、瞬心位置的确定(精)
机械设计基础(第五版)课后习题答案详解

第1 章平面机构的自由度和速度分析1. 1 重点内容提要1 .1 .1 教学基本要求( 1) 掌握运动副的概念及其分类。
( 2) 掌握绘制机构运动简图的方法。
( 3) 掌握平面机构的自由度计算公式。
( 4) 掌握速度瞬心的概念, 能正确计算机构的瞬心数。
( 5) 掌握三心定理并能确定平面机构各瞬心的位置。
( 6) 能用瞬心法对简单高、低副机构进行速度分析。
1 .1 .2 构件和运动副及其分类1. 构件构件是机器中独立的运动单元体, 是组成机构的基本要素之一。
零件是机器中加工制造的单元体, 一个构件可以是一个零件, 也可以是由若干个零件刚性联接在一起的一个独立运动的整体。
构件在图形表达上是用规定的最简单的线条或几何图形来表示的, 但从运动学的角度看, 构件又可视为任意大的平面刚体。
机构中的构件可分为三类:( 1) 固定构件( 机架)。
用来支承活动构件(运动构件) 的构件, 作为研究机构运动时的参考坐标系。
( 2) 原动件( 主动件)。
又称为输入构件, 是运动规律已知的活动构件, 即作用有驱动力的构件。
( 3) 从动件。
其余随主动件的运动而运动的活动构件。
( 4) 输出构件。
输出预期运动的从动件。
其他从动件则起传递运动的作用。
2. 运动副运动副是由两构件组成的相对可动的联接部分, 是组成机构的又一基本要素。
由运动副的定义可以看出运动副的基本特征如下:( 1) 具有一定的接触表面, 并把两构件参与接触的表面称为运动副元素。
( 2) 能产生一定的相对运动。
因此, 运动副可按下述情况分类:( 1) 根据两构件的接触情况分为高副和低副, 其中通过点或线接触的运动副称为高副, 以面接触的运动副称为低副。
( 2) 按构成运动副两构件之间所能产生相对运动的形式分为转动副(又称为铰链) 、移动副、螺旋副和球面副等。
( 3) 因为运动副起着限制两构件之间某些相对运动的作用, 所以运动副可根据其所引入约束的数目分为Ⅰ级副、Ⅱ级副、Ⅲ级副、Ⅳ级副和Ⅴ级副。
机械原理瞬心

机械原理瞬心
机械原理瞬心是指物体在受到力的作用下发生旋转运动时,所产生的旋转轴的位置与力的作用线的交点。
在机械设计中,瞬心是一个重要的概念,被广泛应用于各种机械装置和机构的设计和分析中。
瞬心的位置是通过力的向量叉乘来确定的。
当一个物体受到力作用时,力的作用线和力的向量构成一个平面。
瞬心就是位于这个平面上的一个点,它定义了旋转轴的位置。
对于简单的情况,瞬心的位置是很容易确定的。
比如在一个平面上受到垂直于平面方向的力作用时,瞬心就是受力点所在的位置。
而在复杂的情况下,瞬心的位置要通过力的向量叉乘来计算。
在机械设计中,瞬心的位置对于分析物体的运动和力的传递至关重要。
通过瞬心的位置,我们可以确定物体在受到力的作用下产生的旋转方向和角度,从而对机械装置的运动过程进行模拟和计算。
在机械装置中,瞬心的位置还决定了力的传递和变换的方式。
瞬心位于力的作用线上时,力会直接传递给物体进行旋转运动。
而当瞬心位于力的作用线外时,力会引起物体的平动运动。
总之,机械原理瞬心是机械设计中一个重要的概念,它在分析和设计机械装置时起着至关重要的作用。
通过确定瞬心的位置,
我们可以准确地分析和模拟机械装置的运动过程,实现设计的有效性和可靠性。
确定瞬心的方法

确定瞬心的方法
常用的是3个:
1,确定刚体上任意两点的速度方向,过这两点分别做两点速度矢量的垂线,垂线的交点即为速度瞬心。
2,轮子在固定面上纯滚动,接触点即为速度瞬心。
3,如果刚体上任意两点速度矢量大小相等,方向相同,则瞬心在无限远。
称“瞬时平动”。
在刚体平面运动中,只要刚体上任一平行于某固定平面的截面图形S(或其延伸)在任何瞬时的角速度w不为零,就必有速度为零的一点P',称为速度瞬心。
在该瞬时,就速度分布而言,截面图形(或其延伸)好象只是在绕固定平面上重合于P'的一点P而转动,点P称为转动瞬心。
例如车轮在地面上作无滑动的滚动时,车轮接触地面的点P'就是速度瞬心,而地面上同P'相接触的点P就是转动瞬心。
由理论力学可知,互作平面相对运动的两构件上(在研究的时候,有时瞬心不在图纸所绘机构或构件上,这时可以认为相关构件是延伸或无限延伸的,研究所用构件只是现实中的构件的最简化结构形式)瞬时速度相等的重合点,即为此两构件的速度瞬心(instantaneous centre of velocity)。
