数列求和(倒序相加法,错位相减法,裂项相消法,分组求合法等)
数列求和的八种重要方法与例题

n
n-1
n
n
n-1
n
2S =lg(xy) +lg(xy) + ...+lg(xy)
n
= 2n(n +1) S = n(n +1)
2.错位相减 当{an}是等差数列,{bn}是等比数列,求 数列{anbn}的前n项和适用错位相减
典例3:
通项
1+2×3+3×32+4×33+…+n×3n-1=?
5.拆项分组求和法
6.并项求和法
深化数列中的数学思想方法:
热点题型1:递归数列与极限. 1
an 2 1 设数列{an}的首项a1=a≠ ,且 an 1 4 a 1 n 4 1 记 bn a2 n 1 ,n=l,2,3,…· . 4
n为偶数
,
n为奇数
1
a1 1, 故b1
1 1 1 2
2;
3 1 13 20 a3 , 故b3 4; a4 , 故b4 . 3 1 4 20 3 4 2
7 1 8 a2 , 故b2 7 1 3 8 8 2
热点题型2:递归数列与转化的思想方法.
数列{an}满足a11且8an116an12an50 (n1)。记 bn 1 (n1)。 an 2 (1)求b1、b2、b3、b4的值; (2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。 1 1 1 bn 得an , 代入递推关系8an1an 16an1 2an 5 0, 1 bn 2 an 1 a b bn 1 2 n n
{an+bn+cn}
等差
等比
数列求和各种方法总结归纳

故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.
数列求和的八种重要方法与例题

练习10:
已知Sn=-1+3-5+7+…+(-1)n(2n-1),
1)求S20,S21 2)求Sn
=20 S20=-1+3+(-5)+7+……+(-37)+39
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
总的方向: 1.转化为等差或等比数列的求和 2.转化为能消项的 思考方式:求和看通项(怎样的类型) 若无通项,则须先求出通项 方法及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
1 (1 3
2n )
5
n
12 3
1 (2n 5n 1) 3
热点题型3:递归数列与数学归纳法.
已知数列{an}的各项都是正数,且满足:a01,an1
(nN)
1 2
an (4
an ).
(1)证明an<an+1<2(nN) (2)求数列{an}的通项公式an
用数学归纳法证明:
类型a1+an=a2+an-1=a3+an-2=……
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
(完整word版)数列求和常见的7种方法(word文档良心出品)

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k 43421321个个 (找通项及特征) ∴ 32111111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(9113214434421个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅=313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c n nn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;。
高中数列求和方法大全

数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+-Λ的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①321ΛΛ个n n S 111111111++++=②22222)1()1()1(n n n xx x x x x S ++++++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a Λ321Λ个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[911--=--=+n n n n②)21()21()21(224422+++++++++=nnn x x x x x x S Λ n xx x x x x n n 2)111()(242242++++++++=ΛΛ(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=Λ2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n ΛΛΛ)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和(倒序相加法、错位相减法、裂项相消法、分组求合法等)

考点4 数列求和(倒序相加法、错位相减法、裂项相消法、分组求合法等)1.(2015江苏苏州市高三上调考)已知数列{n a }共有2k 项(2≤k 且k ∈N *),数列{n a }的前n 项的和为n S ,满足1a =2,1n a + =(p -1)n S +2(n =1,2,3,…,2n -1),其中常数p >1 (1)求证:数列{n a }是等比数列; (2)若p =2212k -,数列{n b }满足21log n b n=(12n a a a ⋯)(n =1,2,…,2n ),求数列{n b }的通项公式 (3)对于(2)中的数列{ n b },记3||2n n c b =-,求数列{n c }的前2k 项的和. 【考点】数列的求和;数列的应用.