UASB厌氧反应器的设计
升流式厌氧污泥床反应器(UASB)设计计算书

UASB反应器 有效容积及 长、宽、高 尺寸的确定
反应器尺寸(矩形池)
反应器的长 取整反应器的长 上升流速 反应器直径
L
反应器尺寸(圆形池)
取整反应器直径 上升流速 长
D
L B H ø H S V
矩形池
宽 高 直径 高 矩形池 圆形池 矩形池 圆形池 矩形池 圆形池 矩形池 圆形池
反应器的外 圆形池 形尺寸 重新核算后的面积 重新核算后的容积
反应器最大单体体积应小于3000m3 考虑检修不停产,一般选取2座。 反应器有效水深应在5~8m之间
矩形设备的长宽比小于4
上升流速宜小于0.8m/h 圆形设备的高径比在1~3之间 上升流速宜小于0.8m/h
沉淀区表面负荷宜小于0.8m3/(m2· h) 一般取值大于1.0m
一般可取45~60°
相邻两个下三角形集气罩之间的水平距离
m2 m2 m/h m/h m m2 m2 m2 m2 m/h m/h m m m m m m m/h m/h cm g/(cm· s) g/(cm· s) cm/s m/h
17.66 19.87 0.21 0.19 0.64 16.38 18.43 6.40 5.65 0.11 0.20 0.52 0.91 0.40 1.31 1.80 3.11 0.28 0.25 0.01 0.01 0.02 0.27 9.59 2.28 34.31 38.59
。 m³ /d 118.80
m3 m2 m m kgSS/d
23.76 0.01 0.13 1.20 24.75
计算书
计算人:
计算公式/取值依据/说明 常温20~25℃,中温35~40℃,高温50~55℃ pH值宜为6.0~8.0 进水CODcr浓度宜大于1500mg/L 进水中悬浮物含量宜小于1500mg/L 一般在300~700mg/L 一般在25~83mg/L 一般在5~17mg/L 颗粒污泥一般可以达到5.0~6.0,絮状污泥一般取值2.0~3.0 对于有机废水去除率可以达到80%~90% 一般去除率为70%左右。 一般沼气产率为0.3~0.5m3/(去除kgCOD) 一般产率按照0.05~0.1kgVSS/(去除kgCOD)计算 一般在0.6~0.85之间
UASB厌氧反应器的设计

UASB厌氧反应器的设计一、UASB厌氧反应器的设计厌氧处理已经成功地于各种高、中浓度的废水处理中。
虽然中、高浓度的废水在相当程度上得到了解决,但是当污水中含有降低性物质时,如含有硫酸盐的味精废水在处理上仍有一定的难度。
在厌氧处理领域应用较为广泛的是UASB反应器,其与其它的厌氧处理工艺有一定的共同点。
包含厌氧处理单元的水处理过程一般包括预处理、厌氧处理(包括沼气的收集、处理和利用)、好氧后处理和污泥处理等部分,二、UASB系统设计1、预处理设施一般预处理系统包括粗格栅、细格栅或水力筛、沉砂池、调节(酸化)池、营养盐和pH调控系统。
格栅和沉砂池的目的是去除粗大固体物和无机的可沉固体,这对对于保护各种类型厌氧反应器的布水管免于堵塞是应有的。
当污水中含有砂砾时,例如以薯干为原料的酿酒废水,怎么强调去除砂砾的重要性也不过分。
不可生物降解的固体,在厌氧反应器内积累会占据大量的池容,反应器池容的不断减少终将导致系统完全失效。
由于厌氧反应对水质、水量和冲击负荷较为敏感,所以对于工业废水适当尺寸的调节池,对水质、水量的调节是厌氧反应稳定运行的保证。
调节池的作用是均质和均量,一般还可考虑兼有沉淀、混合、加药、中和和预酸化等功能。
在调节池中设有沉淀池时,容积需扣除沉淀区的体积;根据颗粒化和pH调节的要求,当废水碱度和营养盐不够需要补充碱度和营养盐(N、P)等;可采用计量泵自动投加酸、碱和药剂,通过调节池水力或机械搅拌达中和作用。
