最新整理小升初数学知识点汇总汇总
人教版数学小升初知识点汇总

人教版数学小升初知识点汇总一、数与代数。
1. 数的认识。
- 整数。
- 整数的意义:像 -3、-2、-1、0、1、2、3……这样的数统称为整数。
整数包括正整数、0和负整数。
- 整数的读法和写法:读数时,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零;写数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
- 数的大小比较:先看位数,位数多的数大;如果位数相同,从最高位比起,相同数位上的数大的那个数就大。
- 小数。
- 小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。
- 小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
- 小数的读法和写法:读小数时,整数部分按照整数的读法来读,小数点读作“点”,小数部分顺次读出每一位上的数字;写小数时,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
- 小数的大小比较:先比较整数部分,整数部分大的数大;如果整数部分相同,再比较十分位,十分位上数大的数大;如果十分位相同,再比较百分位,依次类推。
- 分数。
- 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
- 分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
- 分数的分类:分数分为真分数(分子小于分母)和假分数(分子大于或等于分母),假分数可以化成带分数或整数。
- 分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
- 分数的大小比较:同分母分数相比较,分子大的分数大;同分子分数相比较,分母小的分数大;异分母分数比较大小,先通分再比较。
- 百分数。
- 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。
百分数通常不写成分数形式,而采用百分号“%”。
小升初冷门知识点总结数学

小升初冷门知识点总结数学一、加减乘除1. 加法:加法是数学中最基本的运算法则之一,通常表示两个数相加的结果。
如:2+3=5。
2. 减法:减法是数学中的一种运算法则,通常表示一个数减去另一个数的结果。
如:5-3=2。
3. 乘法:乘法是数学中的一种基本运算法则,表示一个数与另一个数相乘的结果。
如:2*3=6。
4. 除法:除法是数学中的一种运算法则,通常表示一个数除以另一个数的结果。
如:6÷3=2。
二、整数1. 整数的概念:整数是数学中的一个概念,包括正整数、负整数和零。
如:-3、-2、-1、0、1、2、3等都是整数。
2. 整数的加减法:整数的加减法跟自然数的加减法类似,只是在运算时需要考虑正负号的问题。
如:-3+5=2,2-(-5)=7。
3. 整数的乘除法:整数的乘除法也需要考虑正负号的问题,乘积两个数的正负号相同,除法是一负一正。
如:-3*2=-6,6÷3=2。
三、小数1. 小数的概念:小数是数学中的一种表示方法,用于表示比整数小的数。
如:0.5、0.75等都是小数。
2. 小数的加减法:小数的加减法跟整数的加减法类似,只是在运算时需要保持小数点对齐。
如:0.5+0.25=0.75,0.6-0.4=0.2。
3. 小数的乘除法:小数的乘法和整数的乘法类似,只需要在计算时确定小数点的位置。
如:0.5*0.3=0.15,0.6÷0.2=3。
四、分数1. 分数的概念:分数是数学中的一种表示方法,用于表示一个整体被分成若干等分之一。
如:1/2、3/4等都是分数。
2. 分数的加减法:分数的加减法需要找到它们的最小公倍数,然后进行计算。
如:1/2+1/3=5/6,3/4-1/2=1/4。
3. 分数的乘除法:分数的乘法是将两个分数的分子乘积作为新分数的分子,分母乘积作为新分数的分母;分数的除法是将一个分数的分子乘以另一个分数的倒数,作为新分数的分子,分母同样如此。
如:1/2*2/3=2/6,3/4÷1/2=3/2。
(完整版)小升初数学必考知识点

小升初数学必考知识点(一)倍数、约数1.概念:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
2.常见的倍数特征2的倍数特征:个位上是0、2、4、6、8的数,都能被2整除。
3的倍数特征:一个数的个位上的数的和能被3整除,这个数就能被3整除。
5的倍数特征:个位上是0或5的数,都能被5整除。
7的倍数特征:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被7整除,这个数就能被7整除。
9的倍数特征:一个数个位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的一定能被3整除。
11的倍数特征:奇数位上的数字之和与偶数位上的数字之和的差能被11整除,这个数就能被11整除。
13的倍数特征:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除,这个数就能被13整除。
4(或25)的倍数特征:一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
8(或125)的倍数特征:一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
(二)奇数与偶数一个自然数,不是奇数就是偶数。
偶数:能被2整除的数叫做偶数(包括0)奇数:不能被2整除的数叫做奇数最小的偶数是:0最小的奇数是:1(三)质数与合数1.概念:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1.不是质数也不是合数,自然数除了1外,不是质数就是合数。
2.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
完整版)小升初数学复习重点归纳整理

