最新高中数学《复数》经典考题分类解析
高考复数知识点经典题型

高考复数知识点经典题型高考是每个学生人生道路中的重要里程碑,对于许多学生而言,复习备考是一项艰巨的任务。
在准备期间,学生需要重点关注高考复数知识点,因为这些知识点经常出现在考试中,且占据很大的比重。
在本文中,我将论述一些常见的高考复数知识点,并带你一起解析经典题型。
一、复数的定义和运算法则复数是由实数和虚数构成的数,通常用 a + bi 表示,其中 a 是实部,b 是虚部。
在复数中,虚数单位 i 的平方等于 -1。
对于复数的加法和减法,只需分别对实部和虚部进行运算即可。
而复数的乘法和除法则需要使用分配律和公式 (a + bi) * (c + di) = (ac - bd) + (ad + bc)i 进行计算。
经典题型:1. 计算复数 (3 + 2i) + (4 - i) 的结果。
2. 计算复数 (2 - 3i) - (5 + 2i) 的结果。
3. 计算复数 (1 - 2i) * (3 + 4i) 的结果。
4. 计算复数 (2 + i) / (1 - 3i) 的结果。
二、复数的共轭和模在复数中,共轭是指改变虚部的正负号,得到的新复数称为原复数的共轭。
复数的模是指复数到原点的距离,也可以理解为复数的绝对值。
经典题型:1. 计算复数 (4 + 3i) 的共轭。
2. 计算复数 (2 - i) 的共轭。
3. 计算复数 (3 + 4i) 的模。
4. 计算复数 (-1 + 2i) 的模。
三、复数的幂和根复数的幂是指将复数连续乘以自身多次。
复数的根是指满足a^k - z = 0 的复数 a,其中 a 是复数的根数,k 是根的次数。
经典题型:1. 计算复数 (1 + i)^2 的结果。
2. 求复数 (3 + 4i) 的平方根。
3. 求复数 (1 - i) 的立方根。
4. 求复数 (-1 + √3i) 的四次根。
四、复数的三角形式复数可以利用直角坐标系和极坐标系来表示。
在复数的三角形式中,复数 z = a + bi 可以改写为z = r(cosθ + isinθ) 的形式,其中 r 是复数的模,θ 是复数的辐角。
高考复数的知识题型总结归类

高考复数的知识题型总结一、复数的有关概念(1)复数1.定义:形如a+6i (a, 6WR)的数叫做复数,其中i叫做虚数单位,满足f= —1.二i,产三-1, Z,n-3=-i, 小= 1.)2.表示方法:复数通常用字母z表示,即z=a+6i (a, 6CR),叫做复数的代数形式,a叫做复数z的实部,6叫做复数z的虚部.(注意b是虚部而不是bi)(2)复数集1.定义:全体复数所成的集合叫做复数集.2.表示:大写字母C.(3)复数的分类’3正实数L= 0,-- 是实数QT上;实数0复数z=a+例—负实数一纯虚数hi、3n是虚数1&工°为£2”非纯虚数的虚敷复数集、实数集、虚数集、纯虚数集之间的关系(4 )复数相等的充要条件a+ 6i = c+ 力=a=c 且b=da+6i = 0=a=6=0. (a, b, c, d 均为实数)说明:要求复数相等要先将复数化为2=&+历(a, 6£R)的形式,即分离实部和虚部.二、复平面的概念点Z的横坐标是a,纵坐标是6,复数*a+6f(a、6£R)可用点Z(a, 6)表示, 这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.实轴上的点都表示实数.(1)实轴上的点都表示实数.(2)虚轴上的点都表示纯虚数.(3)原点对应的有序实数对为(0, 0)三、复数的两种几何意义(1)复数z=a+bi (a, Z>GR) -*对应复平而内的点Z (a, b).(2)复数z=a+6i (a, b£R) -*平而向量一OZ复数Z=a+罚(a1亡犬)—寸应点—―->向量无对应四、复数的模复数z=a+6i (a, 6CR)对应的向量为OZ ,则&的模叫做复数z的模,记作;z ,且|z|=^7F 注意:两个虚数是不可以比较大小的,但它们的模表示实数,可以比较大小.五、复数的运算设%=a+6,,z^c+di(a^ b、c、d£R)是任意两个复数,%与Z2 的加法运算律:^+^2= (a^bi) + (c+di) = (a+c) + (b+d) i.%与Z2 的减法运算律:4-纥=(a+6f)-(c+d£) = (a-c) + (Zy^£Z1 与诙的乘法运算律:21.乏二(a^bi) (c^di)-(ac— bd)^(bc^ad) i.cic + bd ^bc- ad .Z,与否的除法运算律:2一生二(/方)・(6人)=1+/2 /+/ (分母要利用平方差实数化)六、共甄复数1.定义:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共枕复数,虚部不等于0的两个共枕复数也叫做共枕虚数.通常记复数Z的共辗复数为5 o例如z=3 + 5i与5=3 — 5i互为共辄复数2.共辗复数的性质(1)实数的共规复数仍然是它本身⑵2区=团:团,(3)两个共规复数对应的点关于实轴对称七、常用结论.⑴"i,(2)(l-i)2=-2i⑶- = -/(5)— = -/ 1 + Z(6)(。
