最新错位相减法求和附答案
(完整版)错位相减法等比数列求和十题

(完整版)错位相减法等比数列求和十题1. 题目已知一个等比数列的首项是a,公比是r,前n项和是Sn。
根据错位相减法,推导出用Sn表示S2n-Sn的公式。
2. 解答根据错位相减法的原理,我们可以得出:S2n - Sn = (a*r^(2n-1) + a*r^(2n-2) + ... + a*r + a*r^0) - (a*r^(n-1) + a*r^(n-2) + ... + a*r + a*r^0)化简后得到:S2n - Sn = a * (r^(2n-1) + r^(2n-2) + ... + r + 1) - a * (r^(n-1) +r^(n-2) + ... + r + 1)因此,用Sn表示S2n-Sn的公式可以表示为:S2n - Sn = (a * (r^(2n-1) + r^(2n-2) + ... + r + 1)) - (a * (r^(n-1) + r^(n-2) + ... + r + 1))3. 答案验证为了验证这个公式的正确性,我们可以举一个具体的例子。
假设首项a=2,公比r=3,项数n=3。
根据公式计算:S2n - Sn = (2 * (3^(2*3-1) + 3^(2*3-2) + 3^2 + 3 + 1)) - (2 * (3^(3-1) + 3^(3-2) + 3 + 1))= (2 * (81 + 27 + 9 + 3 + 1)) - (2 * (9 + 3 + 3 + 1))= (2 * 121) - (2 * 16)= 242 - 32= 210我们还可以通过计算原数列的前2n项和和前n项和,来验证公式的准确性。
原数列前2n项和:S2n = (2 * (3^(2*3-1) + 3^(2*3-2) + 3^2 + 3 + 1)) = 242原数列前n项和:Sn = (2 * (3^(3-1) + 3^(3-2) + 3 + 1)) = 32由此可见,公式得出的结果与实际计算符合,验证了公式的正确性。
错位相减法求和附问题详解

错位相减法求和专项错位相减法求和适用于{a n`b n }型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意:①项的对应需正确;②相减后应用等比数列求和部分的项数为(n-1)项;③若等比数列部分的公比为常数,要讨论是否为11. 已知二次函数的图象经过坐标原点,其导函数,数列的前项和为,点均在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,求.[解析]考察专题:2.1,2.2,3.1,6.1;难度:一般[答案] (Ⅰ)由于二次函数的图象经过坐标原点,则设,,∴,∴,又点均在函数的图象上,∴.∴当时,,又,适合上式,∴............(7分)(Ⅱ)由(Ⅰ)知,,∴,∴,上面两式相减得:.整理得..............(14分)2.已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.[答案]查看解析[解析] (1)当n = 1时,解出a1 = 3,又4S n = a n2 + 2a n-3①当时4s n-1 = + 2a n-1-3 ②①-②, 即,∴,(),是以3为首项,2为公差的等差数列,6分.(2)③又④④-③=12分3.(2013年四川成都市高新区高三4月月考,19,12分)设函数,数列前项和,,数列,满足.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,数列的前项和为,证明:. [答案] (Ⅰ) 由,得是以为公比的等比数列,故.得(Ⅱ)由,…,记…+,用错位相减法可求得:. (注:此题用到了不等式:进行放大. )4.已知等差数列中,;是与的等比中项.(Ⅰ)求数列的通项公式:(Ⅱ)若.求数列的前项和[解析](Ⅰ)因为数列是等差数列,是与的等比中项.所以,又因为,设公差为,则,所以,解得或,当时, ,;当时,.所以或. (6分)(Ⅱ)因为,所以,所以,所以,所以两式相减得,所以. (13分)5.已知数列的前项和,,,等差数列中,且公差.(Ⅰ)求数列、的通项公式;(Ⅱ)是否存在正整数,使得若存在,求出的最小值,若不存在,说明理由.[解析](Ⅰ)时,相减得:,又,,数列是以1为首项,3为公比的等比数列,.又,,. (6分)(Ⅱ)令………………①…………………②①-②得:,,即,当,,当。