(NEW)杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解(修订版)

【解析】①两构件组成转动副时,在转动副的中心位置的相对速度为 0,即转动副的中心是其瞬心;
②当两构件组成移动副时,所有重合点的相对速度方向都平行于移动方 向,其瞬心位于导路垂线的无穷远处;
③当两构件组成滑动兼滚动的高副时,接触点的速度沿切线方向,其瞬 心应位于过接触点的公法线上。Leabharlann 1-2-25由图中可测量出
,
,
滑块的速度:
由
得,连杆的角速度:
1-18.图1-2-26所示平底摆动从动件凸轮机构,已知凸轮l为半径 r=20mm的圆盘,圆盘中心C与凸轮回转中心的距离lAC=15mm,
lAB=90mm, =10rad/s,求θ=0°和θ=180°时,从动件角速度 的数值 和方向。
10.3 名校考研真题详解 第11章 齿轮传动
11.1 复习笔记 11.2 课后习题详解 11.3 名校考研真题详解 第12章 蜗杆传动 12.1 复习笔记 12.2 课后习题详解 12.3 名校考研真题详解 第13章 带传动和链传动
13.1 复习笔记 13.2 课后习题详解 13.3 名校考研真题详解 第14章 轴 14.1 复习笔记 14.2 课后习题详解 14.3 名校考研真题详解 第15章 滑动轴承 15.1 复习笔记 15.2 课后习题详解
目 录
第1章 平面机构的自由度和速度分析 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解
第2章 平面连杆机构 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解
第3章 凸轮机构
3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解 第4章 齿轮机构 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解 第5章 轮 系 5.1 复习笔记 5.2 课后习题详解
简述确定速度瞬心位置的五种方法

简述确定速度瞬心位置的五种方法速度瞬心位置是指在一段时间内物体的平均速度所对应的位置。
确定速度瞬心位置对于研究物体的运动状态和变化趋势具有重要意义。
下面将介绍五种常用的方法来确定速度瞬心位置。
一、位移法位移法是通过计算物体在一段时间内的位移来确定速度瞬心位置。
具体操作是先测量物体在起始时刻和结束时刻的位置,然后计算两个位置之间的位移。
通过将位移除以时间,即可得到平均速度。
最后,将平均速度对应到位移的中点位置,即可确定速度瞬心位置。
二、时刻法时刻法是通过在一段时间内多次测量物体的位置来确定速度瞬心位置。
具体操作是在不同的时刻记录物体的位置,并计算相邻两个时刻之间的位移。
通过将位移除以时间间隔,即可得到物体在该时间段内的平均速度。
最后,将平均速度对应到位移的中点位置,即可确定速度瞬心位置。
三、动量法动量法是通过测量物体的动量来确定速度瞬心位置。
动量是物体质量乘以速度,可以用来描述物体运动状态的变化。
具体操作是在一段时间内测量物体的动量,并计算相邻两个时刻之间的动量变化。
通过将动量变化除以时间间隔,即可得到物体在该时间段内的平均力。
最后,将平均力对应到位移的中点位置,即可确定速度瞬心位置。
四、加速度法加速度法是通过测量物体的加速度来确定速度瞬心位置。
加速度是速度对时间的变化率,可以用来描述物体运动的快慢和方向的变化。
具体操作是在一段时间内测量物体的加速度,并将加速度对应到物体的平均速度。
最后,将平均速度对应到位移的中点位置,即可确定速度瞬心位置。
五、曲线拟合法曲线拟合法是通过将物体的运动轨迹进行曲线拟合来确定速度瞬心位置。
具体操作是通过测量物体的轨迹,并将轨迹进行曲线拟合。
通过拟合曲线的斜率,即可确定物体在每个时刻的瞬时速度。
最后,将瞬时速度对应到位移的中点位置,即可确定速度瞬心位置。
以上五种方法都可以用来确定速度瞬心位置,每种方法都有其适用的场景和相应的计算步骤。
选择合适的方法取决于问题的具体情况和所需的精度要求。
机械原理基础知识复习资料

第二讲平面机构的运动分析一用速度瞬心法作机构的速度分析1 速度瞬心的定义:作平面相对运动两构件上任一瞬时其速度相等的点,称为这个瞬时的速度中心。