同时,酸化池或两相系统是去除和改变,对厌氧过程有降低作用的物质、改善生物反应条件和可生化性也是厌氧预处理的主要手段,也是厌氧预处理的目的之一。
仅考虑溶解性废水时,一般不需考虑酸化作用。
对于复杂废水,可在调节池中取得一定程度的酸化,但是完全的酸化是没有必要的,甚至是有害处的。
因为达到完全酸化后,污水pH会下降,需采用投药调整pH值。
另外有证据表明完全酸化对UASB反应器的颗粒过程有不利的。
对以下情况考虑酸化或相分离可能是有利的:(1)当采用预酸化可去除或改变对甲烷菌有毒或降低性化合物的结构时;(2)当废水存在有较高的Ca2+时,部分酸化可避免颗粒污泥表面产生CaCO3结垢;(3)在调节池中取得部分酸化效果可以通过调节池的合理设计取得。
UASB反应器设计参考

UASB反应器设计参考对于中等浓度和高浓度的有机废水,一般情况下,有机容积负荷率是限制因素,反应器的容积与废水量、废水浓度和允许的有机物容积负荷去除率有关。
设计容积负荷为=15kgCOD/( d),COD 去除率为93%,则UASB反应器有效容为:式中—设计流量,;—容积负荷,kg/( );—进水COD浓度,mg/L;—出水COD浓度,mg/L;—容积负荷,kg/( )。
则=2、UASB反应器的形状和尺寸据资料,经济的反应器高度一般为4—6m之间,并且在大多数情况下这也是系统优化的运行范围。
升流式厌氧污泥床的池形有矩形、方形和圆形。
圆形反应器具有结构较稳定的特点,但是建造圆形反应器的三相分离器要比矩形和方形反应器复杂得多,因此本设计选用矩形池。
从布水均匀性和经济性考虑,矩形池长宽比在2:1左右较为合适。
设计反应器的有效高度为h=6m,则横截面积S= ㎡设池长L约为池宽B的两倍,则可取池长L=25m,宽B=13m。
一般应用时反应器装夜量为70%—90%,本工程设计反应器总高度H=7.5m,其中超高0.5m 。
反应器的总容积V=BLH=25×13×(7.5-0.5)=2275 ,有效容积为1930.4 ,则体积有效系数为84.85%,符合有机负荷要求。
3、水力停留时间(HRT)和水力负荷率()对于颗粒污泥,水力负荷=0.1—0.9 ,符合要求3.6.2.2 进水分配系统的设计1、布水点设置进水方式的选择应根据进水浓度及进水流量而定,通常采用的是连续均匀进水方式。
布水点的数量可选择一管一点或一管多点的布水方式,布水点数量与处理废水的流量、进水浓度、容积负荷等因素有关。
Lettinga等推荐的UASB反应器进料喷嘴数设置标准见表4.7由于所取容积负荷为15kgCOD/( d),因此每个点的布水负荷面积大于2 。
本次设计池中共设置84个布水点,则每点负荷面积为:㎡表4.7 UASB反应器进料喷嘴数设置标准污泥性质进水容积负荷/[kgCOD/(m3•d)]每个进水点负荷面积/m2密实的絮体污泥度>40kgTSS/m3 <11~2>2 0.5~11~22~3密实的絮体污泥度20~40kgTSS/m3 1~23 1~22~5颗粒污泥 22~4>4 0.5~10.5~2>22、配水系统形式UASB反应器的进水分配系统形式多样,主要有树枝管式、穿孔管式、多管多点式和上给式4种。
UASB设计计算详解

UASB设计计算详解UASB (Upflow Anaerobic Sludge Blanket) 是一种高效的厌氧废水处理技术,适用于有机废水的处理。
UASB反应器设计需要考虑污水的处理量、COD(化学需氧量)负荷、有机负荷、气水比等因素。
首先,需要确定UASB反应器的决定性因素,即COD负荷。
COD负荷是指进入反应器的废水中化学需氧量的总量。
常用的计算公式为:COD负荷=废水流量×废水COD浓度接下来,需要计算有机负荷,有机负荷是指单位功率和单位反应器体积的甲烷产生速率。