高考数学压轴专题最新备战高考《复数》解析含答案

【最新】数学《复数》专题解析(1)一、选择题1.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( )A .3B .3i -C .3iD .3- 【答案】D【解析】【分析】首先化简复数z ,然后结合复数的定义确定其虚部即可.【详解】 由题意可得:()()()()362361151322255i i i i z i i i i -----====--++-, 据此可知,复数z 的虚部为3-.本题选择D 选项.【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】 Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题3.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( )A B C .3 D .5【答案】B【解析】22(2)22(1)5z i i i i =-=-=+-=,故选B .4.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --【答案】B【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.5.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B 【解析】【分析】化简复数得到答案. 【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B【点睛】本题考查了复数的计算,意在考查学生的计算能力.6.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .32【答案】B【解析】【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi7.已知i 是虚数单位,则131i i +=+( ) A .2i -B .2i +C .2i -+D .2i -- 【答案】B【解析】【分析】利用复数的除法运算计算复数的值即可.【详解】由复数的运算法则有: 13(13)(1)422(1)(11)2i i i i i i i i ++-+===++-+. 故选B .【点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.8.若43i z =+,则z z=( ) A .1B .1-C .4355i +D .4355i - 【答案】D【解析】【详解】由题意可得 :5z ==,且:43z i =-, 据此有:4343555z i i z -==-. 本题选择D 选项.9.设3443i z i -=+,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i + 【答案】A【解析】【分析】利用复数代数形式的乘除运算化简,代入函数解析式求解.【详解】 解:3443i z i-=+Q ()()()()344334434343i i i z i i i i ---∴===-++- ()21f x x x =-+Q()()()21f z i i i ∴=---+=故选:A【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.10.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】由()11i x yi -=+,其中,x y 是实数,得:11,1x x x y y ==⎧⎧∴⎨⎨-==-⎩⎩,所以x yi +在复平面内所对应的点位于第四象限.本题选择D 选项.11.复数z 满足(2)1i z i -=+,那么||z =( )A .5B .15C .25D .5【答案】D【解析】【分析】 化简得到1355z i =+,再计算复数模得到答案. 【详解】(2)1i z i -=+,∴1(1)(2)13255i i i i z i ++++===-,∴1355z i =+,∴||z =. 故选:D .【点睛】本题考查了复数的运算,复数模,意在考查学生的计算能力.12.设2i 2i 1i z =++-,则复数z =( ) A .12i -B .12i +C .2i +D .2i - 【答案】A【解析】【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解.【详解】 由题意,可得复数()()()2i 1i 2i 2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-.故选:A .【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.13.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.