动载荷的概念及其分类

合集下载

动载荷的概念及分类

动载荷的概念及分类

第14章动载荷14.1 动载荷的概念及分类在以前各章中,我们主要研究了杆件在静载荷作用下的强度、刚度和稳定性的计算问题。

所谓静载荷就是指加载过程缓慢,认为载荷从零开始平缓地增加,以致在加载过程中,杆件各点的加速度很小,可以忽略不计,并且载荷加到最终值后不再随时间而改变。

在工程实际中,有些高速旋转的部件或加速提升的构件等,其质点的加速度是明显的。

如涡轮机的长叶片,由于旋转时的惯性力所引起的拉应力可以达到相当大的数值;高速旋转的砂轮,由于离心惯性力的作用而有可能炸裂;又如锻压汽锤的锤杆、紧急制动的转轴等构件,在非常短暂的时间内速度发生急剧的变化等等。

这些部属于动载荷研究的实际工作问题。

实验结果表明,只要应力不超过比例极限,虎克定律仍适用于动载荷下应力、应变的计算,弹性模量也与静载下的数值相同。

动载荷可依其作用方式的不同,分为以下三类:1.构件作加速运动。

这时构件的各个质点将受到与其加速度有关的惯性力作用,故此类问题习惯上又称为惯性力问题。

2.载荷以一定的速度施加于构件上,或者构件的运动突然受阻,这类问题称为冲击问题。

3.构件受到的载荷或由载荷引起的应力的大小或方向,是随着时间而呈周期性变化的,这类问题称为交变应力问题。

实践表明:构件受到前两类动载荷作用时,材料的抗力与静载时的表现并无明显的差异,只是动载荷的作用效果一般都比静载荷大。

因而,只要能够找出这两种作用效果之间的关系,即可将动载荷问题转化为静载荷问问题处理。

而当构件受到第三类动载荷作用时,材料的表现则与静载荷下截然不同,故将在第15章中进行专门研究。

下面,就依次讨论构件受前两类动载荷作用时的强度计算问题。

14.2 构件作加速运动时的应力计算本节只讨论构件内各质点的加速度为常数的情形,即匀加速运动构件的应力计算。

14.2.1 构件作匀加速直线运动设吊车以匀加速度a吊起一根匀质等直杆,如图14-1(a)所示。

杆件长度为l,横截面面积为A,杆件单位体积的重量为 ,现在来分析杆内的应力。

工程力学动载荷

工程力学动载荷
刹车时飞轮的动能转化为轴的变形能
y
x
A
B
工程力学动载荷
例:重为P的重物从h处自由落下,冲击梁上的D点. 梁的EI及W均为已知.求:梁内max及梁中点处的挠度
h
A
CD B
P
A
CD B
yD=Pbx(l2-x2-b2)/6lEI
A
CD B
工程力学动载荷
h
A
CD B
P
A
CD B
1
A
B
工程力学动载荷
例 已知:重为G的重物以水平速度v冲击到圆形截面AB 梁的C点,EI已知. 求:σd max
解:水平冲击问题 ※确定动荷系数
静载时σmax出现于固定端A处
工程力学动载荷
图示钢杆的下端有一固定圆盘,盘上放置弹簧.弹簧在1kN 的静载荷作用下缩短0.0625cm.钢杆的直径d=4cm,l=4m许 用应力 =120Mpa,E=200GPa.若重为15kN的重物自由落下, 求其许可高度H.又若没有弹簧,许可高度H将等于多大?
注意:上面的论述是对等截面杆而言的,不能用于变截面杆的 情况。
工程力学动载荷
三、变截面杆同等截面杆的比较:
如图所示:一变截面杆,一等截面杆,同样受到重量 为Q,速度为v的重物的冲击,试比较它们的动应力。
根据机械能守恒定律,可求得两杆的冲击载荷分别为:
工程力学动载荷
于是两杆的冲击应力分别为: (a)
上升。若只考虑工字钢的重量而不计吊索自重,试求吊索的
动应力,以及工字钢在危险点的动应力d,max 欲使工字钢中的 d,max 减至最小,吊索位置应如何安置?
2m 4m 4m 2m
ACB a
(a)
z y

