MOSFET的重要特性
mosfet快通慢断

mosfet快通慢断摘要:1.MOSFET简介2.MOSFET的快通慢断特性3.快通慢断的应用场景4.快通慢断的优缺点5.如何选择合适的MOSFET正文:mosfet(金属氧化物半导体场效应晶体管)是一种广泛应用于电子电路中的半导体器件。
它具有快通慢断的特性,可以在高压、高电流条件下稳定工作,因此在我国的电子行业中有着广泛的应用。
MOSFET的快通慢断特性使其在电路中起到了重要作用。
快通是指在输入电压不变的情况下,MOSFET的导通电阻随电压的变化而迅速变化,从而实现快速开启和关闭。
慢断则是指当输入电压去除时,MOSFET的导通电阻变化缓慢,从而使得电流逐渐减小,实现缓慢断开。
快通慢断的应用场景主要包括:电源管理、电机控制、照明控制、无线充电等领域。
在这些场景中,MOSFET的快通慢断特性能够实现对电流的精确控制,提高系统的能源效率和稳定性。
然而,MOSFET的快通慢断特性也存在一定的局限性。
快通时,导通电阻的变化会导致开关速度较快,但同时也容易产生电磁干扰(EMI)。
而慢断时,由于电流减小速度较慢,可能会导致功耗增加。
因此,在实际应用中,需要根据具体需求选择合适的MOSFET。
如何选择合适的MOSFET呢?首先,需要根据电路的电压、电流、频率等参数选择合适的导通电阻和开关速度。
其次,要考虑快通慢断特性对系统性能的影响,如EMI、功耗等。
最后,还要考虑MOSFET的稳定性、可靠性以及成本等因素。
总之,MOSFET的快通慢断特性使其在电子电路中具有广泛的应用前景。
在实际应用中,我们需要根据具体需求选择合适的MOSFET,以实现最佳的性能和稳定性。
mosfet漏极电流和漏源电压的关系曲线

MOSFET(金属氧化物半导体场效应晶体管)是一种常用的场效应晶体管,其工作原理和特性曲线对于电子学的学习和理解具有重要意义。
其中,漏极电流和漏源电压是MOSFET的重要特性之一,掌握它们之间的关系对于MOSFET的应用和设计具有重要意义。
一、MOSFET基本特性MOSFET是一种常用的场效应晶体管,它由金属-氧化物-半导体组成。
通过控制栅极电压来调节漏极和源极之间的电流,因此具有很好的电压控制特性。
在实际应用中,MOSFET被广泛应用于电子设备的电路设计中。
二、漏极电流和漏源电压的关系1. 漏极电流随漏源电压变化的关系曲线MOSFET的漏极电流与漏源电压之间存在一定的关系。
一般情况下,当漏源电压增大时,漏极电流也会随之增大。
但是在一定范围内,漏极电流并不是简单地正比于漏源电压的变化。
具体的关系取决于MOSFET的工作模式和电路中的其他参数。
在实际应用中,需要详细分析MOSFET的参数特性曲线,才能准确地描述漏极电流和漏源电压之间的关系。
2. MOSFET不同工作区域的特性曲线MOSFET的工作状态可以分为截止区、饱和区和线性区。
在不同的工作区域,漏极电流和漏源电压的关系呈现出不同的特性曲线。
通过详细研究这些特性曲线,可以有效地分析MOSFET在不同工作状态下的性能,为电路设计和应用提供重要的参考。
三、MOSFET漏极电流和漏源电压关系的影响因素1. 动态漏极电阻MOSFET的动态漏极电阻是影响漏极电流和漏源电压关系的重要因素之一。
动态漏极电阻随着漏源电压的变化而变化,它直接影响了MOSFET的导通特性和电压控制特性。
在MOSFET的实际应用中,需要充分考虑动态漏极电阻对漏极电流和漏源电压关系的影响。
2. 结渗容量效应结渗容量效应也是影响MOSFET漏极电流和漏源电压关系的重要因素之一。
由于MOSFET的特殊结构,漏极电流和漏源电压之间存在一定的耦合效应。
当漏源电压发生变化时,结渗容量效应会对漏极电流产生一定的影响,这需要在电路设计和分析中予以充分考虑。