分类:相对瞬心-重合点绝对速度不为零绝对瞬心-重合点绝对速度为零2 瞬心数目 K=N(N-1)/23 机构瞬心位置的确定直接观察法:适用于求通过运动副直接相联的两构件瞬心位置。
1)两构件组成转动副时,转动副中心即是它们的瞬心。
2)若两构件组成移动副时,其瞬心位于移动方向的垂直无穷远处。
3)若两构件形成纯滚动的高副时,其高副接触点就是它们的瞬心。
4)若两构件组成滚动兼滑动的高副时,其瞬心应位于过接触点的公法线上。
不直接形成运动副的两构件利用三心定理来确定其具体位置。
三心定理:三个彼此作平面平行运动的构件共有三个瞬心,且它们位于同一条直线上。
此法特别适用于两构件不直接相联的场合。
4传动比的计算ωi /ωj=P1j P ij / P1i P ij两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比5.角速度方向的确定相对瞬心位于两绝对瞬心的同一侧,两构件转向相同相对瞬心位于两绝对瞬心之间,两构件转向相反。
常见题型:1.速度瞬心的求解、2利用速度瞬心求解速度。
二、用矢量方程图解法作机构的速度和加速度分析 1.同一构件上两点之间速度,加速度的关系。
①由各速度矢量构成的图形称为速度多边形(或速度图);由各加速度矢量构成的图形称为加速度多边形(或加速度图)。
p ,'p 称为极点。
②在速度多边形中,由极点p 向外放射的矢量,代表构件上相应点的绝对速度。
而连接两绝对速度矢端的矢量,则代表构件上相应两点间的相对速度,方向与角标相反,如代表CB v (C 点相对B 点的速度)。
③在加速度多边形中,由极点'p 向外放射的矢量代表构件上相应点的绝对加速度。
而连接两绝对加速度矢量端的矢量代表构件上相应两点间的相对加速度,方向与角标相反。
相对加速度可用其法向加速度和切向加速度来表示。
机构扩展法确定瞬心方法

机构扩展法确定瞬心方法机构综合是机构创新设计最重要的内容,机构的运动综合是机构综合的基本内容,机构的速度分析则是机构运动综合内容之一。
采用瞬心法对某些简单机构进行速度分析具有简便、快捷的优点,在机构设计中获得了广泛的应用[1,2];此外,瞬心法在力学、机构学等方面也有重要的应用[3~5],如在力学中可以用于计算刚架的位移,在机构学中可以用于分析机构的奇异性,在机件零件设计中可以用于凸轮轮廓曲线的设计等。
但是,采用瞬心法解决实践问题时,需要确定两构件之间的瞬心。
确定两构件之间的瞬心有多种方法[6~9],如直接观察法、三心定理、射影几何法、连杆减缩法和瞬心链法等。
射影几何法可以确定某些用三心定理无法求解的速度瞬心,但是,它比应用三心定理复杂,特别是求解瞬心的转移速度更加复杂。
连杆减缩法可以用于求解机构中存在三元杆,应用三心定理不能求解的两构件之间的瞬心,在这种情况下,它比射影几何法简单。
瞬心链法可以将确定复杂机构的速度瞬心位置的复杂问题转化为简单的查找瞬心链的程式化过程,为确定复杂机构速度瞬心位置提供了方便、可行的方法。
尽管确定两构件之间的速度瞬心的方法有多种,但是,对某些简单机构的速度瞬心问题没有必要采用射影几何法、连杆减缩法和瞬心链法等复杂的方法,通常主要是采用直接观察法和三心定理[6,7]的方法确定其速度瞬心。
直接观察法只能确定直接接触的两构件之间的瞬心,三心定理通常用于确定非直接接触两构件之间的瞬心。
然而在某些特殊情况下,反复应用三心定理却并不能确定非直接接触两构件之间的瞬心。
因此,必须寻找其它方法,结合三心定理确定非直接接触两构件之间的瞬心。
针对这些特殊情况,提出了机构扩展法,用于解决不能确定的、非直接接触两构件之间的速度瞬心问题。
1机构扩展法机构扩展法就是在原有机构的基础上将机构的构件数增加,保持扩展后的机构与原机构运动规律、机构的自由度不变。
扩展后的机构由于构件数增加了,运用三心定理时有更多的选择,从而可以通过选择不同的三构件组合,并应用三心定理,使原机构中某些速度瞬心不能确定的问题得到解决,即确定原机构中的不定瞬心。
机械原理第3章平面机构的运动分析

机构中构件 3 4 5 ……
总数
瞬心数 3 6 10 ……
p12 p13 p23
p12 p13 p14 p23 p24 p34
p12 p13 p14 p15 p23 p24 p25 p34 p35 p45
4
机械原理
§3-2 用速度瞬心法作机构的速度分析 3. 瞬心位置的确定
∴ω4
= ω2
P12 P24 P14 P24