动载荷

动载荷

动荷系数 K d
v2 g st
P d K d P st d K d st
d K d st
三、冲击响应计算
例 直径0.3m的木桩受自由落锤冲击,落锤重5kN,
求:桩的最大动应力。E=10GPa
解:①求静变形 stP E stLAW EA L 42m 5m ②动荷系数
Wv h=1m
K d11 2h st112 4 12 05 0201 .97
1
一、动载荷:
§10-1 基本概念
载荷不随时间变化(或变化极其平稳缓慢),构件各部
件加速度保持为零(或可忽略不计),此类载荷为静载荷。
载荷随时间急剧变化,构件的速度有显著变化,此类载
荷为动载荷。
二、动响应:
构件在动载荷作用下产生的各种响应(如应力、应变、位
移等),称为动响应。
实验表明:只要应力不超过比例极限 ,在动载荷下胡克定
1、起重机丝绳的有效横截面面积为A , [] =300MPa ,物体单位体 积重为 , 以加速度a上升,试校核钢丝绳的强度(不计绳重)。
解:①受力分析如图:
x
aa
L
Nd
mn
qst
x
qG
惯性力q:GgAa
Nd(qstqG)xA(x 1g a)
②动应力
d
Nd A
x(1a)
g
最大动应力
dmax L(1g a)Kdstmax
1.假设: ①冲击物为刚体; ②冲击物不反弹; ③不计冲击过程中的声、光、热等能量损耗(能量守恒); ④冲击过程为线弹性变形过程。(保守计算)
2.动能 T ,势能 V ,变形能 U,冲击前、后,能量守恒: (冲击 )T 1V 前 1U 1T2V2U2(冲击 ) 后

动载荷的概念及其分类

动载荷的概念及其分类

第12章 动载荷§12-1 动载荷的概念及其分类1.动载荷的概念前面各章讨论的都是构件在静载荷作用下的应力、应变及位移计算。

静载荷是指构件上的载荷从零开始平稳地增加到最终值。

因加载缓慢,加载过程中构件上各点的加速度很小,可认为构件始终处于平衡状态,加速度影响可略去不计。

动载荷是指随时间作明显变化的载荷,即具有较大加载速率的载荷。

一般可用构件中材料质点的应力速率( dt d σσ=•)来表示载荷施加于构件的速度。

实验表明,只要应力在比例极限之内,应变与应力关系仍服从胡克定律,因而,通常也用应变速率( dt d εε=•)来表示载荷随时间变化的速度。

一般认为标准静荷的 ,随着动载荷 的增加,它对材料力学性能的影响越趋明显。

对金属材料,静荷范围约在 ,如果 ,即认为是动载荷。

min /)~.(3010=•ε•ε/2−s ~41010−•=εs /210−•≥ε2.加速运动构件中的动应力分析三类动载荷问题:根据加载的速度与性质,有三类动荷问题。

(1)一般加速度运动(包括线加速与角加速)构件问题,此时还不会引起材料力学性能的改变,该类问题的处理方法是动静法。

•ε(2) 冲击问题,构件受剧烈变化的冲击载荷作用。

大约在 ,它将引起材料力学性能的很大变化,由于问题的复杂性,工程上采用能量法进行简化分析计算。

•εs /~101(3)振动与疲劳问题,构件内各材料质点的应力作用周期性变化。

由于构件的疲劳问题涉及材料力学性能的改变和工程上的重要性,一般振动问题不作重点介绍,而将专章介绍疲劳问题。

§12-2 构件作等加速运动时的应力计算1.动应力分析中的动静法度为 a 的质点,惯性力为其质量 m 与 a 的乘积,方向与a 相反。

达朗贝尔原理指出,对作加速度运动的质点系,如假想地在每一质点上加上惯性力,则质点系上的原力系与惯性力系组成平衡力系。

这样,可把动力学问题在形式上作为静力学问题处理,这就是动静法。

动载荷

动载荷

一、静载荷与动载荷:
载荷不随时间变化(或变化极其平稳缓慢)且使构件各部件加速度保持为零(或可忽略不计),此类载荷为静载荷。

载荷随时间急剧变化且使构件的速度有显著变化(系统产生惯
性力),此类载荷为动载荷。

二、动响应:
构件在动载荷作用下产生的各种响应(如应力、应变、位移等),称为动响应。

实验表明:在静载荷下服从虎克定律的材料,只要应力不超
过比例极限,在动载荷下虎克定律仍成立且E
静=E
动。

§1 概述
§2 构件有加速度时动应力计算
计算采用动静法
在构件运动的某一时刻,将分布惯性力加在构件上,使原来作用在构件上的外力和惯性力假想地组成平衡力系,然后按静荷作用下的问题来处理。

q d
q d
§3 构件受冲击时动应力计算
冲击物在冲击过程中将其机械能转化为被冲击结构应变能U
.
εd
将上式两边乘以E /l 后得
st
d d σσK =(1)
当h →0时,相当于P 骤加在杆件上,这时
2
d =K
mg
冲击前后能量守恒
1