错位相减法求和附答案解析

错位相减法求和专项.}{a分别是等差数列和等比数列,在应用过{ab}型数列,其中错位相减法求和适用于nn`nn程中要注意:项的对应需正确;相减后应用等比数列求和部分的项数为(n-1)项;若等比数列部分的公比为常数,要讨论是否为1数列的前项已知二次函数的图象经过坐标原点,其导函数,1.均在函数,点的图象上.和为)求数列Ⅰ(的通项公式;是数列的前项和,求.(Ⅱ)设,[解析]考察专题:,,,;难度:一般[答案] (Ⅰ)由于二次函数的图象经过坐标原点,,,则设∴,∴,又点均在函数的图象上,∴.时,,当∴又,适合上式,∴............(7分),)知,Ⅰ)由(Ⅱ(.∴,∴,上面两式相减得:.整理得..............(14分)是数列的前n2.项和,且已知数列的各项均为正数,.)求数列的通项公式;1()的值.(2][答案查看解析时,解出an = 1 = 3,] [解析(1)当12-①34S又= a + 2a nnn = + 2a-4s3 ②当时n-1n1-即,, -①②,∴.(),是以3为首项,2为公差的等差数列,6分.)2③(又④③④-=12分设函数,19,12分)(2013年四川成都市高新区高三4月月考,3.,数列前数列.项和,满足,)求数列的通项公式;(Ⅰ,证明:的前,数列.项和为(Ⅱ)设数列的前项和为,得由Ⅰ[答案] ()为公比的等比数列,故.是以)由(Ⅱ得,…,…+,记用错位相减法可求得:(注:此题用到了不等式:进行放大. . )与的等比中项.4.已知等差数列是中,;)求数列的通项公式:(Ⅰ项和Ⅱ)若的前.求数列(的等比中项.所以,是([解析]Ⅰ)因为数列与是等差数列,,则,又因为,设公差为或,,解得所以,;时当,时,.当或. (6所以分),,所以,所以)因为Ⅱ(.所以,所以两式相减得,所以. (13分)中,项和,等差数列,5.,已知数列的前且公差.、的通项公式;)求数列(Ⅰ若存在,求出)是否存在正整数的最小值,,使得(Ⅱ.若不存在,说明理由时,相减得:)([解析]Ⅰ,,,又为公比的等比数列,.是以1为首项,3数列,. (6又,分))(Ⅱ令………………①…………………②.得:②①-。
数列求和(错位相减) 高考数学

试卷讲评课件
=
【解析】∵
= ⋅
+ =
=
=
则
,解得
或
(舍去)
+ = ⋅ +
=
=
∴ = + − = − .
又∵ = − ,
当 = 时, = − ,则 =
− ⋅
+. . . + − ⋅
= +
− − ⋅
+
+
①
+
②
+. . . +
= −
+
+
− − ⋅
+
,
试卷讲评课件
+
∴ = − .
−
则 −
= −
− ,
当 ≥ 时,由 + + = 有− + − + = ,两式相减
可得�� = − ,
即{ }是以− 为首项,以 为公比的等比数列,
−
所以 = −
= −
.
试卷讲评课件
(2)设数列{bn }满足2bn + n − 3 an = 0 n ∈ N ∗ ,记数列{bn }的前n项
所以 = − ,
+
因为 − =
错位相减法求和附答案

(Ⅱ ) 若数列 满足:
(
) ,求 的前 项和公式 .
[解析 ]Ⅰ ) ∵
,①
∴
②
② - ① 得,
,又 时,
,
,
. (5 分)
(Ⅱ ) ∵
, ,
,
两式相减得
,
.
( 13 分)
8.设 d 为非零实数 , an= [ d+2 d2+… +(n-1)
dn-1+n dn](n∈ N* ) .
(Ⅰ ) 写出 a1, a2, a3 并判断 {an}是否为等比数列 . 若是 , 给出证明 ;若不是 , 说明理由 ; (Ⅱ ) 设 bn=ndan(n∈ N*) , 求数列 {bn}的前 n 项和 Sn. [答案 ] (Ⅰ ) 由已知可得 a1=d, a2=d(1+d) , a3=d(1+d) 2.
为首项 ,公比为 的等比数列 .
…………4分
(2)由 (1)可得
, ∴
得
,
………… 分10(3) ,
∴
当
时,
取最小值 ,
,
,即
,
当
时,
恒成立;
当
时,由
,解得 ,
即实数 的取值范围是
. ………… 分14
12.设 为数列
且
.
的前 项和,对任意的
,都有
(1)求证:数列
是等比数列;
(2)设数列 的通项公式;
满足
,等比数列
满足
.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)设
,求数列
的前 项和 .