【解】(1)证明:当n =1时,2a =2p ,则21a p a =, 当2≤n 时,112n n a p S +=+(-),-112n n a p S =+(-), ∴11n n n a a p a +=-(-),即1n n a pa +=, ∴1n na p a +=, 故数列{n a }是等比数列.(2)由(1),得12n n a p -=(n =1,2,…,2n ),∴(1)123121222n nn n nn a a a pp-+++⋯+-⋯==2(1)(1)21221222n n n nn nk k --⨯+--==,=1(1)()21n n n n k -+- =(1)121n k -+-,(n =1,2,…,2n ), 即数列{b n }的通项公式为(1)121n n b k -=+-,(n =1,2,…,2n ). (3)3||2n n c b =-,设32n b ≤,解得n ≤12k +,又n 为正整数,于是:当n ≤k 时,32n b <;当n ≥k +1时,32n b >,∴数列{n c }的前2k 项的和:221k k =-.2.(2015江苏高考冲刺压轴卷(三))设数列{n a }的前n 项和记为n S ,且234n S n n =-+.(1)求数列{n a }的通项公式; (2)设3n n na b =,记数列{n b }的前n 项和记为n T ,,求证:2536n T ≤<. 【考点】错位相减法求和【解】(1)当n =1时,12a =,当n ≥2时,124n n n a S S n -=-=-,故2,124,2n n a n n =⎧=⎨-⎩≥,(2)2,13243,23n n n nn a b n n ⎧=⎪⎪==⎨-⎪≥⎪⎩,其中123T =,当n ≥2时,22024...333n nn T -=+++①,23112024...3333n n n T +-=+++②,∴①-②得,231222224 (33333)n n n T +-=-++-, ∴521623n nn T -=-⨯(2)n ≥,由于0n b ≥,∴2536n T ≤<. 3.(2015江苏高考冲刺压轴卷(三))已知数列{}n a 中,11a =,二次函数211()(2)2nn n f x a x a x -+=⋅+-⋅的对称轴为x =12, (1)试证明{}2n n a 是等差数列,并求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,试求使得3n S <成立的n 的值,并说明理由. 【考点】等差数列的通项公式;二次函数的性质;错位相减法求和. 【解】(1) ∵二次函数211()(2)2n n n f x a x a x -+=⋅+-⋅的对称轴为x =12, ∴n a ≠0,1211222n n n a a -+--=⨯,整理得11122n nna a +=+, 左右两边同时乘以12n +,得11222n n n n a a ++=+,即11222n n n n a a ++-= (常数),∴{}2nn a 是以2为首项,2为公差的等差数列,∴222(1)2nn a n n =+-=,∴1222n n n n n a -==. (2)∵ 012211231...22222n n n n nS ---=+++++, ①12n S = 12311231 (22222)n n n n--++++, ②①-②得:1231111111121 (1222222212)n n n n n n n S --=++++-=--, 整理得 1242n n n S -+=-.∵ 113214(4)0222n n n n n n n n S S +-+++-=---=>,∴ 数列{n S }是单调递增数列. ∴ 要使n S <3成立,即使12432n n -+-<,整理得n +2>12n -, ∴ n =1,2,3.4.(2015江苏省南京市高三考前综合)公差不为零的等差数列{n a }的前n 项之和为n S ,且2()2n n a k S +=对n ∈*N 成立.(1)求常数k 的值以及数列{n a }的通项公式;(2)设数列{n a }中的部分项123n k k k k a a a a ⋯,,,⋯,,恰成等比数列,其中1k =2,,3k =14,求1122n n a k a k a k ⋯+++的值.【考点】等差数列或等比数列中的基本量问题;错位相减法与裂项相消法. 【解】(1)法一:条件化为2n n S a k =+对n ∈*N 成立. 设等差数列公差为d ,则11(1)2(1)2n n dna a n d k -+=+-+. 分别令n =1,2,3得:1111112222332a a k a d a d k a d a d k ⎧=+⎪⎪+=++⎨⎪+=++⎪⎩①②③由①+③-2⨯②得,1113322a a d a d ++=+.两边平方得,21114233a d a a d ++=.两边再平方得,2211440a a d d -+=.解得d =21a .代入②得,1143a a k =+,④由④-①得,11a a =.所以1a =0,或1a =1. 又当1a =0时,d =0不合题意.所以1a =1,d =2. 代入①得k =1.而当k =1,1a =1,d =2时,221n n S n a n =,=-,等式2()2n n a k S +=对n ∈*N 成立.所以k =1,21n a n =-. 法二:设等差数列的首项为1a ,公差为d ,则211(1)()222n n n d dS na d n a n -=+=+-,11(1)()n a a n d dn a d =+-=+-.. 代入2 ()2n n a k S +=得,22111()[()]224d d n a n dn a k d +-=++-,即22221112(42)2()()dn a d n d n d a k d n a k d +-=++-++-.因为上面等式对一切正整数n 都成立,所以由多项式恒等可得,21112422()0d d a d d a k d a k d ⎧=⎪-=+-⎨⎪+-=⎩因为d ≠0,所以解得,1211d a k =⎧⎪=⎨⎪=⎩所以常数k =1,通项公式21n a n =-. (2)设n n k c a =,则数列{n c }为等比数列,且1312314327k k c a a c a a ===,===. 