小升初 数学知识点总结
小升初的数学知识点总结

小升初的数学(shùxué)知识点总结小升初的数学(shùxué)知识点总结小升初的数学(shùxué)知识点总结1专题(zhuāntí)一:计算我一直强调计算,扎实的算功是学好数学的必要条件。
聪明在于勤奋,知识在于积累。
积累一些常见数是必要的。
如1/8,1/4,3/8,1/2,5/8,3/4,7/8的分数,小数,百分数,比的互化要脱口而出。
100以内的质数要信手拈来。
1-30的平方,1-10的立方的结果要能提笔就写。
对于整除的判定仅仅积累2,3,5的是不够的。
9的整除判定和3的方法是一样的。
还有就是(jiùshì)2和5的n次方整除的判定只要看末n位。
如4和25的整除都是看末2位,末2位能被4或25整除那么这个数可以被4或25整除。
8和125就看末3位。
7,11,13的整除判定就是割开三位。
前面局部减去末三位就可以了如果能整除7或11或13,这个数就是7或11或13的倍数。
这其实是判定1001的方法。
此外还有一种方法是割个位法,望同学们至少掌握20以内整除的判定方法。
接下来讲下数论的积累。
1搞清楚什么是完全平方数,完全平方数个位只能是0,1,4,5,6,9.奇数的平方除以8余1,偶数的平方是4的倍数。
要掌握如何求一个数的约数个数,所有约数的和,小于这个数且和这个数互质数的个数如何求。
如何估计一个数是否为质数。
计算分为一般计算和技巧计算。
到底用哪个呢首先根本的运算法那么必须很熟悉。
不要被简便运算假象迷惑。
这里重点说下技巧计算。
首先要熟练乘法和除法的分配律,其次要熟练a-b-c=a-(b+c)a-(b-c)=a-b+c还有连除就是除以所有除数的积等。
再者对于结合交换律都应该很熟悉。
分配律有直接提公因数,和移动小数点或扩大缩小倍数来凑出公因数。
甚至有时候要强行创造公因数。
再单独算尾巴。
分数的裂项:裂和与裂差等差数列求和,平方差,配对,换元,拆项约分,等比定理的转化等都要很熟悉。
小升初数学知识点总结归纳

小升初数学知识点总结归纳一、整数运算1.整数的加减乘除运算2.整数的比较大小3.整数的绝对值和相反数二、小数运算1.小数的加减乘除运算2.小数与整数的运算3.小数的比较大小4.小数化为分数三、分数运算1.分数的加减乘除运算2.分数化简与约分3.分数的比较大小4.分数与整数的运算四、几何图形1.点、线、线段、射线、平行线、垂直线2.角的度量与分类3.三角形、四边形、圆形的性质与分类4.长方形与正方形的性质5.圆的周长和面积计算6.三角形的周长和面积计算7.正方形和长方形的周长和面积计算8.平行四边形和梯形的周长和面积计算五、逻辑推理1.推理与论证2.图形的相似与全等3.数量关系的推理与运用4.等式与方程六、代数运算1.代数式的化简与展开2.一元一次方程的解3.一元一次方程的应用七、数据统计1.数据的收集与整理2.数据的表示与分析3.平均数与中位数的计算八、排列组合1.计数原理与排列组合的关系2.重复排列与圆排列3.从一组数据中选出部分进行排列或组合的方法九、数之间的关系1.数的整除与倍数2.公约数与公倍数3.素数与合数4.分解质因数5.最大公约数与最小公倍数十、分数与百分数的转换与运用1.分数与百分数的互相转换2.百分数在解决实际问题中的应用以上是对小升初数学知识点进行的归纳总结,当然这些知识点只是初步的汇总,真正的数学知识远不止这些。
在学习小升初数学的过程中,需要组织好学习时间,培养良好的学习习惯,多进行练习和思考,不断提高数学解题的能力。
最重要的是要培养对数学的兴趣和自信,相信自己能够掌握好数学知识,取得优异的成绩。
小升初数学知识点(15篇)

小升初数学知识点(15篇)小升初数学知识点11.圆中心的一点叫圆心,用O表示。
一端在圆心,另一端在圆上的线段叫半径,用r表示。
两端都在圆上,并过圆心的线段叫直径,用d表示。
2.圆有无数条半径,有无数条直径。
3.圆心决定圆的位置,半径决定圆的大小。
4.把圆对折,再对折就能找到圆心。
5.圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴。
6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.圆的周长8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.9.C=d或C=r. 半圆的周长10. 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.847=21.98 8=25.12 9=28.26 10=31.4圆的面积11.用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=22516^2=25617^2=289 18^2=324 19^2=361 20^2=40013.周长相等时,圆的面积最大。
面积相等时,圆的周长最小。
面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长相同时,圆面积最大,正方形居中,长方形面积最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
第四单元:比的认识15.两个数相除,又叫做这两个数的比。
比的后项不能为0.16.比的前项和后项同时乘上或除以一个相同的数(0除外)。
比值不变,这叫做比的基本性质。
由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。
先用小括号将两个数括起来,再用逗号将两个数隔开。
括号里面的数由左至右为列数和行数。
列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。
二、分数乘法分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
小升初数学复习要点内容总结

小升初数学复习要点内容总结小升初数学复习要点内容总结有知识不等于有智慧,知识积存得再多,若没有智慧加以应用,知识就失去了价值。
下面是小编给大家分享的一些小升初复习要点内容,欢迎阅读,希望对大家有所帮助。
小升初复习要点内容1:方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程。
小升初复习要点内容2:一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。
也就是该方程的解了。
小升初复习要点内容3:一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。
小升初复习要点内容4:韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a,也可以表示为x1+x2=-b/a,x1x2=c/a。
小升初数学复习知识点大全