已知复数122i z i +=- (i 为虚数单位),则z 的虚部为( ) A .-1B .0C .1D .i 【答案】C【解析】【分析】利用复数的运算法则,和复数的定义即可得到答案.【详解】 复数()()()()1221252225i i i i z i i i i +++====--+,所以复数z 的虚部为1,故选C . 【点睛】本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.15.已知i 为虚数单位,,a b ∈R ,复数12i i a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B【解析】【分析】 由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案.【详解】 由题意,复数12i i a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】 本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.16.若1+是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c ==B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D【解析】【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组100b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项 【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴100b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3 故选:D .【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题17.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.18.在复平面内,复数z 满足()112z i i +=-,则z 对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】 ∵()112z i i +=-,∴()()()()221211212213131111222i i i i i i i z i i i i i -----+--=====--++--,∴1322z i =-+,故对应的点在第二象限.故选B .19.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32 【答案】B【解析】【分析】 先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r ,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点. 由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r ,∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r .故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知复数为纯虚数(为虚数单位),则实数()A.-1 B.1 C.0 D.2【答案】B【解析】【分析】化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.。
高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题单选题1、已知z =2+i ,则z−i 1+i =( )A .1−2iB .2+2iC .2iD .−2i答案:D分析:根据共轭复数的定义及复数的除法法则即可求解.由z =2+i ,得z =2−i ,所以z−i 1+i =2−i−i 1+i =2(1−i )×(1−i )(1+i )×(1−i )=2×(1−2i+i 2)2=−2i .故选:D.2、设(−1+2i)x =y −1−6i ,x,y ∈R ,则|x −yi|=( )A .6B .5C .4D .3答案:B分析:根据复数实部等于实部,虚部等于虚部可得{x =−3y =4,进而求模长即可. 因为(−1+2i )x =y −1−6i ,所以{2x =−6−x =y −1,解得{x =−3y =4, 所以|x −yi |=|−3−4i|=√(−3)2+(−4)2=5.故选:B.3、已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z =z .则其中正确命题的个数为A .0个B .1个C .2个D .3个答案:C解析:运用复数的模、共轭复数、虚数等知识对命题进行判断.