故等比数列{n c }的公比q 满足2319c q c ==. 又n c >0,所以q =3.所以111333n n n n c c q⨯--===.又21n n k n c a k ==-,所以213nn k -=.由此可得11322nn k ⨯=+.所以2121322n n n n n a k --⨯=+. 所以1122n n a k a k a k ⋯+++123113355(3)(3)(3)222222=⨯++⨯++⨯+1[135(21)]2n +++++-123211[133353(21)3]22n n n =⨯+⨯+⨯++-⨯+. 法一:令123133353(21)3n S n =⨯+⨯+⨯++-⨯,则3S =++++2311333(23)3(21)3n n n n +⨯⨯-⨯-⨯,两式相减得:=++++23123232323(21)3n n S n +-⨯⨯⨯--⨯,1112(1)36(1)332n n n n ++⎡⎤=---⨯-=-⨯+⎣⎦,代入得+++1122n n a k a k a k121211(1)33(1)33222n n n n n n ++-⋅++⎡⎤=⨯-⨯++=⎣⎦. 法二:因为1(21)3[(1)2]3(2)3kk k k k k +-⨯=+-⨯--⨯1(1)3k k +=-⨯-(2)3k k -⨯.所以213243[03(1)3][1303][2313]S =⨯--⨯+⨯-⨯+⨯-⨯1[(1)3(2)3]n n n n +++-⨯--⨯1(1)33n n ⨯+=-+.代入得1122n n a k a k a k ⋯+++121211(1)33(1)33222n n n n n n ++-⋅++⎡⎤=⨯-⨯++=⎣⎦. 5.(江苏省南京市2015届高三上学期9月调考数学试卷)已知{}n a 是等差数列,其前n 项的和为n S ,{}n b 是等比数列,且112a b ==,4421a b +=,4430S b +=. (1)求数列{}n a 和{}n b 的通项公式;(2)记*,n n n c a b n =∈N ,求数列{}n c 的前n 项和.【考点】数列的求和,数列递推式.【解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由112a b ==,得4a =2+3d ,342b q =,486S d =+由条件4421a b +=,4430S b +=,得方程组332322186230d q d q ⎧++=⎨++=⎩解得12d q =⎧⎨=⎩ 所以*12n n n a n b n =+=∈N ,,. (2)由题意知,(1)2nn c n =+⨯.记123n n T c c c c =++++.则123n n T c c c c =++++=231223242212n n n n -⨯+⨯+⨯++⨯++⨯(),23412223242212n n n T n n +=⨯+⨯+⨯++⨯++⨯(),所以2311=22(2222)(1)2n n n n T n -+-⨯+++++-+,1*2()n n T n n +=⨯∈N .6. (15淮安市金湖中学高三上学期第一次学情检测数学试卷)已知{n a }为等比数列,其中1a =1,且2354a a a a +,,成等差数列.(1)求数列{n a }的通项公式:(2)设21n n b n a =⋅(﹣),求数列{n b }的前n 项和n T . 【考点】数列的求和;等比数列的通项公式.【解】(1)设在等比数列{n a }中,公比为q , ∵11a =,且2354a a a a +,,成等差数列,∴35242a a a a +=+(), ∴2432q q q q +=+(), 解得q =12,∴n a =11()2n -. (2)∵n a =11()2n -,∴1121212n n n b n a n =⋅=⋅﹣(-)(-)(), ∴211111135()(21)()222n n T n -=⋅+⋅+⋅++-⋅,①231111113()5()(21)()22222n n T n =⋅+⋅+⋅++-⋅,② ①-②,得:211111112()()(21)()22222n n n T n -⎡⎤=+⋅+++--⋅⎢⎥⎣⎦ 11112[1]2122n n n =+⋅﹣-()-(﹣)()23=32n n +-,∴12362n n n T -+=-.7.等差数列{}n a 的通项公式为21n a n =+,其前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前10项的和为________. 【答案】 75 【分析】 因为2n S n n =+,所以n S n ⎧⎫⎨⎬⎩⎭的前10项和为10×3+1092⨯=75. 8.已知函数()22,n n f n n n ⎧⎨-⎩当为奇数时=,当为偶数时,且()(1)n a f n f n =++,则123100+a a a a +++等于________.【答案】 100【分析】 由题意,得123100+a a a a +++=2222222222221223344599100100101------++++++ =(12)(32)(99100)(101100)--+++++++=(1299100)(23100101)-+++++++++ =5010150103100-⨯⨯+=. 9.数列12a +,,2k a k +,,1020a +共有十项,且其和为240,则1a ++10k a a ++的值为________.【答案】 130 【分析】 1a ++10k a a ++=240-(2++2k ++20)=240-(220)102+⨯=240-110=130.10.(2015·泰州质检)已知数列{}n a 满足11a =,*12()n n n a a n ⋅∈N +=,则2016S =________. 【答案】 1008323⋅- 【分析】 11a =,2122a a ==,又1211222n n n n n n a a a a ++++⋅==⋅.