,z 的共轭复数为342525i +15=, 故选C.【点睛】该题考查的是有关复数的概念和运算,属于简单题目.19.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i --B .1i +C .312i -D .312i + 【答案】D【解析】 21z z +=-323122i i i -=+- ,选D.20.复数52i -的共轭复数是( ) A .2i + B .2i -C .2i -+D .2i -- 【答案】C【解析】【分析】 先化简复数代数形式,再根据共轭复数概念求解.【详解】 因为522i i =---,所以复数52i -的共轭复数是2i -+,选C. 【点睛】本题考查复数运算以及共轭复数概念,考查基本求解能力.。
高中数学复数练习题含答案

高中数学复数练习题含答案一、单选题1.在复平面中,复数z 对应的点的坐标为(1,2),则复数iz 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一B .二C .三D .四4.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.5.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +6.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2-B .1-C .1D .27.已知 i 是虚数单位,复数412⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .2 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2-B .2C .i -D .1-10.下列命题:①若i 0a b +=,则0a b ;②i 22i 2x y x y +=+⇔==;③若y R ∈,且()()211i 0y y ---=,则1y =.其中正确命题的个数为( )A .0个B .1个C .2个D .3个11.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 12.设复数z 满足i 4i 0z ++=,则||z =( )A B .4C D 13.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限14.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限15.若复数()()2i ,z a b a b =+-∈R ,在复平面内对应的点在直线20x y --=上,则a b -=( )A .4-B .0C .2D .4 16.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .217.若5i2iz =+,则||z =( )A .2B C .D .318.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-19.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( )A .3B .4CD 20.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题21.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.22.已知复数z i =,i 为虚数单位,则z =______23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________24.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.25.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________. 26.复数2ii 1+-的共轭复数是_______. 27.复数1i z =+(其中i 为虚数单位)的共轭复数z =______. 28.若复数(1i)+(2+3i)z =-(i 为虚数单位),则z =__________.29.若复数31i 2iz a -=-为实数,则实数a 的值为_______.30.已知复数z 满足294i z z +=+,则z =___________.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.若复数2(1i)34iz +=+,则z =__________.33.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.34.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________. 35.计算cos 40isin 40cos10isin10________.36.已知复数12,z z ,满足121z z ==,且12z z +=,则12z z =________.37.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________38.已知z =,则22022z z z ++⋅⋅⋅+=___________. 39.若a ∈R ,且i2ia ++是纯虚数,则a =____. 40.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.三、解答题41.若43i 3i m m -+(m ∈R)为纯虚数,求42i 2i m m +⎛⎫⎪-⎝⎭的值. 42.已知复数2(2)()i z m m m =-+-,其中i 是虚数单位,m 为实数. (1)当复数z 为纯虚数时,求m 的值;(2)当复数z 在复平面内对应的点位于第三象限时,求m 的取值范围. 43.设z 是虚数,且1z zω=+满足12ω-<<. (1)求||z 的值及z 的实部的取值范围; (2)设11zu z-=+,求证:u 为纯虚数; (3)求2u ω-的最小值. 44.已知1z ,2z ∈C ,12z =,23z =,124z z +=,求12z z .(提示:()1122cos isin z z z z θθ=+或()1122cos isin z zz z θθ=-,θ是1z ,2z 所表示的向量的夹角.) 45.根据复数的几何意义证明:121212z z z z z z -≤+≤+.【参考答案】一、单选题 1.B 2.A 3.B 4.D 5.A 6.B 7.C 8.C 9.D 10.B 11.A 12.A 13.A 14.A15.B 16.A 17.B 18.B 19.C 20.D 二、填空题 21.35 22.123.12或12##12-或12 24.四 25.1 26.13i 22-+ 27.1i -##i+1-2829.2- 30.5 31.i - 32.825i 625- 33.[]4,6 343512i36.12- 37.()0,3 38.039.12-##0.5- 40.9 三、解答题41.【解析】 【分析】由题可得21230130m m ⎧-=⎨-≠⎩,进而即得.【详解】因为243i (43i)(3i)3i 9m m m m m ---=++=22(123)13i9m m m --+是纯虚数, 所以21230130m m ⎧-=⎨-≠⎩,,解得m =±2.于是当m =2时,4442i 22i 1i 2i 22i 1i m m +++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭=i 4=1; 当2m =-时,4442i 22i 1i 2i 22i 1i m m +--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭=4(i)-=1. 综上,42i 2i m m +⎛⎫⎪-⎝⎭=1. 42.(1)2 (2)()0,1 【解析】 【分析】(1)由复数z 为纯虚数,得到220m m m -=⎧⎨-≠⎩,即可求解; (2)由复数z 在复平面内对应的点位于第三象限,得出不等式组2200m m m -<⎧⎨-<⎩,即可求解. (1)解:由题意,复数2(2)()i z m m m =-+-, 因为复数z 为纯虚数,则满足2200m m m -=⎧⎨-≠⎩,解得2m =. (2)解:由复数2(2)()i z m m m =-+-,因为复数z 在复平面内对应的点位于第三象限,可得2200m m m -<⎧⎨-<⎩,解得01m <<, 所以m 的取值范围为()0,1.43.