对于①中复数z 1和z 2的模相等,例如z 1=1+i ,z 2=√2i ,则z 1和z 2是共轭复数是错误的;对于②z 1和z 2都是复数,若z 1+z 2是虚数,则其实部互为相反数,则z 1不是z 2的共轭复数,所以②是正确的;对于③复数z 是实数,令z =a ,则z =a 所以z =z ,反之当z =z 时,亦有复数z 是实数,故复数z 是实数的充要条件是z =z 是正确的.综上正确命题的个数是2个.故选C小提示:本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.4、在复平面内,复数z =1+i 1−i +1−i 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:由复数的运算求出z ,则可得其对应的点的坐标,从而得出结论.z =(1+i)2(1−i)(1+i)+1−i 2=2i 2+1−i 2=12+12i , 则z 在复平面内对应的点为(12,12),在第一象限,故选:A .5、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,(a,b ∈R ),分别计算|z 12|、|z 1|2即可判断选项D ,进而可得正确选项.对于选项A :取z 1=2+i ,z 2=2−i ,z 12=(2+i )2=3+2i ,z 22=(2−i )2=3−2i ,满足z 12+z 22=6>0,但z 12与z 22是两个复数,不能比较大小,故选项A 不正确;对于选项B :取z 1=2+i ,z 2=2−i ,|z 1−z 2|=|2i |=2,而√(z 1+z 2)2−4z 1⋅z 2=√42−4(2+i )(2−i )=√16−20无意义,故选项B 不正确;对于选项C :取,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;对于选项D :设z 1=a +bi ,(a,b ∈R ),则z 12=(a +bi )2=a 2−b 2+2abi11z =11z =|z 12|=√(a 2−b 2)2+4a 2b 2=√(a 2+b 2)2=a 2+b 2,z 1=a −bi ,|z 1|=√a 2+b 2,所以|z 1|2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选:D.6、已知i 为虚数单位,则i +i 2+i 3+⋅⋅⋅+i 2021=( )A .iB .−iC .1D .-1答案:A分析:根据虚数的运算性质,得到i 4n +i 4n+1+i 4n+2+i 4n+3=0,得到i +i 2+i 3+⋅⋅⋅+i 2021=i 2021,即可求解.根据虚数的性质知i 4n +i 4n+1+i 4n+2+i 4n+3=1+i −1−i =0,所以i +i 2+i 3+⋅⋅⋅+i 2021=505×0+i 2021=i .故选:A.7、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D8、已知关于x 的方程(x 2+mx )+2x i =-2-2i (m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC.-3-iD.-3+i答案:B分析:根据复数相等得出m,n的值,进而得出复数z. 由题意知(n2+mn)+2n i=-2-2i,即{n 2+mn+2=02n+2=0,解得{m=3,n=−1,∴z=3−i故选:B多选题9、已知复数z=21+i,则正确的是()A.z的实部为﹣1B.z在复平面内对应的点位于第四象限C.z的虚部为﹣iD.z的共轭复数为1+i答案:BD分析:根据复数代数形式的乘除运算化简,结合复数的实部和虚部的概念、共轭复数的概念求解即可.因为z=21+i =2(1−i)(1+i)(1−i)=1−i,所以z的实部为1,虚部为-1,在复平面内对应的点为(1,-1),在第四象限,共轭复数为z=1+i,故AC错误,BD正确.故选:BD10、复数z=1−i,则()A.z在复平面内对应的点的坐标为(1,−1)B.z在复平面内对应的点的坐标为(1,1)C.|z|=2D.|z|=√2答案:AD分析:利用复数的几何意义,求出复数对应的点坐标为(1,−1),即可得答案;z=1−i在复平面内对应的点的坐标为(1,−1),|z|=√2.故选:AD.11、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.12、已知复数z1=−2+i(i为虚数单位),复数z2满足|z2−1+2i|=2,z2在复平面内对应的点为,则()A.复数z1在复平面内对应的点位于第二象限B.1z1=−25−15iC.(x+1)2+(y−2)2=4D.|z2−z1|的最大值为3√2+2答案:ABD分析:利用复数的几何意义可判断A选项;利用复数的除法运算可判断B选项;利用复数的模长公式可判断C选项;利用复数模长的三角不等式可判断D选项.