∴2n na a +=2.∴1a ,3a ,5a ,成等比数列;2a ,4a ,6a ,成等比数列,∴201612345620152016S a a a a a a a a =++++++++=13520152462016()()a a a a a a a a +++++++++=100810081008122(12)3231212--+=⋅---. 11.已知数列{}n a :12,1233+,123444++,,123910101010++++,,若11n n n b a a +=,那么数列{}n b 的前n 项和n S 为________. 【答案】41nn + 【分析】 12312n n na n ++++==+,∴114114()(1)1n n n b a a n n n n +===-++, ∴111114[(1)()()]2231n S n n =-+-++-+ =144[1]11nn n -=++. 12.(2015·扬州测试)在数列{}n a 中,11a =,1(1)(1)n n n a a -+=+,记n S 为{}n a 的前n 项和,则2013S =________. 【答案】 -1005【分析】 由11a =,1(1)(1)n n n a a -+=+可得22a -=,31a -=,40a =,51a =, 该数列是周期为4的数列,所以20131234 2 013503()503(2)1S a a a a a ⨯-=++++=+= 1005-.13.(2014·济南模拟)设等差数列{}n a 的前n 项和为n S ,且3224S S =+,536a =.(1)求n a ,n S ;(2)设*1()n n b S n -∈N =,1231111n nT b b b b =++++,求n T . 【解】(1)因为3224S S =+,所以14a d --=, 又因为536a =,所以1436a d +=.解得d =8,14a =, 所以48(1)84n a n n --=+=,2(484)42n n n S n +-==.(2)241(21)(21)n b n n n --==+,所以11111()(21)(21)22121n b n n n n ==--+-+. 11(1)22121nn n -=++. 14.(2015·石家庄模拟)已知{}n a 是各项均为正数的等比数列,且122a a ⋅=,3432a a ⋅=.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为2*()n S n n ∈N =,求数列{}n n a b ⋅的前n 项和.【解】(1)设等比数列{}n a 的公比为q ,由已知得21251232a q a q ⎧=⎨=⎩,又∵10a >,0q >,解得112a q =⎧⎨=⎩,∴12n n a -=.(2)由2n S n =得()21(1)2n S n n --=≥,∴当2n ≥时,121n n n b S S n ---==,当n =1时,11b =符合上式, ∴*21()n b n n -∈N =,∴1(21)2n n n a b n -⋅-⋅=.12113252(21)2n n T n -=+⋅+⋅++-⋅,2312123252(23)2(21)2n n n T n n ⋅⋅⋅-⋅-⋅-=+++++, 两式相减得2112(222)(21)2(23)23n n n n T n n ----⋅--⋅-=++++=,∴(23)23nn T n -=+.15.数列{}n a 满足1(1)21nn n a a n --++=,则{}n a 的前60项和为________.【答案】 1830【分析】 ∵1(1)21nn n a a n --++=,∴211a a =+,312a a -=,417a a -=,51a a =,619a a =+,712a a -=,8115a a -=, 91a a =,10117a a =+,1112a a -=,12123a a -=,,571a a =,581113a a =+, 5912a a -=,601119a a =-,∴12601234567857585960()()()a a a a a a a a a a a a a a a +++=++++++++++++15(10234)102642234=18302⨯+==++++.16.在等比数列{}n a 中,13a =,481a =,若数列{}n b 满足3log n n b a =,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S =________.【答案】1n n + 【分析】 设等比数列{}n a 的公比为q ,则34127a q a ==,解得q =3. 所以111333n n nn a a q --⨯===,故3log n n b a n ==, 所以11111(1)1n n b b n n n n +==-++. 则数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为11111111223111nn n n n -+-++-=-=+++. 17.(2015·南京模拟)数列{}n a 满足1n n a a ++=12* ()n ∈N ,且11a =,n S 是数列{}n a 的前n 项和,则21S =________. 【答案】 6【分析】 依题意得11212n n n n a a a a ++++=+=,则2n n a a +=,即数列{}n a 中的奇数项、偶数项分别相等,则2111a a ==,211234()()S a a a a =++++1920()a a ++211221110()10162a a a a ⨯+=++=+=.18.(2015·长沙模拟)已知函数()()2cos f n n n π=,且()(1)n a f n f n =++,则12a a +3100a a +++=________. 