mosfet的实验报告

mosfet的实验报告《实验报告:探索mosfet的特性与应用》摘要:本实验报告旨在探索mosfet(金属氧化物半导体场效应晶体管)的特性和应用。
通过实验,我们对mosfet的工作原理、特性曲线以及在电子电路中的应用进行了深入研究。
实验结果表明,mosfet作为一种重要的半导体器件,在放大、开关和调节等方面具有重要的应用价值。
引言:mosfet是一种常见的半导体器件,其在电子电路中具有重要的应用价值。
本实验旨在通过实际操作,深入了解mosfet的特性和应用,为进一步的学习和研究打下基础。
实验一:mosfet的基本特性在本实验中,我们首先搭建了一个简单的mosfet电路,通过测量电压和电流的变化,绘制了mosfet的特性曲线。
实验结果显示,mosfet的特性曲线呈现出明显的非线性特性,且具有一定的开启电压和饱和电流。
通过分析特性曲线,我们对mosfet的工作原理有了更深入的理解。
实验二:mosfet在放大电路中的应用在本实验中,我们将mosfet应用于放大电路中,通过调节mosfet的工作点,实现了对输入信号的放大。
实验结果表明,mosfet在放大电路中具有良好的线性特性,能够有效地放大输入信号,为电子设备的放大功能提供了重要支持。
实验三:mosfet在开关电路中的应用在本实验中,我们将mosfet应用于开关电路中,通过控制mosfet的导通和截止,实现了对电路的开关功能。
实验结果表明,mosfet在开关电路中具有快速响应的特性,能够实现高效的开关控制,为电子设备的开关功能提供了重要支持。
结论:通过本次实验,我们深入了解了mosfet的特性和应用。
mosfet作为一种重要的半导体器件,在放大、开关和调节等方面具有重要的应用价值。
我们相信,通过不断的学习和研究,mosfet将会在电子领域发挥更加重要的作用。
MOSFET参数理解及其主要特性

MOSFET参数理解及其主要特性MOSFET(金属氧化物半导体场效应晶体管)是一种常用的功率开关和放大器装置,被广泛应用于电子电路中。
它具有比双极晶体管更优异的特性,如较强的电流和电压承受能力、低输入电流、高输入阻抗等。
下面将对MOSFET的参数和主要特性进行详细介绍。
1. N沟道(N-channel)和P沟道(P-channel):根据导体中所控制的载流子的类型,MOSFET可分为N沟道和P沟道两种类型。
N沟道MOSFET是通过负电压来控制电子流动的,而P沟道MOSFET则是通过正电压控制空穴流动。
2. 阈值电压(Threshold Voltage):阈值电压(Vth)是指控制栅极电压必须达到的电压水平,以使MOSFET通导。
在N沟道MOSFET中,正电压将引起电子在沟道中流动,而在P沟道MOSFET中,负电压将引起空穴在沟道中流动。
阈值电压的大小决定了MOSFET的开启和关闭的电压。
3. 最大额定电压(Maximum Rated Voltage):最大额定电压(Vds max)是指MOSFET能够承受的最大电压。
超过这个电压,MOSFET可能会受到损坏。
4. 最大额定电流(Maximum Rated Current):最大额定电流(Ids max)是指MOSFET能够承受的最大电流。
超过这个电流,MOSFET可能会受到过热和损坏。
5. 开启电阻(On-Resistance):开启电阻(Rds on)是指当MOSFET处于导通状态时,它的内部电阻大小。
开启电阻越小,MOSFET在导通状态下的功耗就越小。
6. 导通电压降(Voltage Drop):导通电压降(Vds on)是指当MOSFET处于导通状态时,源极和漏极之间的电压降。