=。

工程知识之动荷载总结

工程知识之动荷载总结

一、动荷载与静荷载的区别1、概念(1)、动荷载:荷载在在作用过程中随时间快速变化其本身不稳定(包括大小、方向等)在荷载的作用下,结构内各个质点具有不可忽视的加速度,在动荷载作用下,若结构的动应力不超过比列极限,胡克定律任然适用。

(2)、静荷载:作用在结构上的荷载是从零开始缓慢增加,在加载过程中,结构内各质点的加速度很小,可以忽略不计,应力不超过比列极限,胡克定律任然适用.2、两者的主要区别(1)、受载体内部各质点的加速度方面:静荷载:受载体内各质点加速度非常小可以忽略,那么可以理解为此加速度的大小几乎为零,而方向是几乎保持不变的。

动荷载:使受载体内各个质点具有不可忽视的加速度。

(2)、荷载自身的加速度方面:静荷载:随时间的变化,其自身加速度大小几乎为零,方向几乎不变。

例如:恒载(如自重)和加载变化缓慢以至可以略去惯性力作用的准静载(如锅炉压力)。

动荷载:随时间的变化,其自身的加速度不可忽略,此加速度的变化可以表现在如下三个方面:①加速度大小变化,方向不变,即荷载的大小变化,方向不变;②加速度大小不变,方向变化,即荷载的大小不变,方向变化;③加速度大小变化,方向也变化,即荷载大小方向都在变化。

例如:短时间快速作用的冲击载荷(如空气锤)、随时间作周期性变化的周期载荷(如空气压缩机曲轴)和非周期变化的随机载荷如汽车发动机曲轴)。

(3)、从应力—应变的性质分析:静荷载:在比例极限内,应力等于应变乘以弹性模量。

动荷载:在比例极限内,应力等于应变乘以弹性模量再乘以动力系数(动力系数有动静法可求得)。

二、动荷载的分类1、据照动荷载的作用特点可分为三类荷载:(1)、单一的、大脉冲的动荷载,如爆破、爆炸所产生的荷载,其特点为只有一个脉冲作用且作用持续时间很短,振幅在短时间内衰减为零;(2)、多次重复的微幅振动的动荷载(也可称为疲劳荷载),如列车荷载的振动作用。