常用的计算公式为:有机负荷=COD负荷/反应器有效体积然后,需要确定反应器的高度、直径和有效体积。
反应器高度可以根据废水的停留时间来确定,一般情况下,停留时间为4-12小时。
停留时间由废水流量和反应器有效体积决定:停留时间=反应器有效体积/废水流量反应器直径可以通过确定反应器的表面载荷来确定,反应器表面载荷可以根据废水流量和反应器有效面积来计算:表面载荷=废水流量/反应器有效面积有效面积的计算通常需要考虑污泥浓度和污泥沉降速度。
最后,需要确定反应器的气水比。
气水比是指进入反应器的气体和液体的体积比。
一般情况下,气水比为1:1或2:1、气水比的大小决定了甲烷气体的产生速率。
需要注意的是,在UASB反应器设计过程中,还需要考虑反应器的温度、PH值、进水水质和污泥沉积速度等因素。
这些因素对反应器的甲烷产生速率和处理效果都有一定影响。
总结起来,UASB反应器的设计计算主要包括COD负荷、有机负荷、停留时间、表面载荷、反应器直径、反应器高度、反应器有效体积和气水比等参数的计算。
通过合理的设计计算,可以确保UASB反应器能够高效地处理有机废水并产生甲烷气体。
UASB设计计算书

UASB设计计算书1.厌氧塔的设计计算 1.1反应器结构尺⼨设计计算(1)反应器的有效容积设计容积负荷为)//(0.53d m kgCOD N v = 进出⽔COD 浓度)/(20000L mg C = ,E=0.70 V=3084000.570.0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3C 0——进出⽔COD 浓度kgCOD/3m E ——去除率 N V ——容积负荷(2)反应器的形状和尺⼨。
⼯程设计反应器3座,横截⾯积为圆形。
1)反应器有效⾼为m h 0.17=则横截⾯积:)(4950.1784002m hV S =有效==单池⾯积:)(16534952m n S S i ===2) 单池从布⽔均匀性和经济性考虑,⾼、直径⽐在1.2:1以下较合适。
设直径m D 15=,则⾼182.1*152.1*===m D h ,设计中取m h 18= 单池截⾯积:)(6.1765.714.3)2 (*14.3222'm h D S i =?== 设计反应器总⾼m H 18=,其中超⾼1.0m单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺⼨:m m H D 1815?=?φ反应器总池⾯积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?=(3)⽔⼒停留时间(HRT )及⽔⼒负荷(r V )v Nh Q V t HRT 722430009000=?==)]./([24.036.176********h m m S Q V r =??==根据参考⽂献,对于颗粒污泥,⽔⼒负荷)./(9.01.023h m m V r -=故符合要求。
1.7.2 三相分离器构造设计计算(1)沉淀区设计根据⼀般设计要求,⽔流在沉淀室内表⾯负荷率)./(7.023'h m m q <沉淀室底部进⽔⼝表⾯负荷⼀般⼩于2.0)./(23h m m 。
UASB厌氧反应器的构造和工作原理

UASB厌氧反应器的构造和工作原理1. 厌氧反应器的构造UASB(Upflow Anaerobic Sludge Blanket)厌氧反应器是一种常用于废水处理的反应器。
它通常由以下几个主要部分构成:1.1 上升气液分离器UASB厌氧反应器的顶部通常有一个上升气液分离器,用于将产生的气体与废水分离。
这可以通过设置气体排放口和液体回流管道来实现。