导通电压降越小,MOSFET在导通状态时损耗的电压就越小。
1. 低输入电流(Low Input Current):由于MOSFET的输入电流极小,所以它不会消耗太多的能量,适用于节能和低功耗的应用。
MOS管的作用

MOS管的作用
电子学中的MOS管是一种电子晶体管,通常可以指的是金属氧化物半导体晶体管(MOSFET),它具有以下特性:
(1)MOS管可以非常高效地控制一个电流,只需要很小的驱动电压和功率就可以控制一个电流;
(2)MOS管具有极高的效率,可以取得良好的电压放大能力,从而提高系统的效率;
(3)MOS管具有较高的功率增益,可以把较小的输入电压变成较大的输出电压;
(4)MOS管可以实现较大的信号输出幅度,具有较高的信号强度和电路灵敏性;
(5)MOS管有较高的抗干扰能力、结构简单可靠,维护简单,电路噪声很小;
(6)MOS管抗辐射能力强,可以适用于空间环境条件较为恶劣的环境;
(7)MOS管可以很好地兼容CMOS(模拟转换数字)工艺,可实现模拟交叉转换、低
功率消耗及高集成度等要求;
以上是MOS管的基本功能和特点,它在电子电路系统中可以实现一些非常重要的功能
和重要作用,如低成本高效率、节约电能、减少无调节性噪声、受累能量大、抗辐照强等。
MOS管作为电路元件用于实现各种电路,它被广泛应用于电子电路的传输、放大、控
制和信号变换等功能,即供电模块、控制模块、掉控模块和滤波模块等各种电路工程和传
感应用中受到了广泛的应用。
如今,随着晶体管的不断进步,MOS管也可用于计算机的逻
辑控制、模拟信号传输和模拟转数字转换等,也可以用于通信<工程、汽车电子系统等领域。
总之,MOS管作为一种新型电子元件,在电子技术领域有着非常广泛的应用,它已经
成为电子信息和计算机世界的基础建设,起到了不可或缺的重要作用。
MOSFET的工作原理与特性分析

MOSFET的工作原理与特性分析MOSFET(transistor)简介MOSFET是一种重要的半导体器件,广泛应用于数字电路、模拟电路和功率电子系统中。
它是一种三端设备,由门极、漏极和源极组成。
在工作时,通过对门极电压的控制来改变源漏电路的导电状态,这样就能实现信号放大、切换等功能。
MOSFET的三个区域MOSFET器件具有三个区域: 管子区、沟道区和衬底区。
其中管子区和衬底区是PN结,沟道区则是N型或P型半导体。
沟道区是MOSFET的关键区域,其厚度和电荷密度的变化会显著影响MOSFET的电学性能。
MOSFET的工作原理MOSFET的工作原理可以分为三个阶段: 开关关闭、开关开启和饱和。
当门极施加低电压时,沟道内的载流子导电性较弱,开关处于关闭状态。
当门极施加足够高的电压时,沟道内的载流子导电性增强,电流开始流动,开关处于开启状态。
当门极施加过高电压时,沟道内的电场会足够强以将沟道中的电荷完全排出,此时开关处于饱和状态。
MOSFET的特性分析MOSFET的主要特点包括输入电容容量小、输入阻抗高、开关速度快等优点。
此外,MOSFET还能够承受较高的漏极电压,且散热能力较强。
因此,在功率电子控制领域中,MOSFET器件被广泛应用。
然而,MOSFET也存在一些缺点。
例如,在温度较高时,沟道区中的电荷易被热激发捕获,导致输出特性发生变化。
另外,在高频率条件下,MOSFET的损耗也会增加,从而限制其在高频电路中的应用。
MOSFET的发展趋势近年来,MOSFET技术在模拟和数字电路中得到快速发展。
一些新型器件如原创DMOS(Double-Diffused MOS)技术、中空MOSFET技术等得以应用,因此,MOSFET的特性和性能将继续得到不断提升。
总结MOSFET是一种广泛应用的半导体器件,其原理和特性分析可帮助我们更好地理解其在电子领域中的应用。