(1)||1z =,112⎛⎫- ⎪⎝⎭,(2)证明见解析(3)1 【解析】 【分析】(1)根据复数的除法可得ω,根据其为实数可得221a b +=,从而z 的实部的取值范围;(2)根据复数的除法可得i 1bu a =-+,从而可证u 为纯虚数; (3)根据基本不等式可求最小值. (1)设i z a b =+,a b R ∈、,0b ≠, 则22221i i i a b a b a b a b a b a b ω⎛⎫⎛⎫=++=++- ⎪ ⎪+++⎝⎭⎝⎭, ∵12ω-<<,∴ω是实数,又0b ≠,∴221a b +=,即||1z =,∴2a ω=,122a ω-<=<,112a -<<,∴z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,; (2)()222211i 12i i 11i 11z a b a b b b u z a b a a b ------====-++++++, ∵1,12a ⎛⎫∈- ⎪⎝⎭,0b ≠,∴u 为纯虚数;(3)()()22212122212131111b a u a a a a a a a a ω-⎡⎤-=+=-=-+=++-⎢⎥+++⎣⎦+,∵112a ⎛⎫∈- ⎪⎝⎭,,∴10a +>,故223431u ω-≥⨯=-=, 当111a a +=+,即0a =时,2u ω-取得最小值1.44.16+或16 【解析】 【分析】算出1z ,2z 所表示的向量的夹角的正、余弦即可. 【详解】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=,则22223431cos 223124OAC +-∠==-=-⨯⨯ 所以1cos 4AOB ∠=,所以15sin AOB ∠= 所以122115115346z z ⎛⎫== ⎪ ⎪⎝⎭或121156z z =. 45.证明详见解析 【解析】 【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立. 【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知:121212z z z z z z -<+<+.综上所述,不等式121212z z z z z z -≤+≤+成立.。
高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
高考数学压轴专题(易错题)备战高考《复数》知识点总复习含解析

【高中数学】《复数》考试知识点(1)一、选择题1.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则zi=( ) A .12i - B .12i +C .12i -+D .12i --【答案】B 【解析】 【分析】 由已知求得z ,代入zi,再由复数代数形式的乘除运算化简得答案. 【详解】由题意,2z i =-+,则22(2)()12z i i i i i i i -+-+-===+-. 故选:B . 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线 B .圆 C .椭圆 D .抛物线【答案】A 【解析】 【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线. 【详解】设()z x yi x y R =+∈、,1x yi ++=,()11iz i x yi +=++=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A. 【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.3.若复数21z i i=+-(i 为虚数单位),则||z =( )A .2B .3C .5D .5【答案】C 【解析】 【分析】根据复数的运算,化简复数,再根据模的定义求解即可. 【详解】22(1)121(1)(1)i z i i i i i i +=+=+=+--+,22||125z =+=.故选C. 【点睛】本题主要考查了复数的除法运算,复数模的概念,属于中档题.4.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25- B .25C .7-D .7【答案】A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题5.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2i B .1-2iC .12i -+D .12i --【答案】B 【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.6.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】 【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答. 【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2). ∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限, 故选B. 【点睛】本题主要考查了复数坐标的表示,属于基础题.7.在复平面内与复数21iz i=+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( ) A .1i -- B .1i -C .1i +D .1i -+【答案】D 【解析】 【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数. 【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+. 故选:D 【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.8.已知两非零复数12,z z ,若12R z z ∈,则一定成立的是A .12R z z ∈B .12R z z ∈ C .12R z z +∈D .12R z z ∈ 【答案】D 【解析】 利用排除法:当121,1z i z i =+=-时,12z z ∈R ,而()21212z z i i R =+=∉,选项A 错误,1211z i i R z i+==∉-,选项B 错误, 当121,22z i z i =+=-时,12z z ∈R ,而123z z i R +=-∉,选项C 错误, 本题选择D 选项.9.设i 是虚数单位,则复数734ii++在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 因为734i i++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.10.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( ) A .椭圆 B .双曲线C .抛物线D .线段【答案】D 【解析】 【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹. 【详解】2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立. 因此,点Z 的轨迹为线段. 故选:D. 【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.11.复数12i2i+=-( ). A .iB .1i +C .i -D .1i -【答案】A 【解析】 试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.12.若复数1a iz i+=-,且3·0z i >,则实数a 的值等于( ) A .1 B .-1C .12D .12-【答案】A 【解析】 【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可. 【详解】()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q ,所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.13.