两方构向件?的若角相速对度瞬与心其P绝24对在瞬两心绝对瞬心P12 、P14 至相对瞬的心延的长距线离上成,反比ω2、ω4 同向;若P24
在P12 、15P14之间,则ω2、ω4 反向。
机械原理
(2)求角速度 高副机构
已知构件2的转速ω2,求构件3的角速度ω3
θ3 = arctan a ± a2 +b2 −c2
(3)
2
b+c
* 正负号对应于机构的两个安装 模式,应根据所采用的模式确定 一个解。
此处取“+”
21
机械原理
22
机械原理
⎧⎨⎩ll22
cosθ2 sin θ 2
= =
l3 l3
cosθ3 − l1 cosθ1 + xD − xA sinθ3 − l1 sinθ1 + yD − yA
2 建立速度、加速度关系式 为线性, 不难求解。
3 上机计算, 绘制位移、速度、加速度线图. * 位移、速度、加速度线图是根据机构位移、速度、加速度
对时间或原动件位移的关系式绘出的关系曲线. ** 建立位移关系式是关键,速度、加速度关系式的建立只是求
导过程。
19
机械原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,构件 1以 ω逆时针方向转 1
求:①机构的全部瞬心位置;
②从动件3的速度。
P24
速度瞬心数目:
N ( N 1) K 2 4 ( 4 1) 6 2
P34→∞ P13 P12 B 2
v3 vC
1
P14 A 4
1
1l P1 4P1 3
1
P23 C 3
例2:凸轮以匀速逆时针转动,求该位置时从动件2的速度V2。
同理
n t n t aE aB aB aEB aEB
? B→A ⊥AB E→B ⊥EB
1l AB
2 2 l BE 2 ? 1 l AB
方向
大小
2 l BE
Continue 由于
n t 2 2 aCB (aCB ) 2 (aCB ) 2 (lCB 2 ) (lCB 2 ) 2 4 2 l BC 2 2
三、瞬心位置的确定
1、若已知两构件的相对运动,用定义确定…… 2、形成运动副的两构件(用定义) 3、不形成运动副的两构件(三心定理) 三心定理: 作平面运动的三个构件共有 3个瞬心,它们位于同 一直线上。
P12
A B vA2A1 vB2B1 1 P12 2 P12∞ n K vK2K1 P12 n
三心定理证明
y C
匀角速度 1 。
求: 2 , 3 , 2 , 3 , 2 , 3
B
2
2
3
1
A
1
1
3
D 4 x
解:1、位置分析,建立坐标系
确定矢量: l1 , l 2 , l 3 , l 4
写出封闭矢量方程式:
l1 l 2 l 4 l3
2 vC 3lCD ? 12 l AB 1l AB lCD 2 vCB l BC
链接
方向 C→D ⊥CD B→A ⊥AB C→B ⊥BC
2 l BC ?
n 任取一点π作为极点,任意长度矢量 b' 代表加速度矢量 ' aB
n aB m / s2 加速度比例尺 a mm b' '
设S为12的瞬心,由 瞬心定义,得 2 P12
vS2S1 S
vS3S1
3 P13
vS 2 vS 3
根据相对运动原理,得
1
vS 2 vS1 vS 2 S1 和 vS 3 vS1 vS 3S1 所以 vS 2 S 1 vS 3 S 1 实际上,若S不在P12 P13上,则 vS 2 S 1 vS 3 S 1
2 l332 l112 cos(1 3 ) l 2 2 cos( 2 3 ) 同样可取实部得: 2 l 2 sin( 2 3 )
2 i ( 2 3 ) l112 e i (1 3 ) l 2 2 ie i (2 3 ) l 2 2 e l3 3i l332
角速度为正表示逆时针方向,角速度为负表示顺时针方向。
按欧拉公式展开,取实部相等, 得:
3、加速度分析: 将(b) l1i1e
i1
l2i 2ei 2 l3i3ei3
i 2
对时间求导。得:
i3
为了消去 2 ,将上式两边乘 e
l1 e
2 i1 1
l 2 i 2 ei1Βιβλιοθήκη 以复数形式表示:l1e
l2 e
i 2
l 4 l3 e
i 3
(a)
欧拉展开:
l1 (cos 1 i sin 1 ) l 2 (cos 2 i sin 2 ) l 4 l3 (cos 3 i sin 3 )
整理后得:
l1 sin 1 l2 sin 2 l3 sin 3 l1 cos 1 l2 cos 2 l4 l3 cos 3