【答案】 -100【分析】 若n 为偶数,则()22(1)(1)(21)n a f n f n n n n --=++=+=+,为首项为25a -=,公差为4-的等差数列;若n 为奇数,则()(1)n a f n f n =++=22(1)21n n n -++=+,为首项为13a =,公差为4的等差数列.所以123100139924100()()a a a a a a a a a a ++++=+++++++5049504950345054=10022⨯⨯⨯⨯+⨯--⨯-=+(). 19.设()442x x f x +=,利用倒序相加法,可求得1210()()()111111f f f +++的值为________.【答案】 5【分析】 当121x x +=时,()()121212444242x x x x f x f x ++++==12121212242(44)14(44)24x x x x x xx x ++⨯+⨯+=++⨯+. 设S =1210()()()111111f f f +++,倒序相加有2S =11029101[()()][()()][()()]10111111111111f f f f f f ++++++=,即S =5.20.在数列{}n a 中,15a -=,22a -=,记()12n A n a a a =+++,()23B n a a =+1n a +++,()*342()n C n a a a n ∈N +=+++,若对于任意*n ∈N ,A (n ),B (n ),C (n )成等差数列.(1)求数列{}n a 的通项公式; (2)求数列{}||n a 的前n 项和.【解】(1)根据题意A (n ),B (n ),C (n )成等差数列, ∴A (n )+C (n )=2B (n ),整理得2121253n n a a a a ---++==+=, ∴数列{}n a 是首项为-5,公差为3的等差数列, ∴53(1)38n a n n ---=+=. (2)38,2||=38,3n n n a n n -+⎧⎨-⎩≤≥,记数列{}||n a 的前n 项和为n S . 当2n ≤时,2(583)313222n n n S n n +-==-+;当3n ≥时,2(2)(138)313714222n n n nS n -+-=-+=+,综上,22313,22231314,322n n n n S n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩≤≥.21. (2014·广州综测)已知等差数列{}n a 的前n 项和为2()n S n pn q p q ∈R =++,,且2a ,3a ,5a 成等比数列.(1)求p ,q 的值;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .【解】(1)当n =1时,111a S p q ==++, 当2n ≥时,1n n n a S S --==22[(1)(1)]n pn q n p n q ---++++ =21n p -+. ∵{}n a 是等差数列,∴1+p +q =2×1-1+p ,得q =0. 又23a p =+,35a p =+,59a p =+, ∵2a ,3a ,5a 成等比数列,∴2325a a a =,即2(5)(3)(9)p p p +=++,解得p =-1.(2)由(1)得22n a n -=.∵22log log n n a n b +=,∴221224n an n n b n n n --⋅⋅⋅===. ∴1231n n n T b b b b b -=+++++0122142434(1)44n n n n --⨯⨯⋅⋅=++++-+,① 1231442434(1)44n n n T n n -⨯⨯-⋅⋅=+++++,② ①-②得0121344444n n n T n ---⋅=++++ 14(13)414143n n n n n --⋅-=-⋅=-. ∴1[(31)41]9n n T n =-⋅+.。
数列求和的常用方法

龙源期刊网
数列求和的常用方法
作者:韩浩唐
来源:《考试周刊》2013年第53期
摘要:数列是高中代数的重要内容,在高考中占有重要地位.数列求和是数列的重要内容之一,除了等差数列和等比数列求和可直接用对应的求和公式外,大部分数列的求和都需要运用一定的技巧.本文介绍求一个数列的前n项和的几种方法:公式法,倒序相加法,错位相减法,裂项相消法,分组求和法,并项法等.
关键词:数列求和错位相减法倒序相加法裂项相消法
“数列求和”是数列中的重要内容,也是高考命题的一个热点问题,求解数列求和问题应将常用的求和方法与一些常用的数式变换技巧联系起来,达到快速解决问题的目的.现将常用的
求和方法总结归纳如下.
一、公式法
利用以下公式求数列的和:
数列的求和方法多种多样,它在高考中的重要性显而易见.学生在学习中必须掌握好几种
最基本的方法,才能比较容易地解决数列问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点4 数列求和(倒序相加法、错位相减法、裂项相消法、分组求合法等)1.(2015江苏苏州市高三上调考)已知数列{n a }共有2k 项(2≤k 且k ∈N *),数列{n a }的前n 项的和为n S ,满足1a =2,1n a + =(p -1)n S +2(n =1,2,3,…,2n -1),其中常数p >1(1)求证:数列{n a }是等比数列; (2)若p =2212k -,数列{n b }满足21log n b n=(12n a a a ⋯)(n =1,2,…,2n ),求数列{n b }的通项公式(3)对于(2)中的数列{ n b },记3||2n n c b =-,求数列{n c }的前2k 项的和. 【考点】数列的求和;数列的应用.【解】(1)证明:当n =1时,2a =2p ,则21a p a =, 当2≤n 时,112n n a p S +=+(-),-112n n a p S =+(-), ∴11n n n a a p a +=-(-),即1n n a pa +=, ∴1n na p a +=, 故数列{n a }是等比数列.