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9【答案】B 【解析】 【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值. 【详解】因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离, 故该距离的最大值为()()22231412412AB +=--+--+=+,最小值为2412AB -=-,故4M m -=. 故选:B. 【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.14.下列命题中,正确命题的个数是( ) ①若,,则的充要条件是;②若,且,则;③若,则.A .B .C .D . 【答案】A 【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题; 对②,由于两个虚数不能比较大小,故②是假命题; ③是假命题,如12+i 2=0,但1≠0,i≠0. 考点:复数的有关概念.15.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3B .复数z 的虚部为425iC .复数z 的共轭复数为342525i + D .复数的模为1【答案】C 【解析】 【分析】直接利用复数的基本概念得选项. 【详解】1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425-, z 的共轭复数为342525i +,模为2234125255⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故选C. 【点睛】该题考查的是有关复数的概念和运算,属于简单题目.16.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i -- B .1i +C .312i -D .312i +【答案】D 【解析】21z z +=-323122i i i -=+- ,选D.17.已知复数z 满足()11z i i +=-,则z = ( ) A .i B .1C .i -D .1-【答案】B 【解析】()()1i 1i z +=-,则()()()21i 1i 2i 1i 1i 1i 2z ---====-++-i ,1z ∴=,故选B.18.若复数满足,则复数的虚部为( )A .B .C .D .【答案】B 【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为19.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案. 【详解】为纯虚数,故且,即.故选:.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.。
高考数学复数专题复习(专题训练) 百度文库

一、复数选择题1.已知复数1z i =+,则21z+=( ) A .2B.5C .4D .52.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i --3.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .24.212ii+=-( ) A .1B .−1C .i -D .i5.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( ) A .97-B .7C .97D .7-6.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -7.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<<8.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .8 9.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A 3B 5C .3D .510.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( )AB .3C .5 D.11.设1z 是虚数,2111z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1-B .11,22⎡⎤-⎢⎥⎣⎦C .[]22-,D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦12.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限13.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限14.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限15.题目文件丢失!二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( ) A .z 的实部为2B .z 的虚部为1C.z i =D.||z =18.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 19.若复数351iz i-=-,则( ) A.z =B .z 的实部与虚部之差为3 C .4z i =+D .z 在复平面内对应的点位于第四象限 20.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =21.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =22.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >23.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =24.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根 25.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 26.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --27.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -28.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于1 29.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限30.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先求出,再计算出模. 【详解】 , , . 故选:B. 解析:B 【分析】先求出21z +,再计算出模. 【详解】1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.D 【分析】由复数的运算法则计算即可. 【详解】 解:,. 故选:D.解析:D 【分析】由复数的运算法则计算即可. 【详解】 解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.3.C 【分析】根据复数的几何意义得. 【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .解析:C 【分析】根据复数的几何意义得,a b . 【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .4.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D解析:D 【分析】利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-,故选:D5.B 【分析】先求出,再解不等式组即得解. 【详解】 依题意,,因为复数为纯虚数, 故,解得. 故选:B 【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B 【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解.