对于A选项,复数z1在复平面内对应的点的坐标为(−2,1),该点位于第二象限,A对;对于B选项,1z1=1−2+i=−2−i(−2+i)(−2−i)=−25−15i,B对;对于C选项,由题意可得z2−1+2i=(x−1)+(y+2)i,因为|z2−1+2i|=2,则(x−1)2+(y+2)2=4,C错;对于D选项,z1−1+2i=−3+3i,则|z1−1+2i|=√(−3)2+32=3√2,所以,|z2−z1|=|(z2−1+2i)−(z1−1+2i)|≤|z2−1+2i|+|z1−1+2i|=2+3√2,D对.(), M x y故选:ABD.13、若复数z 满足:z (z +2i )=8+6i ,则( )A .z 的实部为3B .z 的虚部为1C .zz =√10D .z 在复平面上对应的点位于第一象限答案:ABD分析:根据待定系数法,将z =a +bi (a,b ∈R )代入条件即可求解a =3,b =1,进而即可根据选项逐一求解. 设z =a +bi (a,b ∈R ),因为z (z +2i )=8+6i ,所以zz +2iz =8+6i ,所以(a 2+b 2−2b )+2ai =8+6i ,所以a 2+b 2−2b =8,2a =6,所以a =3,b =1,所以z =3+i ,所以z 的实部为3,虚部为1,故A ,B 正确;zz =|z |2=10,故C 不正确;z 在复平面上对应的点(3,1)位于第一象限,故D 正确.故选:ABD .填空题14、i 2 021=________.答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i15、设复数z ,满足|z 1|=1,|z 2|=2,z 1+z 2=√3−i ,则|z 1−z 2|=____________.答案:√6解析:根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出|z 1−z 2|的值.设z 1,z 2在复平面中对应的向量为OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ ,z 1+z 2对应的向量为OZ 3⃗⃗⃗⃗⃗⃗⃗ ,如下图所示:因为z 1+z 2=√3−i ,所以|z 1+z 2|=√3+1=2,所以cos∠OZ 1Z 3=12+22−221×2×2=14, 又因为∠OZ 1Z 3+∠Z 1OZ 2=180°,所以cos∠Z 1OZ 2=−cos∠OZ 1Z 3=−14,所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=OZ 12+OZ 22−2OZ 1⋅OZ 2⋅cos∠Z 1OZ 2=1+4+1=6, 所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,又|z 1−z 2|=|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,所以答案是:√6.小提示:名师点评复数的几何意义:(1)复数z =a +bi (a,b ∈R )一一对应↔复平面内的点Z (a,b )(a,b ∈R ); (2)复数z =a +bi (a,b ∈R ) 一一对应↔平面向量OZ ⃗⃗⃗⃗⃗ . 16、在复平面内,复数z 对应的点的坐标是(3,−5).则(1−i)z =___________.答案:−2−8i ##−8i −2分析:根据给定条件求出复数,再利用复数的乘法运算计算作答.在复平面内,复数z 对应的点的坐标是(3,−5),则z =3−5i ,所以(1−i)z =(1−i)(3−5i)=−2−8i .所以答案是:−2−8i解答题17、已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i (其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值;(2)若z 1=z 2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m <0,解得m >1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m −4i|,解得m =3.综上可得:m =−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。
第12章复数章末题型归纳总结 高考数学

又∠ ∈ , ,所以∠ = .
故答案为:
−
,
= ,
试卷讲评课件
例11.(2024 ⋅高一·江苏·专题练习)在复平面内,O是原点,向量OZ对应
的复数是−1 +
− 2
复数为_____.
π
i,将OZ绕点O按逆时针方向旋转 ,则所得向量对应的
4
【解析】如图,由题意可知 = −, ,与
经典题型六:复数的三角表示
模块三:数学思想与方法
①分类与整合思想②等价转换思想③
数形结合的思想
试卷讲评课件
模块一:本章知识思维导图
试卷讲评课件
模块二:典型例题
经典题型一:复数的概念
例1.(2024
z