(2)由(1),得12n n a p -=(n =1,2,…,2n ),∴(1)123121222n nn n nn a a a pp-+++⋯+-⋯==2(1)(1)21221222n n n nn nk k --⨯+--==,2121log n n b a a a n =⋯() =1(1)()21n nn n k -+-=(1)121n k -+-,(n =1,2,…,2n ), 即数列{b n }的通项公式为(1)121n n b k -=+-,(n =1,2,…,2n ). (3)3||2n n c b =-,设32n b ≤,解得n ≤12k +,又n 为正整数,于是:当n ≤k 时,32n b <;当n ≥k +1时,32n b >,∴数列{n c }的前2k 项的和:2122123333 (2222)k k k T b b b b -=-+-++-+- 12122333333()()...()()()...()222222k k k k b b b b b b ++=-+-++-+-+-++- 12212b k k k k b b b b b ++=++⋯+++⋯+()-()[][]11(1)...(21)12...(1)2121k k k k k k =++++--+++--- 221k k =-. 2.(2015江苏高考冲刺压轴卷(三))设数列{n a }的前n 项和记为n S ,且234n S n n =-+.(1)求数列{n a }的通项公式; (2)设3n n n a b =,记数列{n b }的前n 项和记为n T ,,求证:2536nT ≤<. 【考点】错位相减法求和【解】(1)当n =1时,12a =,当n ≥2时,124n n n a S S n -=-=-,故2,124,2n n a n n =⎧=⎨-⎩≥,(2)2,13243,23n n n nn a b n n ⎧=⎪⎪==⎨-⎪≥⎪⎩,其中123T =,当n ≥2时,22024...333n nn T -=+++①,23112024...3333n n n T +-=+++②,∴①-②得,231222224 (33333)n n n T +-=-++-, ∴521623n n n T -=-⨯(2)n ≥,由于0n b ≥,∴2536nT ≤<. 3.(2015江苏高考冲刺压轴卷(三))已知数列{}n a 中,11a =,二次函数211()(2)2n n n f x a x a x -+=⋅+-⋅的对称轴为x =12,(1)试证明{}2n n a 是等差数列,并求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,试求使得3n S <成立的n 的值,并说明理由. 【考点】等差数列的通项公式;二次函数的性质;错位相减法求和. 【解】(1) ∵二次函数211()(2)2n n n f x a x a x -+=⋅+-⋅的对称轴为x =12, ∴n a ≠0,1211222n n n a a -+--=⨯,整理得11122n n na a +=+, 左右两边同时乘以12n +,得11222n n n n a a ++=+,即11222n n n n a a ++-= (常数),∴{}2nn a 是以2为首项,2为公差的等差数列,∴222(1)2nn a n n =+-=,∴1222n n n n n a -==. (2)∵ 012211231...22222n n n n nS ---=+++++, ①12n S = 12311231 (22222)n n n n--++++, ②①-②得:1231111111121 (1222222212)n n n n n n n S --=++++-=--, 整理得 1242n n n S -+=-.∵ 113214(4)0222n n n n n n n n S S +-+++-=---=>,∴ 数列{n S }是单调递增数列. ∴ 要使n S <3成立,即使12432n n -+-<,整理得n +2>12n -, ∴ n =1,2,3.4.(2015江苏省南京市高三考前综合)公差不为零的等差数列{n a }的前n 项之和为n S ,且2()2n n a k S +=对n ∈*N 成立.(1)求常数k 的值以及数列{n a }的通项公式;(2)设数列{n a }中的部分项123n k k k k a a a a ⋯,,,⋯,,恰成等比数列,其中1k =2,,3k =14,求1122n n a k a k a k ⋯+++的值.【考点】等差数列或等比数列中的基本量问题;错位相减法与裂项相消法. 【解】(1)法一:条件化为2n n S a k =+对n ∈*N 成立. 设等差数列公差为d ,则11(1)2(1)2n n dna a n d k -+=+-+. 分别令n =1,2,3得:1111112222332a a k a d a d k a d a d k ⎧=+⎪⎪+=++⎨⎪+=++⎪⎩①②③由①+③-2②得,1113322a a d a d +=+.两边平方得,21114233a d a a d ++=.两边再平方得,2211440a a d d -+=.解得d =21a .代入②得,1143a a k =+,④由④-①得,11a a =.所以1a =0,或1a =1. 又当1a =0时,d =0不合题意.所以1a =1,d =2. 代入①得k =1.而当k =1,1a =1,d =2时,221n n S n a n =,=-,等式2()2n n a k S +=对n ∈*N 成立.所以k =1,21n a n =-. 法二:设等差数列的首项为1a ,公差为d ,则211(1)()222n n n d dS na d n a n -=+=+-,11(1)()n a a n d dn a d =+-=+-.. 代入2()2n n a k S +=得,22111()[()]224d d n a n dn a k d +-=++-, 即22221112(42)2()()dn a d n d n d a k d n a k d +-=++-++-.