小升初数学复习知识点大全
一、整数运算
1.整数的概念
2.整数的加法、减法
3.整数的乘法、除法
4.整数的大小比较
5.整数的绝对值
二、分数运算
1.分数的概念
2.分数的加法、减法
3.分数的乘法、除法
4.分数的化简
5.分数的大小比较
三、小数运算
1.小数的概念
2.小数的加法、减法
3.小数的乘法、除法
4.小数的大小比较
5.小数与分数的相互转换
四、数字的性质
1.奇数、偶数的概念及判断方法
2.能被2整除的性质
3.能被3整除的性质
4.能被5整除的性质
5.能被9整除的性质
五、算式的变形与意义
1.加减法的结合律、交换律、分配律
2.乘除法的意义与性质
3.乘除法的结合律、交换律
4.简单算式的变形与计算
六、数与代数
1.数的概念及分类
2.自然数、整数、分数、小数等的互相转换
3.代数式的概念及构成
4.代数式的计算
七、常见几何图形
1.点、线、线段、射线的概念
2.直角、钝角、锐角的概念
3.正方形、长方形、三角形、菱形、梯形的定义、性质及判断方法
4.圆的定义、性质及计算
八、面积、体积、容量
1.长方形、正方形、三角形、圆形的面积计算
2.立方体、长方体、圆柱体的体积计算
3.比较两个面积或体积的大小
4.容积的计算
九、时刻、时区
1.时间的概念及表示方法
2.24小时制与12小时制的互换
3.时分数与分数的互换
4.时区的概念与计算
十、逻辑问题
1.推理与判断
2.常见逻辑问题的解答方法。
小升初的数学知识点总结归纳归纳

小升初的数学知识点总结归纳归纳小升初数学知识点总结归纳:小升初数学考试主要考察对基本概念、基本运算、基本定理和常用解题方法的掌握。
下面是小升初数学知识点的总结归纳:一、整数与分数1.整数的比较与大小顺序2.整数的加减法运算3.分数的加减乘除法运算4.分数的化简与求最大公约数、最小公倍数二、倍数与约数1.倍数的性质及求法2.约数的定义及求法3.最大公约数和最小公倍数的概念及性质三、小数与百分数1.小数的读法和写法2.小数的加减乘除法运算3.百分数的定义及换算四、小数、分数和百分数的互化1.小数转分数及百分数的方法2.分数转小数及百分数的方法3.百分数转小数及分数的方法五、平方与平方根1.正整数的平方及性质2.平方根的概念及性质3.完全平方的判定和求法六、有理数的加减法运算1.有理数的概念及性质2.有理数的加减法运算3.有理数的乘法运算七、字母代数式1.代数式的概念及含义2.代数式的加减法运算3.代数式的乘法运算4.整式的定义及含义八、一元一次方程与方程应用1.一元一次方程的概念及解法2.一元一次方程的应用问题解答3.一次方程与带分数的关系九、百分数的利息与利率1.利息的概念与计算2.利率的定义及计算3.比例的应用问题解答十、几何知识1.点、线和面的基本概念3.角的定义及分类4.平行线和垂直线的判定5.三角形的分类及性质6.直角、钝角和锐角的比较和判定7.四边形的分类及性质8.圆的定义及性质9.长方形、正方形和菱形的性质10.计算平面图形的面积以上是小升初数学知识点的主要内容,希望能够帮助您更好地总结和归纳。
小升初数学知识点可打印

小升初数学知识点可打印以下是小升初数学常见知识点,可供打印使用:
一、整数
1. 整数的概念和表示方法
2. 整数的加减法
3. 整数的乘除法
二、分数
1. 分数的概念和表示方法
2. 分数的加减法
3. 分数的乘除法
4. 分数化简
三、小数
1. 小数的概念和表示方法
2. 小数的加减法
3. 小数的乘除法
4. 小数化分为整数
5. 小数的四舍五入
四、比例与百分数
1. 比例的概念和表示方法
2. 比例的性质
3. 比例的应用
4. 百分数的概念和表示方法
5. 百分数与小数的转换
五、代数式
1. 代数式的概念和表示方法
2. 代数式的加减法
3. 代数式的乘法
4. 代数式的化简
六、方程与不等式
1. 方程的概念和解法
2. 不等式的概念和解法
七、几何图形
1. 平面图形的概念和分类
2. 直线、角度、三角形、四边形的基本概念
3. 圆的概念和性质
4. 空间图形的概念和分类
以上知识点仅供参考,具体内容可根据学生的实际情况进行适当调整。
数学小升初知识点归纳

数学小升初知识点归纳数学小升初必备知识点算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a × b + c6、除法的性质:a ÷ b ÷ c = a ÷(b× c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:被除数=商×除数+余数方程、代数与等式等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
代数:代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。
如:3x =ab+c分数分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015毕业班小学数学总复习资料常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、总数÷总份数=平均数11、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数12、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)13、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)14、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间15、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷2常用单位换算1、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米2、面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米3、体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升4、重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤5、人民币单位换算1元=10角1角=10分1元=100分6、时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 、整数的意义自然数和0都是整数。
2 、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b 能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1 小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25 、0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7 、25.3 、0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如:4.33 …… 3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如: 3.555 ……0.0333 ……12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99 ……的循环节是“9 ”,0.5454 ……的循环节是“54 ”。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如: 3.111 ……0.5656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 ……0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如:3.777 ……简写作0.5302302 ……简写作。
(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。