完整版)小升初数学复习重点归纳整理小升初数学复重点归纳整理一、整数和小数1.最小的一位数是1,最小的自然数是1.2.小数的意义是把整数1平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.整数和小数都是按照十进制计数法写出的数。
5.小数的性质是小数的末尾添上或者去掉,小数的大小不变。
6.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……二、数的整除1.因数和倍数:20÷4=5,20是4和5的倍数,4和5是20的因数。
2.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。
3.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
4.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。
质数都有2个因数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
合数至少有3个因数。
最小的质数是2,最小的合数是4.1~20以内的质数有:2、3、5、7、11、13、17、19;1~20以内的合数有:4、6、8、9、10、12、14、15、16、18.5.能被2整除的数的特征是个位上是2、4、6、8的数,都能被2整除。
能被5整除的数的特征是个位上是0或5的数,都能被5整除。
能被3整除的数的特征是一个数的各位上数的和能被3整除,这个数就能被3整除。
6.公约因数、公倍数:几个数公有的因数,叫做这几个数的因数;其中最大的一个,叫做这几个数的最大公因数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
7.互质数:公因数只有1的两个数叫做互质数。
小升初数学知识点

小升初数学知识点一、数的认识1.整数-包括正整数、0、负整数。
-整数的数位顺序表:从右往左依次是个位、十位、百位、千位……-整数的读法:从高位到低位,一级一级地读,每一级末尾的0 都不读出来,其他数位连续有几个0 都只读一个零。
-整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
2.小数-由整数部分、小数点和小数部分组成。
-小数的读法:整数部分按照整数的读法来读,小数点读作“点”,小数部分依次读出每一位上的数字。
-小数的写法:整数部分按照整数的写法来写,小数点写在个位的右下角,小数部分依次写出每一位上的数字。
-小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
3.分数-把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
-分数的读法:先读分母,再读“分之”,最后读分子。
-分数的写法:先写分数线,再写分母,最后写分子。
-分数的基本性质:分数的分子和分母同时乘或除以相同的数(0 除外),分数的大小不变。
二、数的运算1.四则运算-加法:把两个或两个以上的数合并成一个数的运算。
-减法:已知两个数的和与其中一个加数,求另一个加数的运算。
-乘法:求几个相同加数的和的简便运算。
-除法:已知两个因数的积与其中一个因数,求另一个因数的运算。
2.运算定律-加法交换律:a + b = b + a。
-加法结合律:(a + b) + c = a + (b + c)。
-乘法交换律:a×b = b×a。
-乘法结合律:(a×b)×c = a×(b×c)。
-乘法分配律:(a + b)×c = a×c + b×c。
3.简便运算-凑整法:把一些数凑成整十、整百、整千的数再进行计算。
-拆分法:把一个数拆分成两个或几个数的和或差,再进行计算。
-运用运算定律:根据运算定律进行简便计算。
三、几何图形1.平面图形-三角形:由三条线段围成的图形。
小升初数学复习知识点大全

小升初数学复习知识点大全
一、整数运算
1.整数的概念
2.整数的加法、减法
3.整数的乘法、除法
4.整数的大小比较
5.整数的绝对值
二、分数运算
1.分数的概念
2.分数的加法、减法
3.分数的乘法、除法
4.分数的化简
5.分数的大小比较
三、小数运算
1.小数的概念
2.小数的加法、减法
3.小数的乘法、除法
4.小数的大小比较
5.小数与分数的相互转换
四、数字的性质
1.奇数、偶数的概念及判断方法
2.能被2整除的性质
3.能被3整除的性质
4.能被5整除的性质
5.能被9整除的性质
五、算式的变形与意义
1.加减法的结合律、交换律、分配律
2.乘除法的意义与性质
3.乘除法的结合律、交换律
4.简单算式的变形与计算
六、数与代数
1.数的概念及分类
2.自然数、整数、分数、小数等的互相转换
3.代数式的概念及构成
4.代数式的计算
七、常见几何图形
1.点、线、线段、射线的概念
2.直角、钝角、锐角的概念
3.正方形、长方形、三角形、菱形、梯形的定义、性质及判断方法
4.圆的定义、性质及计算
八、面积、体积、容量
1.长方形、正方形、三角形、圆形的面积计算
2.立方体、长方体、圆柱体的体积计算
3.比较两个面积或体积的大小
4.容积的计算
九、时刻、时区
1.时间的概念及表示方法
2.24小时制与12小时制的互换
3.时分数与分数的互换
4.时区的概念与计算
十、逻辑问题
1.推理与判断
2.常见逻辑问题的解答方法。
小升初数学所有知识点整理版