[解析 ] (Ⅰ)由 所以
,所以数列
高考数学解答题(新高考)数列求和(错位相减法)(典型例题+题型归类练)(解析版)

专题07 数列求和(错位相减法)(典型例题+题型归类练)一、必备秘籍错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合.2.关注相减的项数及没有参与相减的项的保留.类型一:乘型n n n c a b =⋅(其中n a 是等差数列,n b 是等比数列)类型二:除型二、典型例题类型一:乘型n n n c a b =⋅(其中n a 是等差数列,n b 是等比数列)例题1.(2022·重庆巴蜀中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且231n n S a =-. (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式为21n b n =+,求1122n n n T a b a b a b =+++的值.感悟升华(核心秘籍) 错位相减法的两个陷阱(易错点):(特别说明,错位相减其中一种理解就是通过错位,使得齐次对齐,然后再相减) 第(2)问思路点拨:由(1)知:根据题意,令,则求解目标,属于典型的错位相减求和的模型.相减:(注意此处标识“”为错位相减法第一易错点,特别注意前面的“”号)化简求和:(注意此处等比数列求和只有项的和,所以求和时“”此处是“”而不是“”)【答案】(1)3=n a (2)3n T n =⋅ (1)当1n =时,1112321S a a =-⇒=, 又231n n S a =-,①当2n ≥时11231n n S a --=-,② ①−②得:1233n n n a a a -=-,即13n n a a -=, ∴数列{}n a 是以1为首项,3为公比的等比数列, ∴ 13-=n n a . (2)01-13353(21)3n n T n =⨯+⨯+++,③12-133353+(21)?3(21)?3n n n T n n =⨯+⨯+-++,④③−④得:121232(333)(21)3n n n T n --=++++-+13(13)32(21)313n n n --=+⨯-+-(2)3n n =-,所以3n n T n =.例题2.(2022·黑龙江·哈尔滨三中模拟预测(理))已知数列{}n a ,13a =,点()1,n n a a +在曲线5823x y x -=-上,且12n n b a =-. (1)求证:数列{}n b 是等差数列; (2)已知数列{}n c 满足122n b n n c b +=⋅,记n S 为数列{}n c 的前n 项和,求n S .【答案】(1)证明见解析(2)16(23)2n n S n +=+-⋅;证明见解析(特别说明,错位相减其中一种理解就是通过错位,使得齐次对齐,然后再相减) 第(2)问思路点拨:由(1)知:根据题意,求的前项和,属于典型的错位相减求和的模型.相减:(注意此处标识“”为错位相减法第一易错点,特别注意前面的“”号)化简求和:(注意此处等比数列求和只有项的和,所以求和时“”此处是“”而不是“”)解答过程:(1)因为点()1,n n a a +在曲线5823x y x -=-上,所以15823n n n a a a +-=-,因为13a =,所以11111232b a ===--, 因为11111158222223n n n n n n n b b a a a a a ++-=-=-------231222n n n a a a -=-=--, 所以数列{}n b 是首项为1,公差为2的等差数列. (2)由(1)得1(1)221n b b n n =+-⋅=-, 所以1221)22(n n b n nc b n +=⋅=-⋅,所以123123252(212)n n n S =⨯+⨯+⨯++-⋅,3124123252(21)22n n S n +=⨯+⨯+⨯++-⋅,所以231222(222)(21)2n n n n S S n +-=++++--⋅,所以114(12)22(21)212n n n S n -+--=+⨯--⋅-16(32)2n n +=-+-⋅,所以16(23)2n n S n +=+-⋅.类型二:除型nn na cb =(其中n a 是等差数列,n b 是等比数列) 例题3.(2022·湖南·模拟预测)设数列{}n a 的前n 项和为n S ,已知12a =,122n n a S +=+. (1)求{}n a 的通项公式;(2)若23n n a b n =,求数列{}n b 的前n 项和n T .【答案】(1)123n n a -=⨯(2)323443n nn T +=-⨯第(2)问思路点拨:由(1)知:根据题意,求的前项和,属于典型的错位相减求和的模型.但,求和前,最好化简通项为“乘型”,即:相减,化简,求和:(注意此处等比数列求和有项的和,所以求和时“”此处是“”而不是“”)解答过程:(1)122n n a S +=+,① 当2n ≥时,122n n a S -=+,②①-②得()1122n n n n n a a S S a +--=-=,∴13(2)n n a a n +=≥,∴13n na a +=, ∵12a =,∴21226a S =+=,∴21632a a ==也满足上式, ∴{}n a 为等比数列且首项为2,公比为3,∴111323n n n a a --=⋅=⋅. 即{}n a 的通项公式为123n n a -=⨯.