⋅高三·河南商丘·阶段练习)若复数z满足 为纯虚数,且
2+i
z = 1,则z的虚部为(
√
2 5
A.±
若 = ,则有 = , = , ∴ = ,反之由 = ,
推不出 = ,如 = +, = − 时, = ,故C正确;
D中两个复数不能比较大小,但任意两个复数的模总能比较大小,∴
错.
选.
试卷讲评课件
【解析】复数 = + ,则 = +
= − + = −,
−=
又是实数,因此
,解得 = −,
= −
所以实数的值是−.
试卷讲评课件
z1
z1
(2)若 是纯虚数,求
z2
z2
+
z1 2
z2
+
z1 3
高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
高中复数经典练习题及讲解

高中复数经典练习题及讲解1. 题目:判断下列各句中的名词是否为复数形式,并解释原因。
- 我有几个朋友。
- 她有两只猫。
- 他喜欢读小说。
- 我们有三本书。
答案:- 几个朋友:是复数形式,因为“几个”表示多于一个。
- 两只猫:是复数形式,因为“两只”明确表示两个。
- 他喜欢读小说:不是复数形式,因为“小说”是单数名词。
- 我们有三本书:是复数形式,因为“三本”表示三个。
2. 题目:将下列句子中的名词变为复数形式。
- 我有一个苹果。
- 她有一只狗。
- 他有一本书。
- 我们有一张桌子。
答案:- 我有两个苹果。
- 她有两只狗。
- 他有几本书。
- 我们有几张桌子。
3. 题目:根据上下文,将下列句子中的名词变为复数形式。
- 每个学生(student)都有自己的学习计划。
- 我昨天买了一些(some)橘子。
- 他们(they)正在讨论几个(a few)问题。
- 我们(we)通常在晚上看电视。
答案:- 每个学生都有自己的学习计划。
- 我昨天买了一些橘子。
- 他们正在讨论几个问题。
- 我们通常在晚上看电视。
4. 题目:判断下列句子中的名词是否正确使用了复数形式,并给出正确形式。
- 我昨天买了一个橘子。
- 她有很多钱。
- 他们正在讨论一个问题。
- 我们有两张桌子。
答案:- 我昨天买了一些橘子。
- 她有很多钱。
- 他们正在讨论一些问题。
- 我们有两张桌子。
5. 题目:将下列句子中的名词变为复数形式,并解释变化的原因。
- 我有一个梦想。
- 她有一只猫。
- 他有一本书。
- 我们有一张纸。
答案:- 我有多个梦想。
- 她有几只猫。
- 他有几本书。
- 我们有几张纸。
原因解释:- “梦想”通常用来表示多个愿望或目标。
- “猫”在这种情况下可能表示不只一只。
- “书”在讨论时通常不只一本。
- “纸”在这种情况下可能表示多张纸。
高中复数练习题及讲解及答案

高中复数练习题及讲解及答案### 高中复数练习题及讲解及答案#### 练习题1. 复数的加减法- 计算以下复数的和:\(3 + 4i\) 和 \(1 - 2i\)。
2. 复数的乘法- 求 \((2 + 3i)(1 - i)\) 的乘积。
3. 复数的除法- 计算 \(\frac{2 + i}{1 + i}\)。
4. 复数的共轭- 找出 \(3 - 4i\) 的共轭复数。
5. 复数的模- 求 \(5 + 12i\) 的模。
6. 复数的幂运算- 计算 \((2 + i)^2\)。
7. 复数的指数形式- 将 \(8\) 表示为 \(2\) 的幂次形式。
8. 复数的极坐标形式- 将 \(-3 - 4i\) 转换为极坐标形式。
9. 复数的三角函数- 求 \(\sin(3 + 4i)\)。
10. 复数的对数- 计算 \(\log(-8 + 0i)\)。
#### 讲解复数是实数和虚数的组合,形如 \(a + bi\),其中 \(a\) 和 \(b\)是实数,\(i\) 是虚数单位,满足 \(i^2 = -1\)。
1. 加减法:直接对实部和虚部分别进行加减。
2. 乘法:使用分配律,然后合并同类项。
3. 除法:将分母的实部和虚部合并,然后乘以共轭复数,简化表达式。
4. 共轭复数:改变虚部的符号。
5. 模:计算 \(\sqrt{a^2 + b^2}\)。
6. 幂运算:使用二项式定理或幂的性质。
7. 指数形式:使用欧拉公式 \(e^{ix} = \cos(x) + i\sin(x)\)。
8. 极坐标形式:表示为 \(r(\cos(\theta) + i\sin(\theta))\),其中 \(r\) 是模,\(\theta\) 是辐角。
9. 三角函数:使用复数的指数形式和欧拉公式。
10. 对数:首先将复数转换为极坐标形式,然后应用对数的性质。
#### 答案1. \(4 + 2i\)2. \(2 + 5i\)3. \(3 - i\)4. \(3 + 4i\)5. \(13\)6. \(3 + 4i\)7. \(2^3\)8. \(5(\cos(-\pi/4) + i\sin(-\pi/4))\)9. 无实数解,因为 \(\sin\) 函数在复数域内没有定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高中数学《复数》经典考题分类解析
复数的代数运算年年必考,其题目活而不难,主要考查学生灵活运用知识的能力,复数的几何意义也是考查的一个重点。