1.2 反应器本体反应器本体是UASB厌氧反应器的主要部分。
它通常是一个圆柱形或方形的,内部分割成不同的区域,以促进废水的处理过程。
这些区域通常被称为空隙,其作用是增加废水与微生物的接触面积,提高反应效果。
1.3 底部沉淀池UASB厌氧反应器的底部通常有一个沉淀池。
在废水处理过程中,产生的污泥会沉积在沉淀池中,而处理后的干净水则会从顶部流出。
通过及时清理沉淀池中的污泥,可以保证反应器的正常运行。
2. 厌氧反应器的工作原理UASB厌氧反应器的工作原理基于厌氧条件下微生物的代谢活动。
主要的反应过程包括:2.1 废水进入反应器废水首先通过入口管道进入UASB厌氧反应器的反应器本体。
在反应器中,废水在空隙中流动,与微生物接触。
2.2 微生物的附着与处理废水中的有机物质被微生物吸附,微生物通过代谢作用分解有机物质,并将其转化为产生的气体(如甲烷)和产生的污泥。
这个过程促使废水中的污染物逐渐减少。
2.3 上升气液分离在反应过程中,产生的气体会上升到反应器的顶部,通过上升气液分离器与废水分离。
分离后的气体通过气体排放口排出,而废水则回流到反应器进行二次处理。
2.4 干净水的排出经过处理后的废水在反应器本体中流动并经过沉淀池。
在沉淀池中,污泥沉淀到底部,而处理后的干净水从顶部流出,可用于进一步的处理或直接排放。
3. 总结UASB厌氧反应器借助微生物的附着和代谢活动,有效地处理废水中的有机物质。
通过合理的构造和工作原理,UASB厌氧反应器可以高效地减少废水中的污染物,并产生有价值的产物,如甲烷气体。
UASB反应器的设计计算讲解

第二章 啤酒废水处理构筑物设计与计算第一节 格栅的设计计算一、设计说明格栅由一组平行的金属栅条或筛网制成,安装在废水渠道的进口处,用于截留较大的悬浮物或漂浮物,主要对水泵起保护作用,另外可减轻后续构筑物的处理负荷。
二、设计参数取中格栅;栅条间隙d=10mm ;栅前水深 h=0.4m ;格栅前渠道超高 h 2=0.3m 过栅流速v=0.6m/s ; 安装倾角α=45°;设计流量Q=5000m 3/d=0.058m 3/s(一)栅条间隙数(n)max sin Q nbhv=0.058×√(sin45)÷0.01÷0.4÷0.6=20.32 取n=21条式中:Q ------------- 设计流量,m 3/sα------------- 格栅倾角,取450 b ------------- 栅条间隙,取0.01m h ------------- 栅前水深,取0.4mv ------------- 过栅流速,取0.6m/s ;(二)栅槽总宽度(B)设计采用宽10 mm 长50 mm ,迎水面为圆形的矩形栅条,即s=0.01m B=S ×(n-1)+b ×n=0.01×(21-1)+0.01×21 =0.41 m 式中:S -------------- 格条宽度,取0.01m n -------------- 格栅间隙数,b -------------- 栅条间隙,取0.01m(三)进水渠道渐宽部分长度(l 1)设进水渠道内流速为0.5m/s,则进水渠道宽B 1=0.17m, 渐宽部分展开角1取为20°则 l 1=112B B tg=(0.41-0.17)÷2÷tg20 =0.32式中:l1-----------进水渠道间宽部位的长度,mL2----------格栅槽与出水渠道连接处的渐窄部位的长度,m B -------------- 栅槽总宽度,m B 1 -------------- 进水渠道宽度,m 1-------------- 进水渠展开角,度(四)栅槽与出水渠道连接处的渐窄部分长度(l 2)l 2= l 1/2=0.32/2 =0.16m(五)过栅水头损失(h 