(2)由(1)知123n n a -=⨯,所以233n n n n nb a ==, 令211213333n n n n nT --=++++,① 得231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++-11111113311323313n n n n n n++⎛⎫- ⎪⎛⎫⎝⎭=-=-- ⎪⎝⎭-, 所以323443n nn T +=-⨯.例题4.(2022·河南·灵宝市第一高级中学模拟预测(文))已知数列{}n a 满足()()*1111n n a a n n n n n +-=∈++N ,且11a =.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足13nn n a b -=,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1133n n n S -+=-第(2)问思路点拨:由(1)知:根据题意,得,求的前项和,属于典型的错位相减求和的模型.但,求和前,最好化简通项为“乘型”,即:相减:化简求和:解答过程:(1)因为()1111111n n a a n n n n n n +-==-+++, 所以()111211n n a a n n n n n--=-≥--, 12111221n n a a n n n n ---=-----, …2111122a a -=-, 所以()1112n a a n n n-=-≥. 又11a =,所以21n a n n n-=,所以()212n a n n =-≥. 又11a =,也符合上式, 所以21n a n =-. (2)结合(1)得1213n n n b --=,所以 01231135********n n n S --=++++⋅⋅⋅+,① 2311352133333n n n S -=+++⋅⋅⋅+,② ①-②,得212111211233333n n n n S --⎛⎫=+++⋅⋅⋅+- ⎪⎝⎭111213321221213313n n nn n -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭-+⎢⎥⎣⎦=+-=--,所以1133n n n S -+=-. 三、题型归类练1.(2022·辽宁·沈阳市外国语学校高二期中)设数列{}n a 的前n 项和为n S ,且满足4n n S a =-,数列{}n b 满足13b =,且1n n n b b a +=+. (1)求数列{}n b 的通项公式;(2)设n n c na =,数列{}n c 的前n 项和为n T ,求n T . 【答案】(1)3172n n b -⎛⎫=- ⎪⎝⎭(2)()18482nn T n ⎛⎫=-+⋅ ⎪⎝⎭(1)解:∵4n n S a =-,当2n ≥时114n n S a --=-, 两式作差得()12n n n a a a n -=-+≥, 即()1122n n a a n -=≥.当1n =时1114a S a ==-,∴12a =, ∴{}n a 为首项为2,公比为12的等比数列,∴1122n n a -⎛⎫=⋅ ⎪⎝⎭,∴11122n n n b b -+⎛⎫=+⋅ ⎪⎝⎭,即11122n n n b b -+⎛⎫-=⋅ ⎪⎝⎭,又13b =,∴当2n ≥时,()()()121321n n n b b b b b b b b -=+-+-+⋅⋅⋅+-0121113222222n -⎛⎫⎛⎫⎛⎫=+⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111232112n -⎛⎫- ⎪⎝⎭=+⨯-3172n -⎛⎫=- ⎪⎝⎭,当1n =时,1311372b -⎛⎫==- ⎪⎝⎭,∴3172n n b -⎛⎫=- ⎪⎝⎭;(2)解:由题意1122n n c n -⎛⎫=⋅ ⎪⎝⎭则011111242222n n T n -⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①则()121111112*********n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,②①-②得012111111122222222222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯-⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1112221212nnn ⎛⎫- ⎪⎛⎫⎝⎭=⨯-⋅ ⎪⎝⎭-()14222n n ⎛⎫=-+⋅ ⎪⎝⎭,∴()18482nn T n ⎛⎫=-+⋅ ⎪⎝⎭,2.(2022·广东·模拟预测)已知各项均为正数的数列{}n a 满足()22*11230n n n n a a a a n ++--=∈N ,且13a =.(1)求{}n a 的通项公式;(2)若31log n n n b a a +=,求{}n b 的前n 项和n T .【答案】(1)3n n a =(2)1133244n n n T +⎛⎫=+- ⎪⎝⎭(1)解:因为()22*11230n n n n a a a a n ++--=∈N , 所以()()1130n n n n a a a a +++-=,又因0n a >,所以130n n a a +-=, 即13n na a +=, 所以数列{}n a 是以3为等比的等比数列,是以3n n a =;(2)解:()3131log l 313g 3o n n n n n n b a n a ++=+==⋅,则()2323334313n n T n =⨯+⨯+⨯+++,()23413233343313n n n T n n +=⨯+⨯+⨯++⋅++, 两式相减得()2312633313n n n T n +-=++++-+()()131331313n n n +⨯-=+-+-113322n n +⎛⎫=-++ ⎪⎝⎭, 所以1133244n n n T +⎛⎫=+- ⎪⎝⎭. 