小升初数学所有知识点整理版
1.数值概念和数的应用
-自然数、整数、有理数和无理数
-分数与小数的转换
-常见的数的单位和量的比较
2.数的计算
-四则运算:加法、减法、乘法、除法
-混合运算:多个运算符的综合运算
3.数量关系
-数量关系的表示:用代数式表示数量关系
-相等关系、比例关系和百分数关系
-多个数量关系的综合运算
-加减法与乘除法的应用
4.几何初步
-点的坐标
-直线、线段、射线和角的概念
-平行线和垂直线的判定
-直角和平行四边形的性质
-三角形的分类和性质:等边三角形、等腰三角形、直角三角形等
5.几何的应用
-长度、面积和体积的计算
-图形在平面上的位置关系
-对称关系的理解和应用
6.逻辑推理和问题解决
-数学推理问题:逻辑关系、递推关系等
-简单的方程问题:一元一次方程的解法
-解决实际问题的数学分析和建模能力
7.数据统计
-数据收集和整理
-样本调查的方法和过程
-数据处理和分析:频数、平均数、中位数、众数等
8.函数初步
-函数的概念和性质
-线性函数和非线性函数的区别和特点
9.平面图形
-长方形、正方形、圆、梯形、菱形、弧线等基本图形的性质和计算
这些是小升初数学的主要知识点,掌握了这些知识点,就能够应对小升初数学考试。
同时,需要注意的是,要善于运用所学知识,多进行实际问题的练习和应用,提高数学解决问题的能力。
小升初数学知识点

小升初数学知识点小升初数学知识点1:算式各部分名称及计算公式乘法:乘数×乘数=积加法:加数+加数=和和—加数=加数减法:被减数—减数=差被减数=差+减数减数=被减数—差小升初数学知识点2:写乘加、乘减算式时乘加:先把相同的部分用乘法表示,再加上不相同的部分。
乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。
计算时,先算乘,再算加减。
如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14小升初数学知识点3:“几和几相加”与“几个几相加”有区别求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)求几个几相加,用几乘几。
如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=82个乘数都是几,求积?用几×几。
如:2个8相乘用8×8=64小升初数学知识点4:一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。
“5+5+5”写成乘法算式是(3×5=15)或(5×3=15),都可以用口诀(三五十五)来计算,表示(3)个(5)相加3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15小升初数学知识点5:观察物体1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;2、观察物体时,要抓住物体的特征来判断。
3、观察长方体的某一面,看到的可能是长方形或正方形。
观察正方形的某一面,看到的都是正方形4、观察圆柱体,看到的可能是长方形或圆形。
观察球体,看到的都是圆形认识时间1、认识时间(1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;(2)钟面上有12个大格,60个小格,1个大格有5个小格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学复习资料第一章数和数的运算一概念(一)整数1.整数的意义:自然数和0都是整数。
2自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除:(1)整除、倍数、约数:整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
例如因为35能被7整除,所以35是7的倍数,7是35的约数。
★一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
★一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是 3 ,没有最大的倍数。
(2)整除的性质:★个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
★个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
★一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
★一个数各位数上的和能被9整除,这个数就能被9整除。
★能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
★一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
★一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
(3)奇偶性:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被 2 整除的特征可分为奇数和偶数。
(4)质数与合数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。
★1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
(5)分解质因数:每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数28=22×7 (6)公约数与公倍数:几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:★1和任何自然数互质。
★相邻的两个自然数互质。
★两个不同的质数互质。
★当合数不是质数的倍数时,这个合数和这个质数互质。
★两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
★如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
★如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8……3的倍数有3、6、9、……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1 小数的意义把整数1平均分成10份、100份、……得到的十分之几、百分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25 、0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7 、25.3 、0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如: 4.33 …… 3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如: 3.555 ……0.0333 ……12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99 ……的循环节是“9 ”,0.5454 ……的循环节是“54 ”。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如: 3.111 ……0.5656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 ……0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如: 3.777 ……简写作0.5302302 ……简写作。
(三)分数1 分数的意义★把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数1 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二方法(一)数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(三)数的整除1. 把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。
(四)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
三性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3. 小数点向左移或者向右移位数不够时,要用“0"补足位。