落实考查特点有利于抓住复习中的关键:(1)复数的概念,包括虚数、纯虚数、复数的实部与虚部、复数的模、复数的相等、共轭复数的概念。
(2)复数代数形式基本运算的技能与技巧,特别是
i ±1的计算,注意转化思想的训练,善于将复数向实数转化。
(3)复数的几何意义,
1、复数的概念以及运算
例1i 是虚数单位,238i 2i 3i 8i ++++=L .(用i a b +的形式表示,a b ∈R ,)
解:原式=i -2-3i +4+5i -6-7i +8=4-4i
点评:复数是高中数学的重要内容,是解决数学问题的重要工具,本题考查了复数的概念以及复数的引入原则,主要考查i 12-=的实际应用问题。
例2若a
为实数,
=,则a 等于( ) A
. B
. C
. D
.-解析:由已知得:等式左边=i a a i ai 3
223223)21)(2(-++=-+ 由复数相等的充要条件知:⎪⎪⎩⎪⎪⎨⎧-=-=+23
220322a a ,所以a
=
点评:本题考查了复数的基本运算以及复数相等的概念。
例3若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( )
A .2
B .12
C .12-
D .2-
解析:(1)(2)bi i ++=i b b )12()2(++-,因为(1)(2)bi i ++是纯虚数,因此
⎩⎨⎧≠+=-0
1202b b 所以b =2。
点评:本题考查的复数的乘法运算问题,通过该运算考查了纯虚数的概念。
2、复数的几何意义
复数与复平面上的点,及复平面上从原点出发的向量建立了一一对应关系,这样使得
复数问题可以借助几何图形的性质解决,反之,一些解析几何问题、平面几何问题也可以借助于复数的运算加以解决。
例4若35ππ44θ⎛⎫∈ ⎪⎝⎭
,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:复数的实部a =)4sin(2sin cos π
θθθ+=+,虚部b =
)4sin(2cos sin πθθθ-=-,因为4
543πθπ<<,所以 ππθπππθπ<-<<+<42,234,所以0)4sin(<+πθ,0)4
sin(>-πθ,即a<0,b>0,所以复数对应的点在第二象限。
点评:本题以复数的三角形式作为命题背景,考查了复数的三角形式运算以及三角函数的恒等变化,以及复数的几何意义。
复数与复平面内的点的对应关系经常出现在考题中,关键是把复数化简成bi a +的形式,并且准确的判断出a 、b 的符号是求解问题的关键。
3、复数的开放性的考查
例4.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可)
解析:因为24z bz -=i b ab ab b a )42()4(222-+--是实数,所以有 0422=-b ab ,因为0≠b ,所以b a 2=,所以答案可以填写(2,1)或(2,4)、(3,6)等等。
点评:本题考查复数的概念但是题目新颖具有开放性,这种考查分式应该引起我们的关注。
4、考查复数方程问题
复数方程问题是高考考查一个重点,从近几年考题看,解决这类问题主要是复数问题实数化,设出复数z =x +yi 形式,利用复数相等的定义转化为关于实数x ,y 的方程组求解。
例5、设x 、y 为实数,且
i
i y i x 315211-=-+-,则x +y =___. 解:由i i y i x 315211-=-+-知,5(1)(12)(13)2510x y i i i +++=+,即 5(1)2(12)5(13)x i y i i +++=+,即(525)(5415)0x y x y i +-++-=,故 5250,54150.x y x y +-=⎧⎨+-=⎩解得1,5.
x y =-⎧⎨=⎩4x y +=。
点评:本题考查了复数的化简、乘法、除法以及复数相等。
例6、(2006年上海春卷)已知复数w 满足i (i )23(4w w -=-为虚数单位),|2|5-+=w w
z ,求一个以z 为根的实系数一元二次方程. [解法一] i 2i 21i 34,i 34)i 21(-=++=
∴+=+w w Θ, i 3|i |i 25+=-+-=∴z .
若实系数一元二次方程有虚根i 3+=z ,则必有共轭虚根i 3-=z .
10,6=⋅=+z z z z Θ,
∴ 所求的一个一元二次方程可以是01062=+-x x .
[解法二] 设i
b a w +=R)(∈b a 、 b a b a 2i 2i 34i +-=-+,
得 ⎩⎨⎧-==-,23,24a b b a ∴ ⎩
⎨⎧-==,1,2b a i 2-=∴w , 以下解法同[解法一].
点评:从以上解法看出,方法1运用整体思想求解,比方法2用基本方法要简单。
由于数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。
可见掌握几种思想方法,有利于问题的解决。