3.(2022·河南郑州·三模(理))已知数列{}n a 的前n 项和为n S ,122n n n a S -=. (1)证明数列2nn a ⎧⎫⎨⎬⎩⎭为等差数列; (2)求数列{}n S 的前n 项和n T .【答案】(1)证明见解析;(2)()2124n n T n +=-⋅+.(1)N n *∈,122n n n a S -=,当2n ≥时,111122n n n a S ----=,两式相减得:111222n n n n n a a a ----=-, 即11122n n n a a ---=,则有11122n n n n a a ---=,而11122a S -=,解得14a =, 所以数列2n n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列. (2)由(1)知,()21112n n a n n =+-⨯=+,即()12n n a n =+⋅,于是得12n n S n +=⋅, ()2341122232122n n n T n n +=⨯+⨯+⨯++-⨯+⨯,因此()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯=,两式相减得:22341222(22222222(112))214n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅--, 所以()2124n n T n +=-⋅+. 4.(2022·全国·模拟预测)已知公差为整数的等差数列{}n a 满足23a =,5810a <<.(1)求数列{}n a 的通项公式;(2)设()2nn n b a =-⋅,求数列{}n b 的前n 项和n S . 【答案】(1)21n a n =-;(2)()12212939n n S n +⎛⎫=--⋅- ⎪⎝⎭. (1)解:设等差数列{}n a 的公差为d ,因为23a =,5810a <<,所以83310d <+<,解得5733d <<, 又d ∈Z ,所以2d =, 所以()()2232221n a a n d n n =+-=+-=-.(2)解:因为()2n n n b a =-⋅,所以()()212n n b n =-⋅-, 所以()()()()()()()231123252232212n n n S n n -=⨯-+⨯-+⨯-++-⋅-+-⋅-,① ()()()()()()23121232232212n n n S n n +-=⨯-+⨯-++-⋅-+-⋅-,②①-②得,()()()()()231322222212n n n S n +⎡⎤=-+⨯-+-+⋅⋅⋅+---⋅-⎣⎦()()()()()()2111222122223221321n n n n n +++---⎛⎫-=--⋅- ⎪-=⎝⎭-+⨯--⋅-, 所以()12212939n n S n +⎛⎫=--⋅- ⎪⎝⎭. 5.(2022·江西南昌·三模(理))已知数列{}n a 为等比数列,且11a =,2112n n n a a -+=-.(1)求{}n a 的通项公式; (2)设(1)n n nn b a -⋅=,求数列{}n b 的前n 项和n S . 【答案】(1)1(2)n n a -=-(2)1242n n n S -+=- 【解析】(1)因为2112n n n a a -+=-,所以21122n n n a a +++=-, 两式相除可得24n na a +=,即24q =, 因为21n n n a a a q +=,所以22120n n a q +=-<,可得0q <,所以2q =-,所以111(2)n n n a a q --==-. (2)11(1)(2)2n n n n n n b ---⋅==--, 则01221123122222n n n n n S ---⎛⎫=-+++⋅⋅⋅++ ⎪⎝⎭ ① 12311231222222n n n S n n --⎛⎫=-+++⋅⋅⋅++ ⎪⎝⎭ ② ①-②可得:1211111122121222222212nn n n n n S n n n -⎛⎫- ⎪+⎛⎫⎝⎭=-+++⋅⋅⋅+-=-=- ⎪⎝⎭-, 故1242n n n S -+=-. 6.(2022·全国·模拟预测)已知数列{}n a 满足11a =,121n n a a n +=+-.(1)证明:{}n a n +为等比数列;(2)求数列{}2nn a的前n 项和n S . 【答案】(1)证明见解析(2)222n nn S n +=-+ (1)由已知得()()112n n a n a n +++=+.又因为111120a +=+=≠,所以{}n a n +是首项为2,公比为2的等比数列;(2)由(1)可知1222n n n a n -+=⨯=.所以122n n n a n =-. 记2n n ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则n n S n T =-,且有 231232222n n n T =+++⋅⋅⋅+, ① 12⨯①得 2341112322222n n n T +=+++⋅⋅⋅+, ② -①②得23411111112222222n n n n T +=++++⋅⋅⋅+- 1111221212n n n +⎛⎫- ⎪⎝⎭=--所以222n nn T +=- 所以222n n n n S n T n +=-=-+. 