C
B
2 E
3
1
A
1
1
4
D
速度影像的用处、注意点速度多边形
一、速度分析
vC vB vCB
链接
方向⊥CD ⊥AB ⊥CB 1l AB 2lBC ? 大小 ? 任取一点p作为极点,任意长度矢量 pb 代表速度矢量 vB
vB m / s 速度比例尺 V mm pb
同理 方向 大小
角加速度为正表示逆时针方向,角加速度为负表示顺时针方向。 解析法在曲柄滑块机构和导杆机构中的应用,自学。
x 4
6
A 1
1
D 3 2 B
C 6
三级机构运动分析 图示的摇筛机构中,已知机构的位置,各构件的尺寸及构件1 的等角速度ω1。求构件3的角速度和角加速度,C、D、E三点 的速度和加速度。 P
36
E C 3 2 B 1 A 6 D 4 6 G 5
F
1
6
§2-4 用解析法求机构的位置、速度和加速度(简介)
复数矢量法:是将机构看成一封闭矢量多边形,并用复数形式表 示该机构的封闭矢量方程式,再将矢量方程式分别对所建立的直 角坐标系取投影。
i 矢量的复数表示法: a ae a(cos i sin ) ax ia y
例:已知各杆长分别为 机构的位置 1 和构件1的
l1 , l2 ,l 3, l4 ,
2 f (1 ) 解方程组得: 3 f (1 )
2、速度分析:将式(a)对时间 t 求导得:
l1e l 2 e l 4 l3 e i i i l1i1e l2i 2e l3i3e
1 2
i1
i 2
i 3
(a)
3
(b)
为消去 2,两边乘 e i 2 得:
4 2 a EB l EB 2 2 4 2 a EC l EC 2 2
所以
aCB : a EB : a EC l BC : l BE : lCE
Note: 加速度影像
2
C
2
B 2 E 3
1
A 4
1
1
3 3
c'''
D
e'
c'
b b'' b'
e'' e c p c''
v2 v P1 2 1l P1 3P1 2
3 2 B
1
P13
v2
P12
1
P23→∞
注意:1.速度瞬心法只能对机构进行速度分析,不能加速度分 析。2.构件数目较少时用。
一、在同一构件上点间的速度和加速度的求法(基点法)
已知机构各构件的长度和 1 ,1
vC , vE , aC , aE , 求: 2, 2,3, 3,
l11ie i (1 2 ) l2 2ie i ( 2 2 ) l33ie i (3 2 )
l1 sin( 1 2 ) 3 1 l3 sin( 3 2 ) l1 sin( 1 3 ) 同理求得: 2 1 l 2 sin( 2 3 )
一、速度分析
vB 3 vB 2 vB 3 B 2
⊥AB ∥BC
链接
方向 ⊥BC
大小
?
1l AB
?
二、加速度分析
k r aB 3 aB 2 aB 3 B 2 aB 3 B 2
⊥BC B→A ⊥BC
或 方向 大小
n t n k r aB 3 aB 3 aB 2 aB 3 B 2 aB 3 B 2
所以,S必在P12 P13上。
例:找出下面机构所有的速度瞬心。 速度瞬心数目:
N ( N 1) K 2 4 ( 4 1) 6 2
1 4 2 3 P12 1
P24
P23 2
3
1
P13
1
P14
4
P34
四、利用瞬心对机构进行运动分析
例1:图示机构中,已知 lAB、lBC和 动。
l 2 e
2 i 2 2
i 2
l3i 3 e
l33 e
i3
,得:
2 l112 e i (1 2 ) l 2 2 i l 2 2 l3 3ie i (3 2 ) l332 e i (3 2 ) 2 l 2 2 l112 cos(1 2 ) l332 cos( 3 2 ) 取实部得: 3 l3 sin( 3 2 ) i 3 同理为了消去 3 ,将上式两边乘 e 得:
∥BC ?
2 3 BC
B→C
l
3l BC
2 ? 1 l AB 2 2VB 3 B 2
2 B 1
1
A
b1(b2)
3 k'
3
C 4
p
b3
b1'(b2')
b3'
b'' 3
例:已知:机械各构件的长度,等角速度 1
求:滑块E: 导杆4 :
4 , 4
, vE aE
x
E
5
vE vC vEC vB vEB
? ⊥CD ⊥EC ? V pc ? ⊥AB ⊥EB 1l AB ?
Note: 速度影像
二、加速度分析
或 大小
aC aB aCB n t n t n t aC aC aB aB aCB aCB