1)取k=3,β=1.83(栅条断面为半圆形的矩形),v=0.6m/sh o =β×(S ÷b )4/3×V ^2÷2÷g ×sin α=1.83×(0.01÷0.01) 4/3×0.6^2÷2÷9.8×sin45=0.024 mh 1=k ×h 0 =3×0.024 =0.072 m 式中:h 0--------计算水头损失,m h 1---------过格栅水头损失,mk -------- 系数,水头损失增大倍数 β-------- 形状系数,与断面形状有关ξ S -------- 格栅条宽度,m b-------- 栅条间隙,m v -------- 过栅流速,m/s α-------- 格栅倾角,度(六)栅槽总高度(H)取栅前渠道超高h 2=0.3m 栅前槽高H 1=h+h 2=0.7m 则总高度H=h+h 1+h 2=0.4+0.072+0.3 =0.772 m(七)栅槽总长度(L)L=l 1+l 2+0.5+1.0+145H tg=0.32+0.16+0.5+1.0+0.745tg=2.68 m 式中:H 1------格栅前槽高, H 1=h +h 2=0.4+0.3=0.7(八)每日栅渣量(W)取W 1=0.06m 3/103m 3 K 2=1.0则W=12864001000Q W K ⨯⨯⨯=0.058×0.08×86400÷1.5÷1000 =0.27 ㎡/d (采用机械清渣)式中:Q ----------- 设计流量,m 3/s W 1 ---------- 栅渣量(m 3/103m 3污水),取0.1~0.01,粗格栅用小值,细格栅用大值,中格栅用中值.取0.08K 2-----------污水流量总变化系数.第二节调节沉淀池的设计计算一、设计说明啤酒废水的水量和水质随时间的变化幅度较大,为了保证后续处理构筑物或设备的正常运行,需对废水的水量和水质进行调节,由于啤酒废水中悬浮物(ss)浓度较高,此调节池也兼具有沉淀池的作用,该池设计有沉淀池的泥斗,有足够的水力停留时间,保证后续处理构筑物能连续运行,其均质作用主要靠池侧的沿程进水,使同时进入池的废水转变为前后出水,以达到与不同时序的废水相混合的目的。
UASB厌氧反应器

用途与介绍UASB上升式厌氧污泥床(Up flowAnaerobic SludgeBlanketExpandedGranular Sludge Bed,UASB),由荷兰Lettinga图1:某污水厂工程UASB 教授于1977年发明的第二代厌氧反应器,通过40余年的发展,UASB厌氧反应器已经成为运用最为广泛,技术最为成熟的厌氧反应器。
到目前为止,UASB上升式厌氧污泥床技术已成功应用于造纸、食品加工、酒类酿造、垃圾渗滤液、柠檬酸及医药化工等诸多行业的废水处理中。
型号说明UASB—∕有效水深(m)池体内径(m)上升式厌氧污泥床结构和工作原理UASB上升式厌氧污泥床基本构造如图2所示,它有配水系统、污泥反应区、三相分离器、图2:UASB构造示意图沉淀区、出水系统、沼气收集系统组成。
废水自底部进入,通过配水系统尽可能均匀的将废水分布于反应器底部,废水自下而上通过UASB反应器。
反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。
废水从污泥床底部流入,与颗粒污泥混合接触,污泥中的微生物分解有机物,同时产生的微小沼气气泡不断放出。
微小气泡上升过程中,不断合并,逐渐形成较大的气泡,部分附着在颗粒污泥上。
在颗粒污泥层的上部,因水流和气泡的搅动,由于沼气的搅动,形成一个污泥浓度较小的悬浮污泥层,可进一步分解有机物。
气、固、液混合体逐渐上升经三相分离器后,其沼气进入气室,污泥在沉淀区进行沉淀,并经回流缝回流到污泥床。
经沉淀澄清后的废水作为处理水排出反应器。