因为上面等式对一切正整数n 都成立,所以由多项式恒等可得,21112422()0d d a d d a k d a k d ⎧=⎪-=+-⎨⎪+-=⎩因为d ≠0,所以解得,1211d a k =⎧⎪=⎨⎪=⎩所以常数k =1,通项公式21n a n =-. (2)设n n k c a =,则数列{n c }为等比数列,且1312314327k k c a a c a a ===,===. 故等比数列{n c }的公比q 满足2319c q c ==. 又n c >0,所以q =3.所以111333n n n n c c q⨯--===.又21n n k n c a k ==-,所以213nn k -=.由此可得11322nn k ⨯=+.所以2121322n n n n n a k --⨯=+. 所以1122n n a k a k a k ⋯+++123113355(3)(3)(3)222222=⨯++⨯++⨯+2121(3)22n n n --++⨯+L 1231[133353(21)3]2n n =⨯+⨯+⨯++-⨯L1[135(21)]2n +++++-L 123211[133353(21)3]22n n n =⨯+⨯+⨯++-⨯+L . 法一:令123133353(21)3nS n =⨯+⨯+⨯++-⨯L , 则3S =++++2311333(23)3(21)3nn n n +⨯⨯-⨯-⨯L ,两式相减得:=++++23123232323(21)3nn S n +-⨯⨯⨯--⨯L ,113(13)23(21)3213n n S n +⎡⎤-=-⨯---⨯⎢⎥-⎣⎦ 113(13)3(21)32n n n +⎡⎤=------⨯⎣⎦ 1112(1)36(1)332n n n n ++⎡⎤=---⨯-=-⨯+⎣⎦,代入得+++1122n n a k a k a k L 121211(1)33(1)33222n n n n n n ++-⋅++⎡⎤=⨯-⨯++=⎣⎦. 法二:因为1(21)3[(1)2]3(2)3kk k k k k +-⨯=+-⨯--⨯1(1)3k k +=-⨯-(2)3k k -⨯.所以213243[03(1)3][1303][2313]S =⨯--⨯+⨯-⨯+⨯-⨯1[(1)3(2)3]n n n n +++-⨯--⨯L 1(1)33n n ⨯+=-+.代入得1122n n a k a k a k ⋯+++121211(1)33(1)33222n n n n n n ++-⋅++⎡⎤=⨯-⨯++=⎣⎦. 5.(江苏省南京市2015届高三上学期9月调考数学试卷)已知{}n a 是等差数列,其前n项的和为n S ,{}n b 是等比数列,且112a b ==,4421a b +=,4430S b +=. (1)求数列{}n a 和{}n b 的通项公式;(2)记*,n n n c a b n =∈N ,求数列{}n c 的前n 项和.【考点】数列的求和,数列递推式.【解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由112a b ==,得4a =2+3d ,342b q =,486S d =+由条件4421a b +=,4430S b +=,得方程组332322186230d q d q ⎧++=⎨++=⎩解得12d q =⎧⎨=⎩ 所以*12n n n a n b n =+=∈N ,,. (2)由题意知,(1)2nn c n =+⨯.记123n n T c c c c =++++L .则123n n T c c c c =++++L =231223242212n n n n -⨯+⨯+⨯++⨯++⨯L (), 23412223242212n n n T n n +=⨯+⨯+⨯++⨯++⨯L (),所以2311=22(2222)(1)2n n n n T n -+-⨯+++++-+L ,1*2()n n T n n +=⨯∈N .6. (15淮安市金湖中学高三上学期第一次学情检测数学试卷)已知{n a }为等比数列,其中1a =1,且2354a a a a +,,成等差数列. (1)求数列{n a }的通项公式:(2)设21n n b n a =⋅(﹣),求数列{n b }的前n 项和n T .【考点】数列的求和;等比数列的通项公式.【解】(1)设在等比数列{n a }中,公比为q , ∵11a =,且2354a a a a +,,成等差数列,∴35242a a a a +=+(), ∴2432q q q q +=+(),和为________. 【答案】 75 8.已知函数()22,n n f n n n ⎧⎨-⎩当为奇数时=,当为偶数时,且()(1)n a f n f n =++,则123100+a a a a +L ++等于________. 【答案】 100【分析】 由题意,得123100+a a a a +L ++=2222222222221223344599100100101------L ++++++ =(12)(32)(99100)(101100)--L +++++++ =(1299100)(23100101)-L L +++++++++ =5010150103100-⨯⨯+=.9.数列12a +,L ,2k a k +,L ,1020a +共有十项,且其和为240,则1a L ++10k a a L ++的值为________. 【答案】 130 【分析】1a L ++10k a a L ++=240-(2+L +2k +L +20)=240-10.(2015·泰州质检)已知数列{}n a 满足11a =,*12()n n n a a n ⋅∈N +=,则2016S =________. 【答案】 1008323⋅-∴201612345620152016S a a a a a a a a L =++++++++ =13520152462016()()a a a a aa a a L L +++++++++12.