虽然MOSFET存在一些缺点,但其在功率电子控制和数字领域中的应用前景广阔,未来可继续期待其发展。
MOSFET介绍解读

MOSFET介绍解读MOSFET(金属-氧化物半导体场效应晶体管)是一种常用的场效应晶体管,是现代电子设备中的重要组成部分。
它具有高速开关速度、低功耗和较低的驱动电压等优势,广泛用于各种集成电路和功率电子应用中。
本文将对MOSFET进行介绍和解读。
MOSFET是一种三端器件,包括源极(S)、漏极(D)和栅极(G)。
它是由P型或N型半导体基片、氧化层和金属电极组成。
栅极下方通过氧化层与基片隔离,形成栅氧化物层,从而实现对栅极与基片之间的电荷的控制。
MOSFET的工作原理是通过调节栅极电场来控制漏极和源极之间的电流。
当MOSFET的栅极电压低于阈值电压时,它处于截止状态,漏极和源极之间的电阻很大,几乎没有电流通过。
当栅极电压高于阈值电压时,MOSFET处于开启状态,可以通过控制栅极电压来控制漏极和源极之间的电流大小。
此特性使得MOSFET成为理想的开关器件。
此外,MOSFET还具有较低的驱动电压要求。
由于栅极控制电路的电流很小,MOSFET可以通过低电压驱动,减少功耗和成本。
这也为集成电路提供了更多的设计灵活性。
然而,MOSFET也存在一些局限性和挑战。
首先,栅极电荷的建立和移除需要一定的时间,导致MOSFET的开关速度受到限制。
其次,MOSFET 的工作温度范围较窄,而且对温度的敏感性较高。
另外,MOSFET在高电压应用中也存在一些问题,如漏电和击穿等。
为了克服这些挑战,研究人员和工程师不断改进MOSFET的设计和制造工艺。
例如,引入新的材料和结构可以提高MOSFET的开关速度和功率密度。
而采用新的封装和散热技术可以提高MOSFET的功率处理能力和热稳定性。
总的来说,MOSFET是一种重要的半导体器件,具有许多优点,如低功耗、高速开关速度和较低的驱动电压要求。
它在各种领域的应用广泛,包括集成电路、功率电子、射频和通信等。
通过不断的研究和创新,MOSFET的性能将进一步得到改善,为我们的现代电子设备提供更高效、更可靠的解决方案。
MOSFET_MOS管特性参数的理解

MOSFET_MOS管特性参数的理解MOSFET(金属氧化物半导体场效应晶体管)是一种常用的半导体器件,具有较高的性能和功耗优势。
了解MOSFET的特性参数对于设计和应用电子电路至关重要。
下面将从基本结构、特性参数和其理解等方面进行详细阐述。
MOSFET 的基本结构如下:它由源极、漏极、栅极和底座四个引脚组成,其中源极(source)和漏极(drain)与半导体结成二极管,栅极(gate)则是介质氧化铝上的金属引脚。
其中金属层和介质氧化铝之间的结构形成了场效应管,因此被称为MOS管。
接下来是几个关键的特性参数:1. 阈值电压:阈值电压(Threshold Voltage,简称Vth)是MOSFET 的一个重要参数,它表示了在栅极和漏极之间形成导电路径的最低电压。
当栅极电压高于Vth 时,MOSFET 开始工作并形成导通通道。
2. 饱和电流:饱和电流(Saturation Current,简称Isat)是指在MOSFET 处于饱和工作区时的漏极电流,也称为最大漏极电流。
在饱和区,漏极电流与栅极电压成非线性关系。
3. 输出电导:输出电导(Output Conductance,简称gds)表示了MOSFET 在饱和状态时,输出电流变化对栅极漏极电压的敏感程度。
较高的输出电导意味着MOSFET 在饱和区的输出电流更敏感,从而使其在放大器等应用中更可靠。
4. 线性区增益:线性区增益(Linear Region Gain,简称gm)表示MOSFET 在线性工作区时,输入阻抗和输出阻抗间的关系。