工艺技术特点:UASB上升式厌氧污泥床的结构和工作原理决定了其在控制厌氧处理影响因素方面比其它反应器具有如下特点:1、污泥床内生物量多,折合浓度计算可达20~30g/L;2、容积负荷率相对较高,在中温发酵条件下,一般10kgCODcr/m3d左右,废水在反应器内的水力停留时间较短,因此所需池容大大缩小。
3、设备简单,运行方便,勿需设沉淀池和污泥回流装置,不需要充填填料,也不需在反应区内设机械搅拌装置,造价相对较低,便于管理,不易发生堵塞问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UASB厌氧反应器的设计概述厌氧处理已经成功地于各种高、中浓度的废水处理中。
虽然中、高浓度的废水在相当程度上得到了解决,但是当污水中含有抑制性物质时,如含有硫酸盐的味精废水在处理上仍有一定的难度。
在厌氧处理领域应用最为广泛的是UASB反应器,所以本文重点讨论UASB反应器的设计方法。
但是,其与其它的厌氧处理工艺有一定的共同点,例如,流化床和UASB都有三相分离器。
而UASB和厌氧滤床对于布水的要求是一致的,所以结果也可以作为其他反应器设计。
包含厌氧处理单元的水处理过程一般包括预处理、厌氧处理(包括沼气的收集、处理和利用)、好氧后处理和污泥处理等部分,可以用图1所示的流程表示。
二、UASB系统设计1、预处理设施一般预处理系统包括粗格栅、细格栅或水力筛、沉砂池、调节(酸化)池、营养盐和pH调控系统。
格栅和沉砂池的目的是去除粗大固体物和无机的可沉固体,这对对于保护各种类型厌氧反应器的布水管免于堵塞是必需的。
当污水中含有砂砾时,例如以薯干为原料的酿酒废水,怎么强调去除砂砾的重要性也不过分。
不可生物降解的固体,在厌氧反应器内积累会占据大量的池容,反应器池容的不断减少最终将导致系统完全失效。
由于厌氧反应对水质、水量和冲击负荷较为敏感,所以对于工业废水适当尺寸的调节池,对水质、水量的调节是厌氧反应稳定运行的保证。
调节池的作用是均质和均量,一般还可考虑兼有沉淀、混合、加药、中和和预酸化等功能。
在调节池中设有沉淀池时,容积需扣除沉淀区的体积;根据颗粒化和pH调节的要求,当废水碱度和营养盐不够需要补充碱度和营养盐(N、P)等;可采用计量泵自动投加酸、碱和药剂,通过调节池水力或机械搅拌达中和作用。
同时,酸化池或两相系统是去除和改变,对厌氧过程有抑制作用的物质、改善生物反应条件和可生化性也是厌氧预处理的主要手段,也是厌氧预处理的目的之一。
仅考虑溶解性废水时,一般不需考虑酸化作用。
对于复杂废水,可在调节池中取得一定程度的酸化,但是完全的酸化是没有必要的,甚至是有害处的。
因为达到完全酸化后,污水pH会下降,需采用投药调整pH值。
另外有证据表明完全酸化对UASB 反应器的颗粒过程有不利的。
对以下情况考虑酸化或相分离可能是有利的:1) 当采用预酸化可去除或改变对甲烷菌有毒或抑制性化合物的结构时;2) 当废水存在有较高的Ca2+时,部分酸化可避免颗粒污泥表面产生CaCO3结垢;3) 当处理含高含悬浮物和/或采用高负荷,对非溶解性组分去除有限时;4) 在调节池中取得部分酸化效果可以通过调节池的合理设计取得。
例如,上向流进水方式,在反应器底部形成污泥层(1.0m)。
底部布水孔口设计为5~10m2/孔即可。
2、UASB反应器体积的设计a) 负荷设计法采用有机负荷(q)或水力停留时间(HRT) 设计UASB反应器是最为主要的方法。
一旦q或HRT确定,反应器的体积(V)可以很容易根据公式(1或2)计算。
对某种特定废水,反应器的容积负荷一般应通过试验确定。
V = QS o/q (1)V =KQ.HRT (2)式中:Q---废水流量,m3/d;S o---进水有机物浓度,gCOD/L或gBOD5/L。