(2015·扬州测试)在数列{}n a 中,11a =,1(1)(1)n n n a a -+=+,记n S 为{}n a 的前n 项和,则2013S =________. 【答案】 -1005【分析】 由11a =,1(1)(1)n n n a a -+=+可得22a -=,31a -=,40a =,51a =, 该数列是周期为4的数列,所以20131234 2 013503()503(2)1S a a a a a ⨯-=++++=+= 1005-.13.(2014·济南模拟)设等差数列{}n a 的前n 项和为n S ,且3224S S =+,536a =.(1)求n a ,n S ;【解】(1)因为3224S S =+,所以14a d --=, 又因为536a =,所以1436a d +=.解得d =8,14a =,所以48(1)84n a n n --=+=,(2)241(21)(21)n b n n n --==+,14.(2015·石家庄模拟)已知{}n a 是各项均为正数的等比数列,且122a a ⋅=,3432a a ⋅=.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为2*()n S n n ∈N =,求数列{}n n a b ⋅的前n 项和.【解】(1)设等比数列{}n a 的公比为q ,由已知得21251232a q a q ⎧=⎨=⎩,又∵10a >,0q >,解得112a q =⎧⎨=⎩,∴12n n a -=.(2)由2n S n =得()21(1)2n S n n --=≥,∴当2n ≥时,121n n n b S S n ---==,当n =1时,11b =符合上式, ∴*21()n b n n -∈N =,∴1(21)2n n n a b n -⋅-⋅=.12113252(21)2n n T n -=+⋅+⋅++-⋅L ,2312123252(23)2(21)2n n n T n n ⋅⋅⋅-⋅-⋅L -=+++++,两式相减得2112(222)(21)2(23)23n n n n T n n ----⋅--⋅-L =++++=, ∴(23)23nn T n -=+.15.数列{}n a 满足1(1)21nn n a a n --++=,则{}n a 的前60项和为________.【答案】 1830【分析】 ∵1(1)21nn n a a n --++=,∴211a a =+,312a a -=,417a a -=,51a a =,619a a =+,712a a -=,8115a a -=, 91a a =,10117a a =+,1112a a -=,12123a a -=,L ,571a a =,581113a a =+, 5912a a -=,601119a a =-,所以111333n n nn a a q --⨯===,前n 项和,则21S =________. 【答案】 6偶数项分别相等,则2111a a ==,211234()()S a a a a L =++++1920()a a ++ 18.(2015·长沙模拟)已知函数()()2cos f n n n π=,且()(1)n a f n f n =++,则12a a +3100a a L +++=________.【答案】 -100【分析】 若n 为偶数,则()22(1)(1)(21)n a f n f n n n n --=++=+=+,为首项为25a -=,公差为4-的等差数列;若n 为奇数,则()(1)n a f n f n =++= 22(1)21n n n -++=+,为首项为13a =,公差为4的等差数列.所以123100139924100()()a a a a a a a a a a L L L ++++=+++++++________. 【答案】5即S =5. 20.在数列{}n a 中,15a -=,22a -=,记()12n A n a a a L =+++,()23B n a a =+1n a L +++,()*342()n C n a a a n ∈N L +=+++,若对于任意*n ∈N ,A (n ),B (n ),C (n )成等差数列.(1)求数列{}n a 的通项公式; (2)求数列{}||n a 的前n 项和.【解】(1)根据题意A (n ),B (n ),C (n )成等差数列, ∴A (n )+C (n )=2B (n ),整理得2121253n n a a a a ---++==+=, ∴数列{}n a 是首项为-5,公差为3的等差数列, ∴53(1)38n a n n ---=+=. (2)38,2||=38,3n n n a n n -+⎧⎨-⎩≤≥,记数列{}||n a 的前n 项和为n S .21. (2014·广州综测)已知等差数列{}n a 的前n 项和为2()n S n pn q p q ∈R =++,,且2a ,3a ,5a 成等比数列.(1)求p ,q 的值;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .【解】(1)当n =1时,111a S p q ==++, 当2n ≥时,1n n n a S S --==22[(1)(1)]n pn q n p n q ---++++ =21n p -+. ∵{}n a 是等差数列,∴1+p +q =2×1-1+p ,得q =0. 又23a p =+,35a p =+,59a p =+, ∵2a ,3a ,5a 成等比数列,∴2325a a a =,即2(5)(3)(9)p p p +=++,解得p =-1. (2)由(1)得22n a n -=. ∵22log log n n a n b +=,∴221224n an n n b n n n --⋅⋅⋅===.∴1231n n n T b b b b b -L =+++++0122142434(1)44n n n n --⨯⨯⋅⋅L =++++-+,① 1231442434(1)44n n n T n n -⨯⨯-⋅⋅L =+++++,②①-②得0121344444n nn T n ---⋅L =++++。