该参数也可以用来衡量MOSFET 对输入信号的放大能力。
5. 输出电容:输出电容(Output Capacitance,简称Coss)表示栅极和漏极之间的电容。
这个电容会导致MOSFET 在高频应用中的频率响应减弱,影响其性能。
以上只是几个主要的特性参数,实际上MOSFET 还有很多其他的参数,如输入电容(Input Capacitance)、迁移率(Mobility)、开启延迟(Turn-on Delay)和反向转移电容(Reverse Transfer Capacitance)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MOSFET的重要特性(1)为什么E-MOSFET的阈值电压随着半导体衬底掺杂浓度的提高而增大?而随着温度的升高而下降?【答】E-MOSFET的阈值电压就是使半导体表面产生反型层(导电沟道)所需要加的栅极电压。
对于n沟道E-MOSFET,当栅电压使得p型半导体表面能带向下弯曲到表面势ψs≥2ψB时,即可认为半导体表面强反型,因为这时反型层中的少数载流子(电子)浓度就等于体内的多数载流子浓度(~掺杂浓度);这里的ψB是半导体Fermi势,即半导体禁带中央与Fermi能级之差。
阈值电压VT包含有三个部分的电压(不考虑衬偏电压时):栅氧化层上的电压降Vox;半导体表面附近的电压降2ΨB:抵消MOS系统中各种电荷影响的电压降——平带电压VF。
在阈值电压的表示式中,与掺杂浓度和温度有关的因素主要是半导体Fermi势ψB。
当p 型半导体衬底的掺杂浓度NA提高时,半导体Fermi能级趋向于价带顶变化,则半导体Fermi 势ψB增大,从而就使得更加难以达到ψs≥2ψB的反型层产生条件,所以阈值电压增大。
当温度T升高时,半导体Fermi能级将趋向于禁带中央变化,则半导体Fermi势ψB 减小,从而导致更加容易达到ψs≥2ψB的反型层产生条件,所以阈值电压降低。
(2)为什么E-MOSFET的源-漏电流在沟道夹断之后变得更大、并且是饱和的(即与源-漏电压无关)?【答】E-MOSFET的沟道夹断是指栅极电压大于阈值电压、出现了沟道之后,源-漏电压使得沟道在漏极端夹断的一种状态。
实际上,沟道在一端夹断并不等于完全没有沟道。
当栅电压小于阈值电压时,则完全没有沟道,这是不导电的状态——截止状态。
而沟道的夹断区由于是耗尽区,增加的源-漏电压也主要是降落在夹断区,则夹断区中存在很强的电场,只要有载流子到达夹断区的边缘,即可被电场拉过、从漏极输出,因此夹断区不但不阻止载流子通过,而相反地却能够很好地导电,所以有沟道、并且沟道在一端夹断的状态,是一种很好的导电状态,则沟道夹断之后的输出源-漏电流最大。
E-MOSFET的沟道在漏极端夹断以后,由于夹断区基本上是耗尽区,则再进一步增加的源-漏电压,即将主要是降落在夹断区,这就使得未被夹断的沟道——剩余沟道的长度基本上保持不变;而在沟道夹断之后的源-漏电流主要是决定于剩余沟道的长度,所以这时的源-漏电流也就基本上不随源-漏电压而变化——输出电流饱和。
(3)为什么短沟道E-MOSFET的饱和源-漏电流并不完全饱和?对于短沟道MOSFET,引起输出源-漏电流饱和的原因基本上有两种:一种是沟道夹断所导致的电流饱和;另一种是速度饱和所导致的电流饱和。
对于沟道夹断的饱和,因为夹断区的长度会随着其上电压的增大而有所增大,则使得剩余沟道的长度也将随着源-漏电压而减短,从而就会引起源-漏电流相应地随着源-漏电压而有所增大——输出电流不完全饱和。