表1给出不同类型废水国内外采用UASB反应器处理的负荷数据,需要说明的是表中无法一一注明采用的预处理条件和厌氧污泥类型等情况,这些条件对选择设计负荷是至关重要的。
下表供设计人员设计时参考,选用前必须进行必要的实验和进一步查询有关的技术资料。
表1国内外生产性UASB装置的设计负荷统计表负荷kgCOD/m3·d(国外资料) 负荷kgCOD/m3·d(国内资料)b) 经验公式方法采用同样经验公式描述不同厌氧处理系统处理生活污水HRT与去除率(E)之间的关系,并且对不同反应器处理生活污水的数据进行了统计,得出了参数值。
式中:C1 ,C2——反应常数。
c) 动力学方法许多者致力于动力学的研究,根据众多研究结果汇总了酸性发酵和甲烷发酵过程重要的动力学常数。
到目前为止,动力学的,还没有使它能够在选择和设计厌氧处理系统过程中成为有力的工具,通过评价所获得的实验结果的经验方法现在仍是设计和优化厌氧消化系统的唯一的选择。
表2 厌氧动力学参数m m(d-1)3、UASB反应器的详细设计1) 反应器的体积和高度采用水力停留时间进行设计时,体积(V)按公式(1)或(2)计算。
选择反应器高度的原则是设计、运行和上综合考虑的结果。
从设计、运行方面考虑:高度会影响上升流速,高流速增加系统扰动和污泥与进水之间的接触。
但流速过高会引起污泥流失,为保持足够多的污泥,上升流速不能超过一定的限值,从而使反应器的高度受到限制;高度与CO2溶解度有关,反应器越高溶解的CO2浓度越高,因此,pH值越低。
如pH值低于最优值,会危害系统的效率。
从经济上考虑: 土方工程随池深增加而增加,但占地面积则相反;考虑当地的气候和地形条件,一般将反应器建造在半地下减少建筑和保温费用。
最经济的反应器高度(深度)一般是在4到6m之间,并且在大多数情况下这也是系统最优的运行范围。
2) 反应器的升流速度对于UASB反应器还有其他的流速关系(图2)。
对于日平均上升流速的推荐值见表3,应该注意对短时间(如2~6h)的高峰值是可以承受的(即暂时的高峰流量可以接收)。
表3 UASB和EGSB允许上升流速(平均日流量) V r=0.25~3.0m/h0.75~1.0m/h 颗粒污泥絮状污泥V s≤1.5m/h颗粒污泥V o≤12m/h V g=1m/h3) 反应器的截面积和反应器的长、宽(或直径)在确定反应器的容积和高度(H)之后,可确定反应器的截面积(A)。
从而确定反应器的长和宽,在同样的面积下正方形池的周长比矩形池要小,矩形UASB需要更多的建筑材料。
以表面积为600m2的反应器为例,30×20m的反应器与15m×40m的反应器周长相差10%,这意味着建筑费用要增加10%。
但从布水均匀性考虑,矩形在长/宽比较大较为合适。
从布水均匀性和经济性考虑,矩形池在长/宽比在2:1以下较为合适。
长/宽比在4:1时费用增加十分显著。
圆形反应器在同样的面积下,其周长比正方形的少12%。
但这一优点仅仅在采用单个池子时才成立。
当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。
对于采用公共壁的矩形反应器,池型的长宽比对造价也有较大的影响。
如果不考虑其他因素,这是一个在设计中需要优化的参数。
4) 单元反应器最大体积和分格化的反应器在UASB反应器的设计中,采用分格化对运行操作是有益的。
首先,分格化的单元尺寸不会过大,可避免体积过大带来的布水均匀性等问题;同时多个反应器对系统的启动也是有益的,可首先启动一个反应器,再用这个反应器的污泥去接种其他反应器;另外,有利于维护和检修,可放空一个反应器进行检修,而不影响系统的运行。
从目前实践看最大的单体UASB反应器(不是最优的)可为1000-2000m3。