7.(2022·河南河南·三模(理))已知等差数列{}n a 的前n 项和为n S ,13a =-,612S =,数列{}n b 的前n 项和为122n n G .(1)求数列{}n a 和{}n b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .【答案】(1)25,2n n n a n b =-=(2)127214n n T n .(1)设等差数列{}n a 的公差为d ,则1615181512,2a d d d +=-+==,所以25n a n =-. 由122n n G ,令1n =得21222b ,当2n ≥时,112222n n n n G G +-⎧=-⎨=-⎩,两式相减得()22n n b n =≥,12b =也符合上式, 所以2n n b =.(2)252n n c n ,()()()123212252n n T n =-⋅+-⋅++-⋅①, ()()()23123212252n n T n +=-⋅+-⋅++-⋅②,①-②得:()34116222252n n n T n ++-=-++++--⋅ ()()()311121262521472212n n n n n -++-=-+--⋅=-+-⋅-, 所以127214n n T n .8.(2022·全国·模拟预测(理))设数列{}n a 满足12a =,()122*n n a a n n --=-∈N .(1)求证:{}n a n -为等比数列,并求{}n a 的通项公式;(2)若()n n b a n n =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析,12n n a n -=+(2)()121n n T n =-⨯+(1)解:因为12a =,()122*n n a a n n --=-∈N , 所以122n n a a n -=+-,即()121n n a n a n -⎡⎤-=--⎣⎦ 又11211a -=-=,所以{}n a n -是以1为首项,2为公比的等比数列,所以112n n a n --=⨯,所以12n n a n -=+(2)解:由(1)可得()12n n n b a n n n -=-⋅=⨯,所以01211222322n n T n -=⨯+⨯+⨯++⨯①,所以12321222322n n T n =⨯+⨯+⨯++⨯②,①-②得12311121212122n n n T n --=+⨯+⨯+⨯++⨯-⨯ 即12212n n n T n --=-⨯-,所以()121n n T n =-⨯+; 9.(2022·江西·二模(理))已知正项数列{}n a 的前n 项和为n S ,212S =,且()*,m n m n a a a m n +=∈N . (1)求{}n a 的通项公式;(2)若n nn b a =,求数列{}n b 的前n 项和n T . 【答案】(1)3n n a =(2)323443n n n T +=-⨯ (1)令m =n =1,得221a a =,又21212S a a =+=,解得:13a =或14a =-(负值舍去), 令m =1,得11n n a a a +=,所以13n na a +=, 所以{}n a 是以3为首项,3为公比的等比数列,所以3n n a =.(2)由(1)可得,3n n n n n b a ==, 所以231233333n nn T =++++, 所以2341112333333n n n T +=++++, 两式相减得,23412111113333333n n n n T +=+++++- 11111123331322313n n n n n ++⎛⎫- ⎪+⎝⎭=-=-⋅-, 所以323443n nn T +=-⨯. 10.(2022·江西萍乡·二模(文))已知数列{}n a 中,111,2n n n a a a +==,令2n n b a =.(1)计算123,,b b b 的值,并求数列{}n b 的通项公式;(2)若()31n n c n b =+,求数列{}n c 的前n 项和n T .【答案】(1)1232,4,8b b b ===;2n n b =(2)1(32)24n n T n +=-⋅+(1)由12nn n a a +=得12nn n a a +=,又11a =,423562,2,4,84,a a a a a ∴=====,4612232,4,8b a b a b a ∴======,由 12n n n a a +=得1122n n n a a +++=,两式相除可得 22n na a +=, 则 12222n n n nb a b a ++==, {}n b ∴ 是以2 为首项,2 为公比的等比数列,故 2n n b =;(2)由 (1) 知 (31)2n n c n =+,则 ()2314272102322(31)2n n n T n n -=⨯+⨯+⨯++-++,()234124272102322(31)2n n n T n n +=⨯+⨯+⨯++-++, 两式相减得()2123112283222(31)283(31)212n n n n n T n n +++--=+⨯+++-+=+⨯-+- 1(23)24n n +=-⋅-,故1(32)24n n T n +=-⋅+。
最新数列求和错位相减法-裂项相消法后附答案