其特点为以一定振幅和周期往复循环的特点;(3)、有限次数的、无规律的振动的动荷载,如地震引起的振动作用。

起重载荷分类与载荷组合范文

起重载荷分类与载荷组合范文

起重载荷分类与载荷组合范文起重载荷分类与载荷组合是起重机设计中的重要内容之一,它涉及到起重机的安全性能和工作能力。

本文将分为两个部分来阐述起重载荷分类与载荷组合的相关知识,首先介绍起重载荷的分类,然后详细讨论各种载荷组合的计算方法和范例。

一、起重载荷分类起重载荷一般可以分为静载荷和动载荷两大类。

1. 静载荷静载荷是指在起重机工作过程中,主要由起重物的重量所引起的荷载。

根据起重物的特点和形式,静载荷还可以分为以下几类:(1)单重吊装静载荷:指起重机吊装单个物体的重量,通常用于吊装单个重物的场景,如吊装工字钢等。

(2)多重吊装静载荷:指起重机吊装多个物体的总重量,通常用于吊装多个重物的场景,如吊装混凝土梁等。

(3)悬臂静载荷:指起重机悬臂吊装物体时产生的荷载,通常用于吊装长物体的场景,如吊装管道等。

(4)变载荷:指起重机在吊装过程中,由于起重物的变动而引起的荷载变化,如吊装物体的摆动、倾斜等。

2. 动载荷动载荷是指在起重机工作过程中,由于工作环境、工作方式等因素所引起的荷载。

根据起重机的工作环境和工作方式,动载荷还可以分为以下几类:(1)风载荷:指起重机在工作中所受到的风力引起的荷载,通常用于室外起重机的设计。

(2)水平荷载:指起重机在工作中所受到的水平力引起的荷载,通常用于岸桥等移动式起重机的设计。

(3)摩擦力:指起重机在行走过程中所受到的轮轨摩擦力引起的荷载,通常用于轨道式起重机的设计。

(4)冲击荷载:指起重机在运行过程中由于突然停车、起重瞬间变化等因素产生的冲击引起的荷载。

二、载荷组合计算方法和范例载荷组合是指将不同类型的载荷按照一定的规则组合起来,计算出起重机在不同载荷组合下的工作能力。

下面将介绍常见的载荷组合计算方法和范例。

1. 叠加法叠加法是指将不同类型的载荷按照线性叠加的原则组合起来,计算出起重机在各种载荷组合下的最不利工况。

具体计算方法如下:最不利工况下的荷载 = 静载荷 + 动载荷例如,某起重机在吊装一重量为10吨的物体时,同时受到10kN的风载荷作用,根据叠加法可以计算出最不利工况下的荷载为:最不利工况下的荷载 = 10吨 + 10kN = 10吨 + 10kN2. 同步法同步法是指将不同类型的载荷按照计时同步的原则组合起来,计算出起重机在各种载荷组合下的不同工作能力。

工程知识之动荷载总结

工程知识之动荷载总结

一、动荷载与静荷载的区别1、概念(1)、动荷载:荷载在在作用过程中随时间快速变化其本身不稳定(包括大小、方向等)在荷载的作用下,结构内各个质点具有不可忽视的加速度,在动荷载作用下,若结构的动应力不超过比列极限,胡克定律任然适用。

(2)、静荷载:作用在结构上的荷载是从零开始缓慢增加,在加载过程中,结构内各质点的加速度很小,可以忽略不计,应力不超过比列极限,胡克定律任然适用。

2、两者的主要区别(1)、受载体内部各质点的加速度方面:静荷载:受载体内各质点加速度非常小可以忽略,那么可以理解为此加速度的大小几乎为零,而方向是几乎保持不变的。

动荷载:使受载体内各个质点具有不可忽视的加速度。

(2)、荷载自身的加速度方面:静荷载:随时间的变化,其自身加速度大小几乎为零,方向几乎不变。

例如:恒载(如自重)和加载变化缓慢以至可以略去惯性力作用的准静载(如锅炉压力)。

动荷载:随时间的变化,其自身的加速度不可忽略,此加速度的变化可以表现在如下三个方面:①加速度大小变化,方向不变,即荷载的大小变化,方向不变;②加速度大小不变,方向变化,即荷载的大小不变,方向变化;③加速度大小变化,方向也变化,即荷载大小方向都在变化。

例如:短时间快速作用的冲击载荷(如空气锤)、随时间作周期性变化的周期载荷(如空气压缩机曲轴)和非周期变化的随机载荷如汽车发动机曲轴)。

(3)、从应力—应变的性质分析:静荷载:在比例极限内,应力等于应变乘以弹性模量。

动荷载:在比例极限内,应力等于应变乘以弹性模量再乘以动力系数(动力系数有动静法可求得)。

二、动荷载的分类1、据照动荷载的作用特点可分为三类荷载:(1)、单一的、大脉冲的动荷载,如爆破、爆炸所产生的荷载,其特点为只有一个脉冲作用且作用持续时间很短,振幅在短时间内衰减为零;(2)、多次重复的微幅振动的动荷载(也可称为疲劳荷载),如列车荷载的振动作用。

其特点为以一定振幅和周期往复循环的特点;(3)、有限次数的、无规律的振动的动荷载,如地震引起的振动作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第35讲教学方案
——动载荷(Ⅰ)
第十四章 动载荷
§14-1 动载荷的概念及其分类
1.动载荷的概念
前面各章讨论的都是构件在静载荷作用下的应力、应变及位移计算。