不过,这种电流不饱的程度与沟道长度有关:对于长沟道MOSFET,这种夹断区长度随源-漏电压的变化量,相对于整个沟道长度而言,可以忽略,所以这时沟道夹断之后的源-漏电流近似为“饱和”的;但是对于短沟道MOSFET,这种夹断区长度随源-漏电压的变化量,相对于整个沟道长度而言,不能忽略,所以沟道夹断之后的源-漏电流将会明显地随着源-漏电压的增大而增加——不饱和。
对于速度饱和所引起的电流饱和情况,一般说来,当电场很强、载流子速度饱和之后,再进一步增大源-漏电压,也不会使电流增大。
因此,这时的饱和电流原则上是与源-漏电压无关的。
对于短沟道MOSFET,还有一个导致电流不饱和的重要原因,即所谓DIBL(漏极感应源端势垒降低)效应。
因为源区与沟道之间总是存在一个高低结所造成的势垒,当源-漏电压越高,就将使得该势垒越低,则通过沟道的源-漏电流越大,因此输出电流不会饱和。
总之,导致短沟道MOSFET电流不饱和的因素主要有沟道长度调制效应和DIBL效应。
(4)为什么E-MOSFET的饱和源-漏电流与饱和电压之间具有平方的关系?【答】增强型MOSFET(E-MOSFET)的饱和源-漏电流表示式为饱和电压(VGS-VT)就是沟道夹断时的源-漏电压。
在MOSFET的转移特性(IDsat~VGS)曲线上,E-MOSFET的饱和源-漏电流IDsat与饱和电压(VGS-VT)的关系即呈现为抛物线。
导致出现这种平方关系的原因有二:①沟道宽度越大,饱和源-漏电流越大,饱和电压也就越高;②电流饱和就对应于沟道夹断,而夹断区即为耗尽层,其宽度与电压之间存在着平方根的关系,这就导致以上的平方结果。
正因为MOSFET具有如此平方的电流-电压关系,所以常称其为平方率器件。
(5)为什么一般MOSFET的饱和源-漏电流具有负的温度系数?【答】MOSFET的饱和源-漏电流可表示为在此关系中,因为材料参数和器件结构参数均与温度的关系不大,则与温度有关的因素主要有二:阈值电压VT和载流子迁移率μn。
由于MOSFET的阈值电压VT具有负的温度系数,所以,随着温度的升高,就使得MOSFET的输出饱和源-漏电流随之增大,即导致电流具有正的温度系数。
而载流子迁移率μn,在室温附近一般将随着温度的升高而下降(主要是晶格振动散射起作用):式中T o=300K,m=1.5~2.0。
迁移率的这种温度特性即导致MOSFET的增益因子也具有负的温度系数。
从而,随着温度的升高,迁移率的下降就会导致MOSFET的输出源-漏电流减小,即电流具有负的温度系数。
综合以上阈值电压和载流子迁移率这两种因素的不同影响,则根据MOSFET饱和电流的表示式即可得知:①当饱和电压(VGS-VT)较大(即VGS>>VT)时,阈值电压温度关系的影响可以忽略,则输出源-漏电流的温度特性将主要决定于载流子迁移率的温度关系,即具有负的温度系数(温度升高,IDS下降);②当饱和电压(VGS-VT)较小(即VGS~VT)时,则输出源-漏电流的温度特性将主要决定于阈值电压的温度关系,从而具有正的温度系数(温度升高,IDS也增大)。
而对于一般的MOSFET,为了获得较大的跨导,往往把饱和电压(VGS-VT)选取得较大,因此可以不考虑阈值电压的影响,于是饱和源-漏电流通常都具有负的温度系数。
也因此,一般的MOSFET都具有一定的自我保护的功能,则可以把多个管芯直接并联起来,也不会出现因电流分配不均匀而引起的失效;利用这种并联管芯的办法即可方便地达到增大器件输出电流的目的(实际上,功率MOSFET就是采用这种措施来实现大电流的)。
(6)为什么MOSFET的饱和区跨导大于线性区的跨导?【答】饱和区与线性区都是出现了沟道的状态,但是它们的根本差别就在于沟道是否被夹断。
电压对沟道宽度的影响是:栅极电压将使沟道宽度均匀地发生变化,源-漏电压将使沟道宽度不均匀地发生变化(则会导致沟道首先在漏极端夹断)。