【详解】依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =.故选:B 【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.6.A 【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是. 故选:A.解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.7.A 【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果. 【详解】 因为,,所以,, 所以或. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A 【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果. 【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->, 所以2a >或1a <-. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题.8.B 【分析】根据复数的几何意义,求两个复数,再计算复数的模. 【详解】由图象可知,,则, 故. 故选:B.解析:B 【分析】根据复数的几何意义,求两个复数,再计算复数的模. 【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+== 故选:B .9.D【分析】求出复数,然后由乘法法则计算. 【详解】 由题意, . 故选:D .解析:D 【分析】求出复数z ,然后由乘法法则计算z z ⋅. 【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .10.A 【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得 则 ,所以,所以 故选:A解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222*********i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =-则z i =- ,所以2z a i +=--,所以z a += 故选:A【分析】设,由是实数可得,即得,由此可求出. 【详解】 设,, 则,是实数,,则, ,则,解得, 故的实部取值范围是. 故选:B.解析:B 【分析】设1z a bi =+,由2111z z z =+是实数可得221a b +=,即得22z a =,由此可求出1122a -≤≤. 【详解】设1z a bi =+,0b ≠, 则21222222111a bi a b z z a bi a bi a b i z a bi a b a b a b -⎛⎫⎛⎫=+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭, 2z 是实数,220bb a b∴-=+,则221a b +=, 22z a ∴=,则121a -≤≤,解得1122a -≤≤,故1z 的实部取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故选:B.12.B 【分析】先求解出复数,然后根据复数的几何意义判断. 【详解】 因为,所以,故对应的点位于复平面内第二象限. 故选:B. 【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B先求解出复数z ,然后根据复数的几何意义判断. 【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限. 故选:B. 【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.13.B 【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果. 【详解】 设复数, 由得, 所以,解得,因为时,不能满足,舍去; 故,所以,其对应的解析:B 【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果. 【详解】设复数(),z x yi x R y R =+∈∈,由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得1x y ⎧=⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故1x y ⎧=⎪⎨⎪=⎩3z i =-+,其对应的点3⎛⎫- ⎪ ⎪⎝⎭位于第二象限, 故选:B.14.C【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.【详解】由题意,,∴,对应点,在第三象限.故选:C .解析:C【分析】 由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论.【详解】 由题意2021(2)i z ii -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255z i =--,对应点12(,)55--,在第三象限. 故选:C .15.无二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC18.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 19.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.20.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 21.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】122z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.22.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.23.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.24.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.25.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 26.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.27.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确; 当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题. 28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题.29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>,所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。
高考数学复数习题及答案