数列求和错位相减法-裂项相消法后附答案------------------------------------------作者xxxx------------------------------------------日期xxxx一、解答题1.已知等差数列{a n}的前n项和为S n,且a2=3,S6=36.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b n=2n⋅a n,n∈N∗,求数列{b n}的前n项和T n.【详解】(Ⅰ)a 2=3,∴a1+d=3S6=36,∴6a1+15d=36则a1=1,d=2a n=2n−1.(Ⅱ)由(Ⅰ)可知,b n=2n(2n−1)T n=1×2+3×22+5×23+⋯+(2n−3)×2n−1+(2n−1)×2n,2T n=1×22+3×23+5×24+⋯+(2n−3)×2n+(2n−1)×2n+1-T n=2+2×22+2×23+2×24.....+2×2n−(2n−1)×2n+1=2+2×4(1−2n−1)−(2n−1)⋅2n+11−2=−6+2n+2−(2n−1)⋅2n+1=−6+2n+1(3−2n)∴T n=6+(2n−3)⋅2n+12.已知数列{a n}的前n项和为S n,且a1=2,a n+1=S n+2,n∈N∗(1)求数列{a n}的通项公式;(2)设b n=n⋅a n,求数列{a n}的前n项和T n.【答案】(1)a n=2n(2)2+(n−1)×2n+1【详解】(1)∵a n+1=S n+2,n∈N∗,∴S n=a n+1−2,即S n+1=2a n+1−2,∴S n+2=2a n+2−2,两式相减,得a n+2=2a n+2−2a n+1,即a n+2=2a n+1, 又∵a 1=2,∴a 2=S 1+2=2+2=4, 即数列是首项为2,公比为2的等比数列, 所以a n =2n ;(2)设b n =n ⋅a n ,则b n =n ×2n ,∴T n =1×2+2×22+3×23+⋯+(n −1)×2n−1+n ×2n , 2T n =1×22+2×23+3×24+⋯+(n −1)×2n +n ×2n+1,两式相减,得:T n =−1×2−1×22−1×23−⋯−1×2n−1−1×2n +n ×2n+1=n ×2n+1−(2+22+23+⋯+2n−1+2n )=n ×2n+1−2×(1−2n)1−2=2+(n −1)×2n+1.【点睛】本题考查数列的递推关系,通项公式,前n 项和,错位相减法,利用错位相减法是解决本题的关键,属于中档题.3.已知等差数列{a n }的前n 项和为S n ,满足S n =(a n +12)2(n ∈N ∗)。
高考数学数列求和错位相减裂项相消(解析版)全

数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
错位相减法求和专项错位相减法求和适用于{a n`b n }型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意:①项的对应需正确;②相减后应用等比数列求和部分的项数为(n-1)项;③若等比数列部分的公比为常数,要讨论是否为11. 已知二次函数的图象经过坐标原点,其导函数,数列的前项和为,点均在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅰ)设,是数列的前项和,求.[解析]考察专题:2.1,2.2,3.1,6.1;难度:一般[答案] (Ⅰ)由于二次函数的图象经过坐标原点,则设,,Ⅰ,Ⅰ,又点均在函数的图象上,Ⅰ.Ⅰ当时,,又,适合上式,Ⅰ............(7分)(Ⅰ)由(Ⅰ)知,,Ⅰ,Ⅰ,上面两式相减得:.整理得..............(14分)2.已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.[答案]查看解析[解析] (1)当n = 1时,解出a1 = 3,又4S n = a n2 + 2a n-3①当时4s n-1 = + 2a n-1-3②①-②, 即,Ⅰ ,(),是以3为首项,2为公差的等差数列,6分.(2)③又④④-③=12分3.(2013年四川成都市高新区高三4月月考,19,12分)设函数,数列前项和,,数列,满足.(Ⅰ)求数列的通项公式;(Ⅰ)设数列的前项和为,数列的前项和为,证明:. [答案] (Ⅰ) 由,得是以为公比的等比数列,故.(Ⅰ)由得,…,记…+,用错位相减法可求得:. (注:此题用到了不等式:进行放大. )4.已知等差数列中,;是与的等比中项.(Ⅰ)求数列的通项公式:(Ⅰ)若.求数列的前项和[解析](Ⅰ)因为数列是等差数列,是与的等比中项.所以,又因为,设公差为,则,所以,解得或,当时, ,;当时,.所以或.(6分)(Ⅰ)因为,所以,所以,所以,所以两式相减得,所以.(13分)5.已知数列的前项和,,,等差数列中,且公差.(Ⅰ)求数列、的通项公式;(Ⅰ)是否存在正整数,使得若存在,求出的最小值,若不存在,说明理由.[解析](Ⅰ)时,相减得:,又,,数列是以1为首项,3为公比的等比数列,.又,,. (6分)(Ⅰ)令………………①…………………②①-②得:,,即,当,,当。