5) 单元反应器的系列化单元的标准化根据三相分离器尺寸进行,三相分离器的型式趋向于多层箱体的设备化结构。
以2×5m的三相分离器为例,原则上讲有多种配合形式。
但从标准化和系列化考虑,要求具有通用性和简单性。
所以,池子宽度是以5m为模数,长度方向是以2m为模数。
布置单元尺寸的方式可分成单池单个分离器和单池两个分离器的形式。
原则上如果采用管道或渠道布水,池子的长度是不受限制。
如前所述,由于长宽比涉及到反应器的经济性,所以要结合池子组数考虑适当的长宽比。
对宽度为10m的单个反应器,2:1的长宽比的反应器可达到2000m3的池容。
对更大的反应器,如果需要也可采用双池共用壁的型式。
三、反应器的配水系统的设计1、配水孔口负荷一个进水点服务的最大面积是应该进行深入的实验。
对于UASB反应器在完成了起动之后,每个进水点负担2.0到4.0m2对获得满意的去除效率是足够的。
但是在温度低于20℃或低负荷的情况,产气率较低并且污泥和进水的混合不充分时,需要较高密度的布水点。
对于城市污水建议1~2m2/孔。
表4是根据UASB反应器的大量实践推荐的进水管负荷。
表4 采用UASB处理主要为溶解性废水时进水管口负荷每个进水口负荷(m2) 负荷(kgCOD/m3·d) 凝絮状污泥> 40kgDS/m3中等浓度絮状污泥120~40kg/m32、进水分配系统进水分配系统的合理设计对UASB处理厂的良好运转是至关重要的,进水系统兼有配水和水力搅拌的功能,为了这两个功能的实现,需要满足如下原则:a) 确保单位面积的进水量基本相同,以防止短路等现象发生;b) 尽可能满足水力搅拌需要,保证进水有机物与污泥迅速混合;c) 很容易观察到进水管的堵塞;d) 当堵塞被发现后,很容易被清除。
在生产装置中采用的进水方式大致可分为间歇式(脉冲式)、连续流、连续与间歇相结合等方式;从布水管的形式有一管多孔、一管一孔和分枝状等多种形式。
1) 连续进水方式(一管一孔)为了确保进水均匀分布,每个进水管线仅仅与一个进水点相连接,是最为理想的情况(图3a)。
为保证每一个进水点的流量相等,建议用高于反应器的水箱(或渠道式)进行分配,通过渠道或分配箱之间的三角堰来保证等量的进水。
这种系统的好处是容易观察到堵塞情况。
2) 脉冲进水方式UASB反应器与国外的最为显著的特点是很多采用脉冲进水方式。
有些研究者认为脉冲方式进水,使底层污泥交替进行收缩和膨胀,有助于底层污泥的混合。
3) 一管多孔配水方式采用在反应器池底配水横管上开孔的方式布水,为了配水均匀,要求出水流速不小于2.0m/s。
这种配水方式可用于脉冲进水系统。
一管多孔式配水方式的问题是容易发生堵塞,因此,应该尽可能避免在一个管上有过多的孔口。
4) 分枝式配水方式这种配水系统的特点采用较长的配水支管增加沿程阻力,以达到布水均匀的目的(图3c)。
根据笔者的实践,最大的分枝布水系统的负荷面积为54m2。
大阻力系统配水均匀度好,但水头损失大。
小阻力系统水头损失小,如果不处理效率,可减少系统的复杂程度。
对其他类型布水方式,我国也有很多设计和运行经验。
与三相分离器一样,不同型式的布水装置之间,很难比较孰优孰劣。
事实上,各种类型的布水器都有成功的经验和业绩。
3、配水管道设计对重力布水方式,污水进入反应器时可能吸入空气,会引起对甲烷菌的抑制;进入大量气体与产生的沼气会形成有爆炸可能的混合气体;同时,气泡太多可能还会影响沉淀功能。
因为,大于2.0mm直径的气泡在水中以大约0.2~0.3m/s速度上升,采用较大的管径使液体在管道的垂直部分的流速低于这一数值,可适当地避免超过2mm直径的空气泡进入反应器,同时还可避免气阻。
在反应器底部用较小直径,形成高的流速产生较强的扰动,使进水与污泥之间混合加强。