高考数学复数习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考复数训练题1.(2013·山东)复数3-i1-i等于( C )A .1+2iB .1-2iC .2+iD .2-i2.(2013·宁夏、海南)复数3+2i 2-3i -3-2i2+3i=( D )A .0B .2C .-2iD .2i3.(2013·陕西)已知z 是纯虚数,z +21-i是实数,那么z 等于 ( D)A .2iB .iC .-iD .-2i4.(2013·武汉市高三年级2月调研考试)若f (x )=x 3-x 2+x -1,则f (i)= ( B ) A .2i B .0 C .-2i D .-25.(2013·北京朝阳4月)复数z =2-i1+i(i 是虚数单位)在复平面内对应的点位于 ( D )A .第一象限B .第二象限C .第三象限D .第四象限6.(2013·北京东城3月)若将复数2+i i 表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则ba的值为( A )7.(2013·北京西城4月)设i 是虚数单位,复数z =tan45°-i·sin60°,则z 2等于 ( B )A.74-3iB.14-3iC.74+3iD.14+3i 8.(2013·黄冈中学一模)过原点和3-i 在复平面内对应的直线的倾斜角为 ( D ) A.π6 B .-π6 C.23π D.56π 9.设a 、b 、c 、d ∈R ,若a +b ic +d i为实数,则( C )A .bc +ad ≠0B .bc -ad ≠0C .bc -ad =0D .bc +ad =010.已知复数z =1-2i ,那么1z =( D )A.55+255i B.55-255i C.15+25iD.15-25i 11.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( A )A .6B .-6C .0D.1612.(2013·广东)设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i )=( B )A .2B .4C .6D .813.若z =12+32i ,且(x -z )4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 2等于 ( B )A .-12+32iB .-3+33iC .6+33iD .-3-33i14.若△ABC 是锐角三角形,则复数z =(cos B -sin A )+i (sin B -cos A )对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限15.如果复数2-bi1+2i(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( C )A. 2B.23C .-23D .216.设函数f (x )=-x 5+5x 4-10x 3+10x 2-5x +1,则f (12+32i )的值为 ( C )A .-12+32i B.32-12iC.12+32i D .-32+12i 17.若i 是虚数单位,则满足(p +qi )2=q +pi 的实数p ,q 一共有 ( D )A .1对B .2对C .3对D .4对18.已知(2x 2-x p )6的展开式中,不含x 的项是2027,那么正数p 的值是 ( C )A .1B .2C .3D .419.复数z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )在复平面内对应的点位于 ( C ) A .第一象限 B .第二象限 C .第三象限 D .第四象限20.设复数z +i (z ∈C )在映射f 下的象为复数z 的共轭复数与i 的积,若复数ω在映射f 下的象为-1+2i ,则相应的ω为 ( A )A .2B .2-2iC .-2+iD .2+i21.(2013·海淀4月)在复平面内,复数1+a ii(a ∈R )对应的点位于虚轴上,则a =____0____.22.(2013·安徽宿州二中模拟考三)i 是虚数单位,则1+C 16i +C 26i 2+C 36i 3+C 46i 4+C 56i 5+C 66i 6=_-8i_______.23.i 为虚数单位,则=⎪⎭⎫⎝⎛-+201111i iA.i -B.1-C.iD.1 24.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i +25.设 i 是虚数单位,复数aii 1+2-为纯虚数,则实数a 为(A )2 (B ) -2(C ) 1-2(D ) 1226.设复数z满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________ 27.复数512i+-(i 是虚数单位)的模等于 .28.已知0<a <2,复数z =a +i (i 是虚数单位),则|z |的取值范围是 A .3) B .5.(1,3) D .(1,5)29.下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学高考总复习复
数习题
Last revised by LE LE in 2021
高中数学高考总复习复数习题一、选择题
1.复数3+2i
2-3i
=( )
A.i
B.-i
C.12-13i
D.12+13i
2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( )
A.4+8i
B.8+2i
C.2+4i
D.4+i
3.若复数(m2-3m-4)+(m2-5m-6)i表示的点在虚轴上,则实数m的值是( ) A.-1
B.4
C.-1和4
D.-1和6
4.(文)已知复数z=
1
1+i
,则z-·i在复平面内对应的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
(理)复数z在复平面上对应的点在单位圆上,则复数z2+1
z
( )
A.是纯虚数
B.是虚数但不是纯虚数C.是实数
D.只能是零
5.复数(3i-1)i的共轭复数
....是( )
A.-3+i
B.-3-i
C.3+i
D.3-i
6.已知x,y∈R,i是虚数单位,且(x-1)i-y=2+i,则(1+i)x-y的值为( ) A.-4
B.4
C.-1
D.1
7.(文)复数z1=3+i,z2=1-i,则z=z1·z2在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(理)现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,若a=C50cos5θ-C52cos3θsin2θ+
C 54cosθsin4θ,b=C
5
1cos4θsinθ-C
5
3cos2θsin3θ+C
5
5sin5θ,那么复数a+b i等于
( )
A.cos5θ+isin5θ
B.cos5θ-isin5θ
C.sin5θ+icos5θ
D.sin5θ-icos5θ
8.(文)已知复数a=3+2i,b=4+xi(其中i为虚数单位),若复数a
b
∈R,则实数x
的值为( )
A.-6
B.6
D .-83
(理)设z =1-i (i 是虚数单位),则z 2+2z
=( ) A .-1-i
B .-1+i
C .1-i
D .1+i
9.在复平面内,复数
21-i 对应的点到直线y =x +1的距离是( )
C .2
D .22
10.(文)设复数z 满足关系式z +|z -|=2+i ,则z 等于( )
A .-34
+i -i
+i
D .-34
-i (理)若复数z =
a +i 1-2i
(a ∈R ,i 是虚数单位)是纯虚数,则|a +2i |等于( ) A .2
B .22
C .4
D .8
二、填空题
11.规定运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪ z i -i 2=1-2i ,设i 为虚数单位,则复数z =________.
12.若复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,则实数a 的值
为________.
13.(文)若a 是复数z 1=
1+i 2-i
的实部,b 是复数z 2=(1-i )3的虚部,则ab 等于________.
(理)如果复数
2-bi 1+2i (i 是虚数单位)的实数与虚部互为相反数,那么实数b 等于________.
14.(文)若复数z =sin α-i (1-cos α)是纯虚数,则α=________.
(理)设i 为虚数单位,复数z =(12+5i )(cos θ+i sin θ),若z ∈R ,则tan θ的值为________.
三、解答题 15.已知复数z =a 2-7a +6a +1
+(a 2-5a -6)i (a ∈R ). 试求实数a 分别为什么值时,z 分别为:
(1)实数;(2)虚数;(3)纯虚数.
16.求满足⎪⎪⎪⎪
⎪⎪z +1z -1=1且z +2z ∈R 的复数z . 17.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .
(1)设复数z =a +bi (i 为虚数单位),求事件“z -3i 为实数”的概率;
(2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧ a -b +2≥00≤a ≤4
b ≥0表示的平面区域内(含边界)的概率.。