在线性区时,由于源-漏电压较低,则整个沟道的宽度从头到尾变化不大,这时栅极电压控制沟道导电的能力相对地较差一些,于是跨导较小。
同时,随着源-漏电压的增大,沟道宽度的变化增大,使得漏端处的沟道宽度变小,则栅极电压控制沟道导电的能力增强,跨导增大。
而在饱和区时,源-漏电压较高,沟道夹断,即在漏极端处的沟道宽度为0,于是栅极电压控制沟道导电的能力很强(微小的栅极电压即可控制沟道的导通与截止),所以这时的跨导很大。
因此,饱和区跨导大于线性区跨导。
可见,沟道越是接近夹断,栅极的控制能力就越强,则跨导也就越大;沟道完全夹断后,电流饱和,则跨导达到最大——饱和跨导。
(7)为什么MOSFET的饱和跨导一般与饱和电压成正比?但为什么有时又与饱和电压成反比?【答】①在源-漏电压VDS一定时:由E-MOSFET的饱和电流IDsat对栅电压的微分,即可得到饱和跨导gmsat与饱和电压(VGS-VT)成正比:这种正比关系的得来,是由于饱和电压越高,就意味着沟道越不容易夹断,则导电沟道厚度必然较大,因此在同样栅极电压下的输出源-漏电流就越大,从而跨导也就越大。
②在饱和电流IDsat一定时:饱和跨导gmsat却与饱和电压(VGS-VT)成反比:这是由于饱和电压越高,就意味着沟道越难以夹断,则栅极的控制能力就越小,即跨导越小。
总之,在源-漏电压一定时,饱和跨导与饱和电压成正比,而在源-漏电流一定时,饱和跨导与饱和电压成反比。
这种相反的比例关系,在其他场合也存在着,例如功耗P与电阻R的关系:当电流一定时,功耗与电阻成正比(P=IV=I2R);当电压一定时,功耗与电阻成反比(P=IV=V2/R)。
(8)为什么MOSFET的线性区源-漏电导等于饱和区的跨导(栅极跨导)?【答】MOSFET的线性区源-漏电导gdlin和饱和区的栅极跨导gmsat,都是表征电压对沟道导电、即对源-漏电流控制能力大小的性能参数。
在线性区时,沟道未夹断,但源-漏电压将使沟道宽度不均匀;这时源-漏电压的变化,源-漏电导gdlin即表征着在沟道未夹断情况下、源-漏电压对源-漏电流的控制能力,这种控制就是通过沟道宽度发生不均匀变化而起作用的。
而饱和区的栅极跨导——饱和跨导gmsat是表征着在沟道夹断情况下、栅-源电压对源-漏电流的控制能力,这时剩余沟道的宽度已经是不均匀的,则这种控制也相当于是通过沟道宽度发生不均匀变化而起作用的,因此这时的栅极跨导就等效于线性区源-漏电导:(9)为什么在E-MOSFET的栅-漏转移特性上,随着栅-源电压的增大,首先出现的是饱和区电流、然后才是线性区电流?【答】E-MOSFET的栅-漏转移特性如图1所示。
在栅-源电压VGS小于阈值电压VT 时,器件截止(没有沟道),源-漏电流电流很小(称为亚阈电流)。
在VGS>VT时,出现沟道,但如果源-漏电压VDS=0,则不会产生电流;只有在VGS>VT 和VDS>0时,才会产生电流,这时必然有VDS >(VGS-VT),因此MOSFET处于沟道夹断的饱和状态,于是源-漏电流随栅-源电压而平方地上升。
相应地,饱和跨导随栅-源电压而线性地增大,这是由于饱和跨导与饱和电压(VGS-VT)成正比的缘故。
而当栅-源电压进一步增大,使得VDS<(VGS-VT)时,则MOSFET又将转变为沟道未夹断的线性工作状态,于是源-漏电流随栅-源电压而线性地增大。
这时,跨导不再变化(与栅电压无关)。
(10)为什么MOSFET的电流放大系数截止频率fT与跨导gm成正比?【答】MOSFET的fT就是输出电流随着频率的升高而下降到等于输入电流时的频率。
器件的跨导gm越大,输出的电流就越大,则输出电流随频率的下降也就越慢,从而截止频率就越大,即fT与gm有正比关系:由于fT与gm的正比关系,就使得fT与饱和电压(VGS-VT)也有正比关系,从而高频率就要求较大的饱和电压。