静载荷是指构件上的载荷从零开始平稳地增加到最终值。

因加载缓慢,加载过程中构件上各点的加速度很小,可认为构件始终处于平衡状态,加速度影响可略去不计。

动载荷是指随时间作明显变化的载荷,即具有较大加载速率的载荷。

一般可用构件中材料质点的应力速率( dt d σσ=• )来表示载荷施加于构件的速度。

实验表明,只要应力在比例极限之内,应变与应力关系仍服从胡克定律,因而,通常也用应变速率( dt d εε=• )来表示载荷随时间变化的速度。

一般认为标准静荷的 min /)~.(3010=•ε ,随着动载荷 •
ε 的增加,它对材料力学性能的影响越趋明显。

对金属材料,静荷范围约在 s /~241010--•=ε ,如果 s /210-•≥ε ,即认为是动载荷。

2.三类动载荷问题:
根据加载的速度与性质,有三类动荷问题。

(1) 一般加速度运动(包括线加速与角加速)构件问题,此时•ε还不会引起材料力
学性能的改变,该类问题的处理方法是动静法。

(2) 冲击问题,构件受剧烈变化的冲击载荷作用。

•ε 大约在 s /~101 ,它将引
起材料力学性能的很大变化,由于问题的复杂性,工程上采用能量法进行简化分析计算。

(3) 振动与疲劳问题,构件内各材料质点的应力作用周期性变化。

由于构件的疲劳
问题涉及材料力学性能的改变和工程上的重要性,一般振动问题不作重点介绍,而将专章介绍疲劳问题。

§13-2 构件作等加速运动时的应力计算
1.动应力分析中的动静法
加速度为 a 的质点,惯性力为其质量 m 与 a 的乘积,方向与a 相反。

达朗贝尔原理指出,对作加速度运动的质点系,如假想地在每一质点上加上惯性力,则质点系上的原力系与惯性力系组成平衡力系。

这样,可把动力学问题在形式上作为静力学问题处理,这就是动静法。

2.等加速运动构件中的动应力分析
下面举例说明动静法在动应力分析中的应用。

例13-1 一钢索起吊重物如图13-1,以等加速度 a 提升。

重物 M 的重力为 P ,钢索的横截面积为A ,钢索的重量与 P
相比甚小而可略去不计。

试求钢索横截面上的动应力 d σ 。

解:钢索除受重力 P 作用外,还受动载荷(惯性力)作用。

根据动静法,将惯性力 a g
P 加在重物上,这样,可按静载荷问题求钢索横截面上的轴力 d N 。

由静力平衡方程:
0=-
-a g
P P N d 解得 )1(g
a P a g P P N d +=+
= 从而可求得钢索横截面上的动应力为: st d st d d k g
a g a A P A N σσσ=+=+==
)1()1( 其中 A
P st =
σ 是P 作为静载荷作用时钢索横截面上的应力, g a k d +
=1 是动荷系数。

对于有动载荷作用的构件,常用动系数 d k 来反映动载荷的效应。

此时钢索的强度条件为
][σσσ≤=st d d K
其中 ][σ 为构件静载下的许用应力。

3.等角速转动构件内的动应力分析
再以匀速旋转圆环为例说明动静法的应用。

例13-2 图13-2中一平均直径为 D ,壁厚为 t 的薄壁圆环,绕通过其圆心且垂直于环平面的轴作均速转动。

已知环的角速度 ω ,环的横截面积 A 和材料的容重 γ ,求此环横截面上的正应力。

解:因圆环等速转动,故环内各点只有向心加速度。

又因为 D t << ,故可认为环内各点的向心加速度大小相等,都等于
2
2
ωD a n = 沿环轴线均匀分布的惯性力集度 d q 就是沿轴线单位长度上的惯性力,即:
221ωγγg
D A a g A q n d =⋅⋅= 上述分布惯性力构成全环上的平衡力系。

用截面平衡法可求得圆环横截面上的内力d N 。

d N 的计算,可利用积分的方法求得 y 方向惯性力的合力。

亦可等价地将 d q 视为“内压”得:
D q R N d d d ⋅==2
求得 g
D A N d 42
2ωγ= 于是横截面上的正应力 d σ 为: g
v g D A N d d 2
224γωγσ=== 其中:2
ωD v = v 是圆环轴线上点的线速度。

由 d σ 的表达式可知, d σ 与圆环横截面积 A 无关。

故要保证圆环的强度,只能限制圆环的转速,增大横截面积 A 并不能提高圆环的强度。

相关文档
最新文档