的最小正整数为4.(12分)6. 数列满足,等比数列满足.(Ⅰ)求数列,的通项公式;(Ⅰ)设,求数列的前项和.[解析] (Ⅰ)由,所以数列是等差数列,又,所以,由,所以,,所以,即,所以.(6分)(Ⅰ)因为,所以,则,所以,两式相减的,所以. (12分)7. 已知数列满足,其中为数列的前项和.(Ⅰ) 求的通项公式;(Ⅰ) 若数列满足:() ,求的前项和公式.[解析]Ⅰ) Ⅰ,①Ⅰ②②-①得,,又时,,,.(5分)(Ⅰ) Ⅰ,,,两式相减得,.(13分)8.设d为非零实数, a n=[d+2d2+…+(n-1) d n-1+n d n](nⅠN*) .(Ⅰ) 写出a1, a2, a3并判断{a n}是否为等比数列. 若是, 给出证明;若不是, 说明理由; (Ⅰ) 设b n=nda n(nⅠN*) , 求数列{b n}的前n项和S n.当n≥2, k≥1时, =, 因此a n=.由此可见, 当d≠-1时, {a n}是以d为首项, d+1为公比的等比数列;当d=-1时, a1=-1, a n=0(n≥2) , 此时{a n}不是等比数列. (7分)(Ⅰ) 由(Ⅰ) 可知, a n=d(d+1) n-1,从而b n=nd2(d+1) n-1,S n=d2[1+2(d+1) +3(d+1) 2+…+(n-1) (d+1) n-2+n(d+1) n-1]. ①当d=-1时, S n=d2=1.当d≠-1时, ①式两边同乘d+1得(d+1) S n=d2[(d+1) +2(d+1) 2+…+(n-1) (d+1) n-1+n(d+1) n]. ②①, ②式相减可得-dS n=d2[1+(d+1) +(d+1) 2+…+(d+1) n-1-n(d+1) n]=d2.化简即得S n=(d+1) n(nd-1) +1.综上, S n=(d+1) n(nd-1) +1. (12分)9. 已知数列{a n}满足a1=0, a2=2, 且对任意m, nⅠN*都有a2m-1+a2n-1=2a m+n-1+2(m-n) 2. (Ⅰ) 求a3, a5;(Ⅰ) 设b n=a2n+1-a2n-1(nⅠN*) , 证明:{b n}是等差数列;(Ⅰ) 设c n=(a n+1-a n) q n-1(q≠0, nⅠN*) , 求数列{c n}的前n项和S n.再令m=3, n=1可得a5=2a3-a1+8=20. (2分)(Ⅰ) 证明:当nⅠN*时, 由已知(以n+2代替m) 可得a2n+3+a2n-1=2a2n+1+8.于是[a2(n+1) +1-a2(n+1) -1]-(a2n+1-a2n-1) =8, 即b n+1-b n=8.所以, 数列{b n}是公差为8的等差数列. (5分)(Ⅰ) 由(Ⅰ) 、(Ⅰ) 的解答可知{b n}是首项b1=a3-a1=6, 公差为8的等差数列. 则b n=8n-2, 即a2n+1-a2n-1=8n-2.另由已知(令m=1) 可得, a n=-(n-1) 2.那么, a n+1-a n=-2n+1=-2n+1=2n.于是, c n=2nq n-1.当q=1时, S n=2+4+6+…+2n=n(n+1) .当q≠1时, S n=2·q0+4·q1+6·q2+…+2n·q n-1.两边同乘q可得qS n=2·q1+4·q2+6·q3+…+2(n-1) ·q n-1+2n·q n.上述两式相减即得(1-q) S n=2(1+q1+q2+…+q n-1) -2nq n=2·-2nq n=2·,所以S n=2·.综上所述, S n=(12分)10.已知数列{a n}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)求数列{a n·}的前n项和.[答案] (1)设数列{a n}的公差为d(d≠0),由条件可知:(2+3d)2=(2+d)·(2+7d),解得d=2.(4分)故数列{a n}的通项公式为a n=2n(nⅠN*).(6分)(2)由(1)知a n·=2n×32n,设数列{a n·}的前n项和为S n,则S n=2×32+4×34+6×36+…+2n×32n,32S n=2×34+4×36+…+(2n-2) ×32n+2n×32n+2,故-8S n=2(32+34+36+…+32n)-2n×32n+2,(8分)所以数列{a n·}的前n项和S n=.(12分)11.已知等差数列满足又数列中,且.(1)求数列,的通项公式;(2)若数列,的前项和分别是,且求数列的前项和;(3)若对一切正整数恒成立,求实数的取值范围. [答案]( 1)设等差数列的公差为,则有解得,,,数列是以为首项,公比为的等比数列.…………4分(2)由(1)可得,Ⅰ得,…………10分(3),Ⅰ当时, 取最小值,,,即,当时,恒成立;当时,由,解得,即实数的取值范围是. …………14分12.设为数列的前项和,对任意的,都有为常数,且.(1)求证:数列是等比数列;(2)设数列的公比,数列满足,求数列的通项公式;(3)在满足(2)的条件下,求数列的前项和.[答案] 188.(1)当时,,解得.当时,,即.又为常数,且,Ⅰ.Ⅰ数列是首项为1,公比为的等比数列.………………4分(2)由(1)得,,.Ⅰ,Ⅰ,,Ⅰ,Ⅰ.Ⅰ是首项为,公差为1的等差数列.Ⅰ,Ⅰ().…………………9分(3)由(2)知,则.Ⅰ,①,②②-①得,Ⅰ.………………14分13.设等差数列{a n}的前n项和为S n, 且S4=4S2, a2n=2a n+1.(Ⅰ) 求数列{a n}的通项公式;(Ⅰ) 设数列{b n}的前n项和为T n, 且T n+=λ(λ为常数), 令c n=b2n(nⅠN*), 求数列{c n}的前n 项和R n.[答案] (Ⅰ) 设等差数列{a n}的首项为a1, 公差为d.由S4=4S2, a2n=2a n+1得解得a1=1, d=2.因此a n=2n-1, nⅠN*.(Ⅰ) 由题意知: T n=λ-,所以n≥2时, b n=T n-T n-1=-+=.故c n=b2n==(n-1) , nⅠN*.所以R n=0×+1×+2×+3×+…+(n-1) ×,则R n=0×+1×+2×+…+(n-2) ×+(n-1) ×,两式相减得R n=+++…+-(n-1) ×=-(n-1) ×=-,整理得R n=.所以数列{c n}的前n项和R n=.。